The impact of polymorphic variants of interferon receptor genes on COVID-19 severity and antibiotic resistance
- Authors: Krieger E.A.1, Samodova O.V.1, Svitich O.A.2,3, Samoilikov R.V.2, Meremianina E.A.2,4, Ivanova L.V.1, Bebyakova N.A.1, Ilina E.N.5, Pavlenko A.V.5, Esin Y.I.5, Arkhipova A.L.5, Kovalchuk S.N.5, Kudryavtsev A.V.1
-
Affiliations:
- Northern State Medical University
- I. Mechnikov Research Institute of Vaccines and Sera
- I.M. Sechenov First Moscow State Medical University
- Russian Medical Academy of Continuous Professional Education
- Research Institute for Systems Biology and Medicine
- Issue: Vol 13, No 6 (2023)
- Pages: 1027-1039
- Section: ORIGINAL ARTICLES
- URL: https://journals.rcsi.science/2220-7619/article/view/252303
- DOI: https://doi.org/10.15789/2220-7619-TIO-17537
- ID: 252303
Cite item
Full Text
Abstract
Single nucleotide substitutions in gene sequence associated with conformational changes in protein receptor or in expression of interferon receptors may explain variations in human susceptibility to infection and severity of COVID-19 along with other well-known risk factors. The study aimed to investigate associations between polymorphic variants of interferon receptor genes, COVID-19 severity and prevalence of antibiotic resistance genes in the gut microbiota. Materials and methods. The study was conducted using a random sample of Arkhangelsk population aged 42 to 76 years (n = 305). The research involved gathering COVID-19 data from the Federal Register, conducting blood tests for SARS-CoV-2 antibodies and polymorphic interferon receptor gene variants, and identifying antibiotic resistance genes in stool samples. Results. During the first 12–15 months of the COVID-19 pandemic, 17.4% of the study participants had symptomatic COVID-19, while 32.8% were asymptomatic. By the Autumn of 2022, symptomatic COVID-19 cases rose up to 36.4%, while asymptomatic cases increased to 61.3%. We reveal an association between the CC genotype of the IFNAR1 gene rs2257167 variant, the presence of the T allele of IFNAR2 gene rs2229207 variant, the CCTT haplotype and symptomatic COVID-19. The GCTC haplotype was associated with pneumonia and COVID-19 severity. In November 2022, macrolide resistance genes were observed in 98.4% of cases, whereas those to beta-lactams and glycopeptides — in 26.9% and 13.8% cases, respectively. Resistance to three classes of antibiotics was observed in 4.9% and was more frequently detected in individuals with the ССТТ haplotype. Genes encoding beta-lactamases were more often found in individuals with the GCTC haplotype, those who had COVID-19 with pneumonia and those who received hospital treatment. Glycopeptide resistance genes were associated with the CC genotype of the rs2257167 variant of IFNAR1 gene. Conclusion. We identified genetic determinants of susceptibility, symptomatic infection and COVID-19 severity. The associations between polymorphic variants of interferon receptor genes and COVID-19 severity can be used to identify people with a genetic predisposition to severe infection and to determine priority groups for vaccination, including the prevention of antibiotic resistance in complicated course of viral infections.
Full Text
##article.viewOnOriginalSite##About the authors
E. A. Krieger
Northern State Medical University
Author for correspondence.
