Влияние полиморфных вариантов генов интерфероновых рецепторов на тяжесть COVID-19 и антибиотикорезистентность

Обложка

Цитировать

Полный текст

Аннотация

Однонуклеотидные замены в структуре генов, ассоциированные с изменением конформации белка-рецептора или экспрессии рецепторов к интерферонам, могут объяснить различия в восприимчивости и тяжести COVID-19, наряду с общеизвестными факторами риска. Цель: изучение взаимосвязи между полиморфными вариантами генов интерфероновых рецепторов, тяжестью течения COVID-19 и распространенностью генов антибиотикорезистентности в микробиоте кишечника. Материалы и методы. Проведено исследование с включением случайной выборки населения Архангельска в возрасте от 42 до 76 лет (n = 305). Процедура исследования включала сбор данных о COVID-19 из Федерального регистра переболевших COVID-19, забор крови для серологического исследования на наличие антител к SARS-CoV-2, исследование полиморфных маркеров рецепторов к интерферонам и сбор образцов кала для выявления генов антибиотикорезистентности. Результаты. В течение 12–15 месяцев пандемии COVID-19 17,4% участников исследования перенесли COVID-19 с симптомами, 32,8% болели бессимптомно. К осени 2022 г. доля участников, переболевших с симптомами, увеличилась до 36,4%, а доля переболевших бессимптомно — до 61,3%. Выявлена взаимосвязь между генотипом СС варианта rs2257167 гена IFNAR1, наличием аллеля T варианта rs2229207 гена IFNAR2, гаплотипа ССТТ и манифестным течением COVID-19. Выявлена взаимосвязь между гаплотипом GCTC, наличием пневмонии и тяжестью течения COVID-19. В ноябре 2022 г. резистентность к макролидам наблюдалась в 98,4% случаев, устойчивость к бета-лактамам — в 26,9%, резистентность к гликопептидам — в 13,8%. Резистентность к трем классам антибиотиков наблюдалась у 4,9% обследованных и чаще выявлялась у лиц с гаплотипом ССТТ. Гены, кодирующие бета-лактамазы, чаще выявлялись у лиц с гаплотипом GCTC, чаще болевших COVID-19 с пневмонией и получавших стационарное лечение. Гены резистентности к гликопептидам были ассоциированы с генотипом СС варианта rs2257167 гена IFNAR1. Вывод. Таким образом, выявлены генетические детерминанты восприимчивости, манифестного течения и тяжести COVID-19. Взаимосвязь полиморфных вариантов генов интерфероновых рецепторов и тяжести течения COVID-19 может использоваться для выявления людей с генетической предрасположенностью к тяжелому течению инфекции и определения приоритетных групп для проведения вакцинации, в том числе для профилактики антибиотикорезистентности при осложненном течении вирусных инфекций.

Об авторах

Е. А. Кригер

ФГБОУ ВО Северный государственный медицинский университет Минздрава России

Автор, ответственный за переписку.
Email: kate-krieger@mail.ru

к.м.н., научный сотрудник международного центра научных компетенций центральной научно-исследовательской лаборатории, доцент кафедры инфекционных болезней

Россия, Архангельск

Ольга В. Самодова

ФГБОУ ВО Северный государственный медицинский университет Минздрава России

Email: kate-krieger@mail.ru

д.м.н., профессор, зав. кафедрой инфекционных болезней 

Россия, Архангельск

О. А. Свитич

ФГБНУ НИИ вакцин и сывороток им. И.И. Мечникова; ФГАОУ ВО Первый Московский государственный медицинский университет имени И.М. Сеченова Минздрава России

Email: kate-krieger@mail.ru

д.м.н., профессор РАН, член-корреспондент РАН, директор, профессор кафедры микробиологии, вирусологии и иммунологии имени академика А.А. Воробьева института общественного здоровья им. Ф.Ф. Эрисмана

Россия, Москва; Москва

Р. В. Самойликов

ФГБНУ НИИ вакцин и сывороток им. И.И. Мечникова

Email: kate-krieger@mail.ru

научный сотрудник лаборатории молекулярной иммунологиии

Россия, Москва

Е. А. Меремьянина

ФГБНУ НИИ вакцин и сывороток им. И.И. Мечникова; ФГБОУ ДПО Российская медицинская академия непрерывного профессионального образования МЗ РФ

Email: kate-krieger@mail.ru

к.м.н., научный сотрудник лаборатории молекулярной иммунологиии, старший преподаватель кафедры вирусологии

