Sustained immunological memory to SARS-CoV-2 antigens. Three years of observation

Cover Page

Cite item

Full Text

Abstract

The COVID-19 pandemic has ended, but SARS-CoV-2 continues to actively circulate and mutate in the human population. In this regard, it is important to understand for how long post-infectious and post-vaccination immunity may last and how effectively established immunity could act against new mutant SARS-CoV-2 strains. The aim was to study humoral and cellular immunity in a group of COVID-19 convalescent subjects within 3 years after the primary infection. The longitudinal study included 38 adults aged 23–72 years with PCR-confirmed mild or moderate COVID-19 in the second half of 2020. Within three-year follow-up after the onset, the subjects were examined every 6 months for the level of humoral and cellular immunity against SARS-CoV-2 antigens. The parameters of humoral immunity were assessed by enzyme immunoassay using “SARS-CoV-2-IgG quantitative-ELISA-BEST” kits (Vector-Best JSC, Novosibirsk, Russian Federation) for S-protein and “N-CoV-2-IgG PS” (Saint-Petersburg Pasteur Institute, St. Petersburg, Russian Federation) specific to the N-protein. Cellular anti-SARS-CoV-2 immunity was analyzed by evaluating surface CD107a expression on CD8high lymphocytes stimulated with the SARS-CoV-2 S- or N-antigens. It was shown that the dynamics of antibody levels against SARS-COV-2 antigens depends on antigen (S- or N-protein) type, antibody class (IgG or IgA) as well as individual contact history with new SARS-CoV-2 strains. The dynamics of cytotoxic CD8highCD107a+ lymphocyte percentage is moderately positively correlated with that of the corresponding anti-S or N antibody levels. At the same time, change in the levels of both humoral and T-cell responses to SARS-CoV-2 S- or N-protein antigens are weakly negatively correlated with each other. A strong positive correlation was found between changes in the anti-S IgG antibody level and avidity. Avoiding the anti-S IgG neutralization due to frequent mutations of new SARS-CoV-2 strains leads to induced new primary immune responses against SARS-CoV-2 antigens along with the activation of existing responses formed to previous coronavirus strains. The study of immune responses against SARS-CoV-2 antigens allows to predict the persistence of high SARS-CoV-2 anti-S antibody and T-cell response levels.

About the authors

Z. E. Afridonova

G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology

Email: toptyginaanna@rambler.ru

PhD Student, Laboratory of Cytokines

Russian Federation, Moscow

A. P. Toptygina

G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology; Lomonosov Moscow State University

Author for correspondence.
Email: toptyginaanna@rambler.ru

DSc (Medicine), Head Researcher, Head of the Laboratory of Cytokines, Professor, Department of Immunology, Faculty of Biology

Russian Federation, Moscow; Moscow

E. L. Semikina

National Medical Research Center of Children’s Health of the Ministry of Health of the Russian Federation; I.M. Sechenov First Moscow State Medical University

Email: toptyginaanna@rambler.ru

DSc (Medicine), Head Researcher, Head of Laboratory Department, Professor, Department of Pediatrics and Pediatric Rheumatology