Email: kate-krieger@mail.ru
PhD (Medicine), Researcher, International Research Competence Centre, Central Scientific Research Laboratory, Associate Professor, Department of Infectious Diseases
Russian Federation, ArkhangelskO. V. Samodova
Northern State Medical University
Email: kate-krieger@mail.ru
DSc (Medicine), Professor, Head of the Department of Infectious Diseases
Russian Federation, ArkhangelskO. A. Svitich
I. Mechnikov Research Institute of Vaccines and Sera; I.M. Sechenov First Moscow State Medical University
Email: kate-krieger@mail.ru
DSc (Medicine), Professor of RAS, RAS Corresponding Member, Director, Professor, Vorobiev Department of Microbiology, Virology and Immunology, Erisman Institute of Public Health (and Healthcare Management)
Russian Federation, Moscow; MoscowR. V. Samoilikov
I. Mechnikov Research Institute of Vaccines and Sera
Email: kate-krieger@mail.ru
Researcher, Laboratory of Molecular Immunology
Russian Federation, MoscowE. A. Meremianina
I. Mechnikov Research Institute of Vaccines and Sera; Russian Medical Academy of Continuous Professional Education
Email: kate-krieger@mail.ru
PhD (Medicine), Researcher, Laboratory of Molecular Immunology, Senior Lecturer, Department of Virology
Russian Federation, Moscow; MoscowL. V. Ivanova
Northern State Medical University
Email: kate-krieger@mail.ru
Resident Physician, Department of Infectious Diseases
Russian Federation, ArkhangelskN. A. Bebyakova
Northern State Medical University
Email: kate-krieger@mail.ru
DSc (Biology), Professor, Head of the Department of Medical Biology and Genetic
Russian Federation, ArkhangelskE. N. Ilina
Research Institute for Systems Biology and Medicine
Email: kate-krieger@mail.ru
DSc (Biology), RAS Corresponding Member, Head Researcher, Head of the Laboratory of Mathematical Biology and Bioinformatics
Russian Federation, MoscowA. V. Pavlenko
Research Institute for Systems Biology and Medicine
Email: kate-krieger@mail.ru
Researcher
Russian Federation, MoscowYu. I. Esin
Research Institute for Systems Biology and Medicine
Email: kate-krieger@mail.ru
Laboratory Assistant
Russian Federation, MoscowA. L. Arkhipova
Research Institute for Systems Biology and Medicine
Email: kate-krieger@mail.ru
Junior Researcher
Russian Federation, MoscowS. N. Kovalchuk
Research Institute for Systems Biology and Medicine
Email: s.n.kovalchuk@mail.ru
PhD (Biology), Senior Researcher
MoscowA. V. Kudryavtsev
Northern State Medical University
Email: kate-krieger@mail.ru
PhD (Health Sciences), Head of the International Research Competence Centre, Central Scientific Research Laboratory
Russian Federation, ArkhangelskReferences
- Гущин В.А., Почтовый А.А., Кустова Д.Д., Огаркова Д.А., Клейменов Д.А., Семененко Т.А., Логунов Д.Ю., Злобин В.И., Гинцбург А.Л. Характеристика эпидемического процесса COVID-19 в Москве и поиск возможных факторов, определяющих тенденции наблюдаемых изменений // Журнал микробиологии, эпидемиологии и иммунобиологии. 2023. Т. 100, № 4. C. 267–284. [Gushchin V.A., Pochtovyi A.A., Kustova D.D., Ogarkova D.A., Kleymenov D.A., Semenenko T.A., Logunov D.Y., Zlobin V.I., Gintsburg A.L. Characterisation of the COVID-19 epidemic process in Moscow and search for possible determinants of the trends of the observed changes. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2023, vol. 100, no. 4, pp. 267–284. (In Russ.)] doi: 10.36233/0372-9311-375
- Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 9 (26.10.2020). Минздрав РФ, 2020. 236 с. [Interim guidelines. Prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Version 9 (26.10.2020). Ministry of Health of the Russian Federation, 2020. 236 p. (In Russ.)] URL: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/052/548/original/%D0%9C%D0%A0_COVID-19_%28v.9%29.pdf
- Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 10 (08.02.2021). Минздрав РФ, 2021. 261 с. [Interim guidelines. Prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Version 10 (08.02.2021). Ministry of Health of the Russian Federation, 2021. 261 p. (In Russ.)] URL: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/054/588/original/%D0%92%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%BD%D1%8B%D0%B5_%D0%9C%D0%A0_COVID-19_%28v.10%29-08.02.2021_%281%29.pdf