Россия, Москва; Москва

Л. В. Иванова

ФГБОУ ВО Северный государственный медицинский университет Минздрава России

Email: kate-krieger@mail.ru

клинический ординатор кафедры инфекционных болезней 

Россия, Архангельск

Н. А. Бебякова

ФГБОУ ВО Северный государственный медицинский университет Минздрава России

Email: kate-krieger@mail.ru

д.б.н., профессор, зав. кафедрой медицинской биологии и генетики

Россия, Архангельск

Е. Н. Ильина

ФБУН НИИ системной биологии и медицины Роспотребнадзора

Email: kate-krieger@mail.ru

д.б.н., член-корреспондент РАН, главный научный сотрудник, зав. лабораторией математической биологии и биоинформатики

Россия, Москва

А. В. Павленко

ФБУН НИИ системной биологии и медицины Роспотребнадзора

Email: kate-krieger@mail.ru

научный сотрудник

Россия, Москва

Ю. И. Есин

ФБУН НИИ системной биологии и медицины Роспотребнадзора

Email: kate-krieger@mail.ru

лаборант

Россия, Москва

А. Л. Архипова

ФБУН НИИ системной биологии и медицины Роспотребнадзора

Email: kate-krieger@mail.ru

младший научный сотрудник

Россия, Москва

С. Н. Ковальчук

ФБУН НИИ системной биологии и медицины Роспотребнадзора

Email: s.n.kovalchuk@mail.ru

к.б.н., старший научный сотрудник 

Москва

А. В. Кудрявцев

ФГБОУ ВО Северный государственный медицинский университет Минздрава России

Email: kate-krieger@mail.ru

доктор философии в области наук о здоровье, зав. международным центром научных компетенций центральной научно-исследовательской лаборатории