Russian Federation, Moscow; Moscow

References

  1. Афридонова З.Э., Топтыгина А.П., Михайлов И.С. Особенности гуморального и клеточного иммунного ответа на S- и N-белки вируса SARS-CoV-2 // Биохимия. 2024. Т. 89, № 5 (в печати). [Afridonova Z.E., Toptygina A.P., Mikhaylov I.S. Humoral and cellular immune response to SARS-CoV-2 S and N proteins. Biokhimiya = Biochemistry (Moscow), 2024, vol. 89, no. 5 (in print). (In Russ.)]
  2. Зуева Е.В., Беляев Н.Н., Вербов В.Н., Лихачев И.В., Бачинин И.А., Хамитова И.В., Коробова З.Р., Арсентьева Н.А., Тотолян А.А. Характеристика набора реагентов «N-CoV-2-IgG PS» для количественного определения IgG человека к нуклеокапсидному белку SARS-CoV-2 // Инфекция и иммунитет. 2022. Т. 12, № 4. С. 771–778. [Zueva E.V., Belyaev N.N., Verbov V.N., Likhachev I.V., Bachinin I.A., Khamitova I.V., Korobova Z.R., Arsentieva N.A., Totolian A.A. Characterizing a “N-CoV-2-IgG PS” diagnostic kit to quantify SARS-CoV-2 nucleocapsid protein-specific human IgG antibodies. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2022, vol. 12, no. 4, pp. 771–778. (In Russ.)] doi: 10.15789/2220-7619-CAN-1904
  3. Иванова И.А., Филиппенко А.В., Труфанова А.А., Омельченко Н.Д., Чемисова О.С., Водопьянов А.С., Березняк Е.А., Соколова Е.П., Носков А.К., Тотолян А.А. Оценка формирования и напряженности адаптивного иммунитета у переболевших COVID-19 // Инфекция и иммунитет. 2023. Т. 13, № 2. C. 319–328. [Ivanova I.A., Filippenko A.V., Trufanova A.A., Omelchenko N.D., Chemisova O.S., Vodopyanov A.S., Bereznyak E.A., Sokolova E.P., Noskov A.K., Totolian A.A. Assessment of formation and durability of adaptive immunity in COVID-19 convasescents. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2023, vol. 13, no. 2, pp. 319–328. (In Russ.)] doi: 10.15789/2220-7619-AOF-2107
  4. Топтыгина А.П., Афридонова З.Э., Закиров Р.Ш., Семикина Е.Л. Поддержание иммунологической памяти к вирусу SARS-CoV-2 в условиях пандемии // Инфекция и иммунитет. 2023. Т. 13, № 1. C. 55–66. [Toptygina A.P., Afridonova Z.E., Zakirov R.Sh., Semikina E.L., Maintaining immunological memory to the SARS-CoV-2 virus during a pandemic. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2023, vol. 13, no. 1, pp. 55–66. (In Russ.)] doi: 10.15789/2220-7619-MIM-2009
  5. Топтыгина А.П., Семикина Е.Л., Закиров Р.Ш., Афридонова З.Э. Сопоставление гуморального и клеточного иммунитета у переболевших COVID-19 // Инфекция и иммунитет. 2022. Т. 12, № 3. С. 495–504. [Toptygina A.P., Semikina E.L., Zakirov R.Sh., Afridonova Z.E. Comparison of the humoral and cellular immunity in COVID-19 convalescents. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2022, vol. 12, no. 3, pp. 495–504. (In Russ.)] doi: 10.15789/2220-7619-COT-1809
  6. Alejo J.L., Mitchell J., Chang A., Chiang T.P.Y., Massie A.B., Segev D.L., Makary M.A. Prevalence and durability of SARS-CoV-2 antibodies among unvaccinated US adults by history of COVID-19. JAMA, 2022, vol. 327, no. 11, pp. 1085–1087. doi: 10.1001/jama.2022.1393
  7. Bergwerk M., Gonen T., Lustig Y., Amit S., Lipsitch M., Cohen C., Mandelboim M., Levin E.G., Rubin C., Indenbaum V., Tal I., Zavitan M., Zuckerman N., Bar-Chaim A., Kreiss Y., Regev-Yochay G. Covid-19 breakthrough infections in vaccinated health care workers. N. Engl. J. Med., 2021, vol. 385, no. 16, pp. 1474–1484. doi: 10.1056/NEJMoa2109072