Россия, Архангельск

Список литературы

  1. Гущин В.А., Почтовый А.А., Кустова Д.Д., Огаркова Д.А., Клейменов Д.А., Семененко Т.А., Логунов Д.Ю., Злобин В.И., Гинцбург А.Л. Характеристика эпидемического процесса COVID-19 в Москве и поиск возможных факторов, определяющих тенденции наблюдаемых изменений // Журнал микробиологии, эпидемиологии и иммунобиологии. 2023. Т. 100, № 4. C. 267–284. [Gushchin V.A., Pochtovyi A.A., Kustova D.D., Ogarkova D.A., Kleymenov D.A., Semenenko T.A., Logunov D.Y., Zlobin V.I., Gintsburg A.L. Characterisation of the COVID-19 epidemic process in Moscow and search for possible determinants of the trends of the observed changes. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2023, vol. 100, no. 4, pp. 267–284. (In Russ.)] doi: 10.36233/0372-9311-375
  2. Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 9 (26.10.2020). Минздрав РФ, 2020. 236 с. [Interim guidelines. Prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Version 9 (26.10.2020). Ministry of Health of the Russian Federation, 2020. 236 p. (In Russ.)] URL: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/052/548/original/%D0%9C%D0%A0_COVID-19_%28v.9%29.pdf
  3. Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 10 (08.02.2021). Минздрав РФ, 2021. 261 с. [Interim guidelines. Prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Version 10 (08.02.2021). Ministry of Health of the Russian Federation, 2021. 261 p. (In Russ.)] URL: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/054/588/original/%D0%92%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%BD%D1%8B%D0%B5_%D0%9C%D0%A0_COVID-19_%28v.10%29-08.02.2021_%281%29.pdf
  4. Кригер Е.А., Павленко А.В., Есин Ю.П., Архипова А.Л., Ковальчук С.Н., Шагров Л.Л., Белова Н.И., Цыварева Н.П., Кудрявцев А.В., Ильина Е.Н. Распространенность генов устойчивости к антибиотикам в составе резистома взрослых жителей Архангельска с учетом тяжести перенесенной COVID-19 // Журнал инфектологии. 2023. Т. 15, № 3. С. 92–109. [Krieger E.A., Pavlenko A.V., Esin Yu.P., Arkhipova A.L., Kovalchuk S.N., Shagrov L.L., Belova N.I., Tsyvareva N.P., Kudryavtsev A.V., Ilina E.N. Prevalence of antibiotic resistance genes in resistome of adult residents of Arkhangelsk with regard to the severity of COVID-19. Zhurnal infektologii = Journal Infectology, 2023, vol. 15, no. 3, pp. 92–109. (In Russ.)] doi: 10.22625/2072-6732-2023-15-3-92-109
  5. Луцкий А.А., Жирков А.А., Лобзин Д.Ю., Рао М., Алексеева Л.А., Мейрер М., Лобзин Ю.В. Интерферон-γ: биологическая функция и значение для диагностики клеточного иммунного ответа // Журнал инфектологии. 2015. Т. 7, № 4. С. 10–22. [Lutckii A.A., Zhirkov A.A., Lobzin D.Yu., Rao M., Alekseeva L.A., Maeurer M., Lobzin Yu.V. Interferon-γ: biological function and application for study of cellular immune response. Zhurnal infektologii = Journal Infectology, 2015, vol. 7, no. 4, pp. 10–22. (In Russ.)] doi: 10.22625/2072-6732-2015-7-4-10-22
  6. Шишиморов И.Н., Магницкая О.В., Пономарева Ю.В. Генетические предикторы тяжести течения и эффективности фармакотерапии COVID-19 // Фармация и фармакология. 2021. Т. 9, № 3. С. 174–184. [Shishimorov I.N., Magnitskaya O.V., Ponomareva Yu.V. Genetic predictors of severity and efficacy of COVID-19 pharmacotherapy. Farmatsiya i farmakologiya = Pharmacy & Pharmacology, 2021, vol. 9, no. 3, pp. 174–184. (In Russ.)] doi: 10.19163/2307-9266-2021-9-3-174-184]
  7. The Allele Frequency Net Database. URL: http://allelefrequencies.net (14.10.2023)
  8. Channappanavar R., Fehr A.R., Zheng J., Wohlford-Lenane C., Abrahante J.E., Mack M., Sompallae R., McCray P.B. Jr., Meyerholz D.K., Perlman S. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J. Clin. Invest., 2019, vol. 129, no. 9, pp. 3625–3639. doi: 10.1172/JCI126363
  9. Crits-Christoph A., Hallowell H.A., Koutouvalis K., Suez J. Good microbes, bad genes? The dissemination of antimicrobial resistance in the human microbiome. Gut Microbes., 2022, vol. 14, no. 1: 2055944. doi: 10.1080/19490976.2022.2055944
  10. Fricke-Galindo I., Martínez-Morales A., Chávez-Galán L., Ocaña-Guzmán R., Buendía-Roldán I., Pérez-Rubio G., Hernández-Zenteno R.J., Verónica-Aguilar A., Alarcón-Dionet A., Aguilar-Duran H., Gutiérrez-Pérez I.A., Zaragoza-García O., Alanis-Ponce J., Camarena A., Bautista-Becerril B., Nava-Quiroz K.J., Mejía M., Guzmán-Guzmán I.P., Falfán-Valencia R. IFNAR2 relevance in the clinical outcome of individuals with severe COVID-19. Front. Immunol., 2022, vol. 13: 949413. doi: 10.3389/fimmu.2022.949413
  11. Fuchs S.Y. Hope and fear for interferon: the receptor-centric outlook on the future of interferon therapy. J. Interferon Cytokine Res., 2013, vol. 33, no. 4, pp. 211–225. doi: 10.1089/jir.2012.0117
  12. He S., Wang B., Zhu X., Chen Z., Chen J., Hua D., Droma D., Li W., Yuan D., Jin T. Association of IFNGR1 and IFNG genetic polymorphisms with the risk for pulmonary tuberculosis in the Chinese Tibetan population. Oncotarget, 2017, vol. 8, no. 58, pp. 98417–98425. doi: 10.18632/oncotarget.21413
  13. Kang Y., Chen S., Chen Y., Tian L., Wu Q., Zheng M., Li Z. Alterations of fecal antibiotic resistome in COVID-19 patients after empirical antibiotic exposure. Int. J. Hyg. Environ. Health, 2022, vol. 240: 113882. doi: 10.1016/j.ijheh.2021.113882
  14. Karkhane M., Mohebbi S.R., Sharifian A., Ghaemi A., Asadzadeh Aghdaei H., Zali M.R. A gene variation of Interferon Gamma Receptor-I promoter (rs1327474A>G) and chronic hepatitis C virus infection. Gastroenterol. Hepatol. Bed. Bench, 2019, vol. 12, no. 1, pp. 46–51.
  15. Kim N.E., Song Y.J. Coordinated regulation of interferon and inflammasome signaling pathways by SARS-CoV-2 proteins. J. Microbiol., 2022, vol. 60, no. 3, pp. 300–307. doi: 10.1007/s12275-022-1502-8
  16. Marchetti M., Monier M.N., Fradagrada A., Mitchell K., Baychelier F., Eid P., Johannes L., Lamaze C. Stat-mediated signaling induced by type I and type II interferons (IFNs) is differentially controlled through lipid microdomain association and clathrin-dependent endocytosis of IFN receptors. Mol. Biol. Cell, 2006, vol. 17, no. 7, pp. 2896–2909. doi: 10.1091/mbc.e06-01-0076
  17. National Human Genome Research Institute. Polymorphism. URL: https://www.genome.gov/genetics-glossary/Polymorphism (14.10.2023)
  18. Platanias L.C. Mechanisms of type-I- and type-II-interferon-mediated signaling. Nat. Rev. Immunol., 2005, vol. 5, no. 5, pp. 375–386. doi: 10.1038/nri1604
  19. Primorac D., Vrdoljak K., Brlek P., Pavelić E., Molnar V., Matišić V., Erceg Ivkošić I., Parčina M. Adaptive immune responses and immunity to SARS-CoV-2. Front. Immunol., 2022, vol. 13: 848582. doi: 10.3389/fimmu.2022.848582
  20. Samuel C.E. Interferon at the crossroads of SARS-CoV-2 infection and COVID-19 disease. J. Biol. Chem., 2023, vol. 299, no. 8: 104960. doi: 10.1016/j.jbc.2023.104960
  21. Schmiedel B.J., Rocha J., Gonzalez-Colin C., Bhattacharyya S., Madrigal A., Ottensmeier C.H., Ay F., Chandra V., Vijayanand P. COVID-19 genetic risk variants are associated with expression of multiple genes in diverse immune cell types. Nat. Commun., 2021, vol. 12, no. 1: 6760. doi: 10.1038/s41467-021-26888-3
  22. Song le H., Xuan N.T., Toan N.L., Binh V.Q., Boldt A.B., Kremsner P.G., Kun J.F. Association of two variants of the interferon-alpha receptor-1 gene with the presentation of hepatitis B virus infection. Eur. Cytokine Netw., 2008, vol. 19, no. 4, pp. 204–210. doi: 10.1684/ecn.2008.0137
  23. Stertz S., Hale B.G. Interferon system deficiencies exacerbating severe pandemic virus infections. Trends Microbiol., 2021, vol. 29, no. 11, pp. 973–982. doi: 10.1016/j.tim.2021.03.001
  24. COVID-19 Host Genetics Initiative. The COVID-19 Host Genetics Initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 virus pandemic. Eur. J. Hum. Genet., 2020, vol. 28, no. 6, pp. 715–718. doi: 10.1038/s41431-020-0636-6
  25. Velavan T.P., Pallerla S.R., Rüter J., Augustin Y., Kremsner P.G., Krishna S., Meyer C.G. Host genetic factors determining COVID-19 susceptibility and severity. EBioMedicine, 2021, vol. 72: 103629. doi: 10.1016/j.ebiom.2021.103629
  26. Welzel T.M., Morgan T.R., Bonkovsky H.L., Naishadham D., Pfeiffer R.M., Wright E.C., Hutchinson A.A., Crenshaw A.T., Bashirova A., Carrington M., Dotrang M., Sterling R.K., Lindsay K.L., Fontana R.J., Lee W.M., Di Bisceglie A.M., Ghany M.G., Gretch D.R., Chanock S.J., Chung R.T., O’Brien T.R.; HALT-C Trial Group. Variants in interferon-alpha pathway genes and response to pegylated interferon-Alpha2a plus ribavirin for treatment of chronic hepatitis C virus infection in the hepatitis C antiviral long-term treatment against cirrhosis trial. Hepatology, 2009, vol. 49, no. 6, pp. 1847–1858. doi: 10.1002/hep.22877
  27. Xia C., Wolf J.J., Sun C., Xu M., Studstill C.J., Chen J., Ngo H., Zhu H., Hahm B. PARP1 enhances influenza a virus propagation by facilitating degradation of host type I interferon receptor. J. Virol., 2020, vol. 94, no. 7: e01572-19. doi: 10.1128/JVI.01572-19
  28. Zhang Q., Meng Y., Wang K., Zhang X., Chen W., Sheng J., Qiu Y., Diao H., Li L. Inflammation and antiviral immune response associated with severe progression of COVID-19. Front. Immunol., 2021, vol. 12: 631226. doi: 10.3389/fimmu.2021.631226
  29. Zheng K.I., Feng G., Liu W.Y., Targher G., Byrne C.D., Zheng M.H. Extrapulmonary complications of COVID-19: a multisystem disease? J. Med. Virol., 2021, vol. 93, no. 1, pp. 323–335. doi: 10.1002/jmv.26294

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рисунок 1. Генотипы участников по полиморфным вариантам генов интерфероновых рецепторов

Скачать (85KB)
3. Рисунок 2. Доли участников, переболевших COVID-19 с симптомами и без симптомов в течение 12–15 месяцев от начала пандемии (А) и в течение 2,5 лет от начала пандемии (Б)

Скачать (138KB)

© Кригер Е.А., Самодова О.В., Свитич О.А., Самойликов Р.В., Меремьянина Е.А., Иванова Л.В., Бебякова Н.А., Ильина Е.Н., Павленко А.В., Есин Ю.И., Архипова А.Л., Ковальчук С.Н., Кудрявцев А.В., 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».