  8. Della-Torre E., Lanzillotta M., Strollo M., Ramirez G.A., Dagna L., Tresoldi M. Serum IgG4 level predicts COVID-19 related mortality. Eur. J. Intern. Med., 2021, vol. 93, pp. 107–109. doi: 10.1016/j.ejim.2021.09.012
  9. Geers D., Shamier M.C., Bogers S., den Hartog G., Gommers L., Nieuwkoop N.N., Schmitz K.S., Rijsbergen L.C., van Osch J.A.T., Dijkhuizen E., Smits G., Comvalius A., van Mourik D., Caniels T.G., van Gils M.J., Sanders R.W., Oude Munnink B.B., Molenkamp R., de Jager H.J., Haagmans B.L., de Swart R.L., Koopmans M.P.G., van Binnendijk R.S., de Vries R.D., GeurtsvanKessel C.H. SARS-CoV-2 variants of concern partially escape humoral but not T-cell responses in COVID-19 convalescent donors and vaccinees. Sci. Immunol., 2021, vol. 6, no. 59: eabj1750. doi: 10.1126/sciimmunol.abj1750
  10. Hoehn K.B., Ramanathan P., Unterman A., Sumida T.S., Asashima H., Hafler D.A., Kaminski N., Dela Cruz C.S., Sealfon S.C., Bukreyev A., Kleinstein S.H. Cutting edge: distinct B cell repertoires characterize patients with mild and severe COVID-19. J. Immunol., 2021, vol. 206, no. 12, pp. 2785–2790. doi: 10.4049/jimmunol.2100135
  11. Irrgang P., Gerling J., Kocher K., Lapuente D., Steininger P., Habenicht K., Wytopil M., Beileke S., Schafer S., Zhong J., Ssebyatika G., Krey T., Falcone V., Schülein C., Peter A.S., Nganou-Makamdop K., Hengel H., Held J., Bogdan C., Überla K., Schober K., Winkler T.H., Tenbusch M. Class switch toward noninflammatory, spike-specific IgG4 antibodies after repeated SARS-CoV-2 mRNA vaccination. Sci. Immunol., 2023, vol. 8: eade2798. doi: 10.1126/sciimmunol.ade2798
  12. Khoury D.S., Cromer D., Reynaldi A., Schlub T.E., Wheatley A.K., Juno J.A., Subbarao K., Kent S.J., Triccas J.A., Davenport M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med., 2021, vol. 27, pp. 1205–1211. doi: 10.1038/s41591-021-01377-8
  13. Klein S.L., Pekosz A., Park H.S., Ursin R.L., Shapiro J.R., Benner S.E., Littlefield K., Kumar S., Naik H.M., Betenbaugh M.J., Shrestha R., Wu A.A., Hughes R.M., Burgess I., Caturegli P., Laeyendecker O., Quinn T.C., Sullivan D., Shoham S., Redd A.D., Bloch E.M., Casadevall A., Tobian A.A. Sex, age, and hospitalization drive antibody responses in a COVID-19 convalescent plasma donor population. J. Clin. Invest., 2020, vol. 130, no. 11, pp. 6141–6150. doi: 10.1172/JCI142004
  14. Korobova Z.R., Zueva E.V., Arsentieva N.A., Batsunov O.K., Liubimova N.E., Khamitova I.V., Kuznetsova R.N., Rubinstein A.A., Savin T.V., Stanevich O.V., Kulikov A.N., Pevtsov D.E., Totolian A.A. Changes in anti-SARS-CoV-2 IgG subclasses over time and in association with disease severity. Viruses, 2022, vol. 14: 941. doi: 10.3390/v14050941
  15. Krutikov M., Palmer T., Tut G., Fuller C., Azmi B., Giddings R., Shrotri M., Kaur N., Sylla P., Lancaster T., Irwin-Singer A., Hayward A., Moss P., Copas A., Shallcross L. Prevalence and duration of detectable SARS-CoV-2 nucleocapsid antibodies in staff and residents of long-term care facilities over the first year of the pandemic (VIVALDI study): prospective cohort study in England. Lancet Healthy Longev., 2022, vol. 3, no. 1, pp. e13–e21. doi: 10.1016/S2666-7568(21)00282-8
  16. Kundu R. Narean J.S., Wang L., Fenn J., Pillay T., Fernandez N.D., Conibear E., Koycheva A., Davies M., Tolosa-Wright M., Hakki S., Varro R., McDermott E., Hammett S., Cutajar J., Thwaites R.S., Parker E., Rosadas C., McClure M., Tedder R., Taylor G.P., Dunning J., Lalvani A. Cross-reactive memory T cells associate with protection against SARS-CoV-2 infection in COVID-19 contacts. Nat. Commun., 2022, vol. 13: 80. doi: 10.1038/s41467-021-27674-x
  17. Kuri-Cervantes L., Pampena M.B., Meng W., Rosenfeld A.M., Ittner C.A.G., Weisman A.R., Agyekum R.S., Mathew D., Baxter A.E., Vella L.A., Kuthuru O., Apostolidis S.A., Bershaw L., Dougherty J., Greenplate A.R., Pattekar A., Kim J., Han N., Gouma S., Weirick M.E., Arevalo C.P., Bolton M.J., Goodwin E.C., Anderson E.M., Hensley S.E., Jones T.K., Mangalmurti N.S., Luning Prak E.T., Wherry E.J., Meyer N.J., Betts M.R. Comprehensive mapping of immune perturbations associated with severe COVID-19. Sci. Immunol., 2020, vol. 5, no. 49: eabd7114. doi: 10.1126/sciimmunol.abd7114
  18. Lee N., Jeong S., Lee S.K., Cho E.-J., Hyun J., Park M.-J., Song W., Kim H.S. Quantitative analysis of anti-N and anti-S antibody titers of SARS-CoV-2 infection after the third dose of COVID-19 vaccination. Vaccines, 2022, vol. 10: 1143. doi: 10.3390/vaccines10071143
  19. Moura A.D., da Costa H.H.M., Correa V.A., de Lima A.K., Lindoso J.A.L., De Gaspari E., Hong M.A., Cunha-Junior J.P., Prudencio C.R. Assessment of avidity related to IgG subclasses in SARS-CoV-2 Brazilian infected patients. Sci. Rep., 2021, vol. 11: 17642. doi: 10.1038/s41598-021-95045-z
  20. Nielsen S.C.A., Yang F., Jackson K.J.L., Hoh R.A., Röltgen K., Jean G.H., Stevens B.A., Lee J.Y., Rustagi A., Rogers A.J., Powell A.E., Hunter M., Najeeb J., Otrelo-Cardoso A.R., Yost K.E., Daniel B., Nadeau K.C., Chang H.Y., Satpathy A.T., Jardetzky T.S., Kim P.S., Wang T.T., Pinsky B.A., Blish C.A., Boyd S.D. Human B cell clonal expansion and convergent antibody responses to SARS-CoV-2. Cell. Host Microbe., 2020, vol. 28, no. 4, pp. 516–525e515. doi: 10.1016/j.chom.2020.09.002
  21. Niu L., Wittrock K.N., Clabaugh G.C., Srivastava V., Cho M.W. A structural landscape of neutralizing antibodies against SARS-CoV-2 receptor binding domain. Front. Immunol., 2021, vol. 12: 647934. doi: 10.3389/fimmu.2021.647934.
  22. Nowill A.E., Caruso M., de Campos-Lima P.O. T-cell immunity to SARS-CoV-2: what if the known best is not the optimal course for the long run? Adapting to evolving targets. Front. Immunol., 2023, vol. 14: 1133225. doi: 10.3389/fimmu.2023.1133225
  23. Pušnik J., König J., Mai K., Richter E., Zorn J., Proksch H., Schulte B., Alter G., Streeck H. Persistent maintenance of intermediate memory B cells following SARS-CoV-2 infection and vaccination recall response. J. Virol., 2022 vol. 96: e00760-22. doi: 10.1128/jvi.00760-22
  24. Pušnik J., Monzon-Posadas W.O., Zorn J., Peters K., Baum M., Proksch H., Schlüter C.B., Alter G., Menting T., Streeck H. SARS-CoV-2 humoral and cellular immunity following different combinations of vaccination and breakthrough infection. Nat. Commun., 2023, vol. 14, no. 1: 572. doi: 10.1038/s41467-023-36250-4
  25. Rezaei M., Sadeghi M., Korourian A., Tabarsi P., Porabdollah M., Askari E., Mortaz E., Mahmoudi S., Marjani M., Velayati A.A. Comparative evaluation of SARS-CoV-2 IgG assays against nucleocapsid and spike antigens. Hum. Antibodies, 2021, vol. 29, pp. 109–113. doi: 10.3233/HAB-210440
  26. Rubio-Casillas A., Redwan E.M., Uversky V.N. Does SARS-CoV-2 induce IgG4 synthesis to evade the immune system? Biomolecules, 2023, vol. 13: 1338. doi: 10.3390/biom13091338
  27. Sakharkar M., Rappazzo C.G., Wieland-Alter W.F., Hsieh C.L., Wrapp D., Esterman E.S., Kaku C.I., Wec A.Z., Geoghegan J.C., McLellan J.S., Connor R.I., Wright P.F., Walker L.M. Prolonged evolution of the human B cell response to SARS-CoV-2 infection. Sci. Immunol., 2021, vol. 6, no. 56: eabg6916. doi: 10.1126/sciimmunol.abg6916
  28. Sariol A., Perlman S. Lessons for COVID-19 immunity from other coronavirus infections. Immunity, 2020, vol. 53, no. 2, pp. 248–263. doi: 10.1016/j.immuni.2020.07.005
  29. Satoguina J.S., Weyand E., Larbi J., Hoerauf A. T regulatory-1 cells induce IgG4 production by B cells: role of IL-10. J. Immunol., 2005, vol. 174, pp. 4718–4726. doi: 10.4049/jimmunol.174.8.4718
  30. Shrotri M., Navaratnam A.M.D, Nguyen V., Byrne T., Geismar C., Fragaszy E., Beale S., Fong W.L.E., Patel P., Kovar J., Hayward A.C., Aldridge R.W.; Virus Watch Collaborative. Spike-antibody waning after second dose of BNT162b2 or ChAdOx1. Lancet, 2021, vol. 398, no. 10298, pp. 385–387. doi: 10.1016/S0140-6736(21)01642-1
  31. Wang Z., Muecksch F., Schaefer-Babajew D., Finkin S., Viant C., Gaebler C., Hoffmann H.H., Barnes C.O., Cipolla M., Ramos V., Oliveira T.Y., Cho A., Schmidt F., Da Silva J., Bednarski E., Aguado L., Yee J., Daga M., Turroja M., Millard K.G., Jankovic M., Gazumyan A., Zhao Z., Rice C.M., Bieniasz P.D., Caskey M., Hatziioannou T., Nussenzweig M.C. Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature, 2021, vol. 595, no. 7867, pp. 426–431. doi: 10.1038/s41586-021-03696-9
  32. Woodruff M.C., Ramonell R.P., Nguyen D.C., Cashman K.S., Saini A.S., Haddad N.S., Ley A.M., Kyu S., Howell J.C., Ozturk T., Lee S., Suryadevara N., Case J.B., Bugrovsky R., Chen W., Estrada J., Morrison-Porter A., Derrico A., Anam F.A., Sharma M., Wu H.M., Le S.N., Jenks S.A., Tipton C.M., Staitieh B., Daiss J.L., Ghosn E., Diamond M.S., Carnahan R.H., Crowe J.E. Jr., Hu W.T., Lee F.E., Sanz I. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat. Immunol., 2020, vol. 21, no. 12, pp. 1506–1516. doi: 10.1038/s41590-020-00814-z
  33. Zost S.J., Gilchuk P., Case J.B., Binshtein E., Chen R.E., Nkolola J.P., Schäfer A., Reidy J.X., Trivette A., Nargi R.S., Sutton R.E., Suryadevara N., Martinez D.R., Williamson L.E., Chen E.C., Jones T., Day S., Myers L., Hassan A.O., Kafai N.M., Winkler E.S., Fox J.M., Shrihari S., Mueller B.K., Meiler J., Chandrashekar A., Mercado N.B., Steinhardt J.J., Ren K., Loo Y.M., Kallewaard N.L., McCune B.T., Keeler S.P., Holtzman M.J., Barouch D.H., Gralinski L.E., Baric R.S., Thackray L.B., Diamond M.S., Carnahan R.H., Crowe J.E. Jr. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature, 2020, vol. 584, no. 7821, pp. 443–449. doi: 10.1038/s41586-020-2548-6

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Temporal post-COVID-19 change in IgG antibody levels

Download (111KB)
3. Figure 2. Temporal serum change in SARS-CoV-2 S protein-specific antibody avidity of COVID-19 convalescent patients

Download (94KB)
4. Figure 3. Temporal change in post-COVID-19 anti-S IgA antibody levels

Download (89KB)
5. Figure 4. Time-dependent change in SARS-CoV-2 antigen-specific IgG subclass spectrum

Download (184KB)
6. Figure 5. Time-dependent change in levels of cellular SARS-CoV-2 N- and S-protein-specific immune response

Download (111KB)

Copyright (c) 2024 Afridonova Z.E., Toptygina A.P., Semikina E.L.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».