- Кригер Е.А., Павленко А.В., Есин Ю.П., Архипова А.Л., Ковальчук С.Н., Шагров Л.Л., Белова Н.И., Цыварева Н.П., Кудрявцев А.В., Ильина Е.Н. Распространенность генов устойчивости к антибиотикам в составе резистома взрослых жителей Архангельска с учетом тяжести перенесенной COVID-19 // Журнал инфектологии. 2023. Т. 15, № 3. С. 92–109. [Krieger E.A., Pavlenko A.V., Esin Yu.P., Arkhipova A.L., Kovalchuk S.N., Shagrov L.L., Belova N.I., Tsyvareva N.P., Kudryavtsev A.V., Ilina E.N. Prevalence of antibiotic resistance genes in resistome of adult residents of Arkhangelsk with regard to the severity of COVID-19. Zhurnal infektologii = Journal Infectology, 2023, vol. 15, no. 3, pp. 92–109. (In Russ.)] doi: 10.22625/2072-6732-2023-15-3-92-109
- Луцкий А.А., Жирков А.А., Лобзин Д.Ю., Рао М., Алексеева Л.А., Мейрер М., Лобзин Ю.В. Интерферон-γ: биологическая функция и значение для диагностики клеточного иммунного ответа // Журнал инфектологии. 2015. Т. 7, № 4. С. 10–22. [Lutckii A.A., Zhirkov A.A., Lobzin D.Yu., Rao M., Alekseeva L.A., Maeurer M., Lobzin Yu.V. Interferon-γ: biological function and application for study of cellular immune response. Zhurnal infektologii = Journal Infectology, 2015, vol. 7, no. 4, pp. 10–22. (In Russ.)] doi: 10.22625/2072-6732-2015-7-4-10-22
- Шишиморов И.Н., Магницкая О.В., Пономарева Ю.В. Генетические предикторы тяжести течения и эффективности фармакотерапии COVID-19 // Фармация и фармакология. 2021. Т. 9, № 3. С. 174–184. [Shishimorov I.N., Magnitskaya O.V., Ponomareva Yu.V. Genetic predictors of severity and efficacy of COVID-19 pharmacotherapy. Farmatsiya i farmakologiya = Pharmacy & Pharmacology, 2021, vol. 9, no. 3, pp. 174–184. (In Russ.)] doi: 10.19163/2307-9266-2021-9-3-174-184]
- The Allele Frequency Net Database. URL: http://allelefrequencies.net (14.10.2023)
- Channappanavar R., Fehr A.R., Zheng J., Wohlford-Lenane C., Abrahante J.E., Mack M., Sompallae R., McCray P.B. Jr., Meyerholz D.K., Perlman S. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J. Clin. Invest., 2019, vol. 129, no. 9, pp. 3625–3639. doi: 10.1172/JCI126363
- Crits-Christoph A., Hallowell H.A., Koutouvalis K., Suez J. Good microbes, bad genes? The dissemination of antimicrobial resistance in the human microbiome. Gut Microbes., 2022, vol. 14, no. 1: 2055944. doi: 10.1080/19490976.2022.2055944
- Fricke-Galindo I., Martínez-Morales A., Chávez-Galán L., Ocaña-Guzmán R., Buendía-Roldán I., Pérez-Rubio G., Hernández-Zenteno R.J., Verónica-Aguilar A., Alarcón-Dionet A., Aguilar-Duran H., Gutiérrez-Pérez I.A., Zaragoza-García O., Alanis-Ponce J., Camarena A., Bautista-Becerril B., Nava-Quiroz K.J., Mejía M., Guzmán-Guzmán I.P., Falfán-Valencia R. IFNAR2 relevance in the clinical outcome of individuals with severe COVID-19. Front. Immunol., 2022, vol. 13: 949413. doi: 10.3389/fimmu.2022.949413
- Fuchs S.Y. Hope and fear for interferon: the receptor-centric outlook on the future of interferon therapy. J. Interferon Cytokine Res., 2013, vol. 33, no. 4, pp. 211–225. doi: 10.1089/jir.2012.0117
- He S., Wang B., Zhu X., Chen Z., Chen J., Hua D., Droma D., Li W., Yuan D., Jin T. Association of IFNGR1 and IFNG genetic polymorphisms with the risk for pulmonary tuberculosis in the Chinese Tibetan population. Oncotarget, 2017, vol. 8, no. 58, pp. 98417–98425. doi: 10.18632/oncotarget.21413
- Kang Y., Chen S., Chen Y., Tian L., Wu Q., Zheng M., Li Z. Alterations of fecal antibiotic resistome in COVID-19 patients after empirical antibiotic exposure. Int. J. Hyg. Environ. Health, 2022, vol. 240: 113882. doi: 10.1016/j.ijheh.2021.113882
- Karkhane M., Mohebbi S.R., Sharifian A., Ghaemi A., Asadzadeh Aghdaei H., Zali M.R. A gene variation of Interferon Gamma Receptor-I promoter (rs1327474A>G) and chronic hepatitis C virus infection. Gastroenterol. Hepatol. Bed. Bench, 2019, vol. 12, no. 1, pp. 46–51.
- Kim N.E., Song Y.J. Coordinated regulation of interferon and inflammasome signaling pathways by SARS-CoV-2 proteins. J. Microbiol., 2022, vol. 60, no. 3, pp. 300–307. doi: 10.1007/s12275-022-1502-8
- Marchetti M., Monier M.N., Fradagrada A., Mitchell K., Baychelier F., Eid P., Johannes L., Lamaze C. Stat-mediated signaling induced by type I and type II interferons (IFNs) is differentially controlled through lipid microdomain association and clathrin-dependent endocytosis of IFN receptors. Mol. Biol. Cell, 2006, vol. 17, no. 7, pp. 2896–2909. doi: 10.1091/mbc.e06-01-0076
- National Human Genome Research Institute. Polymorphism. URL: https://www.genome.gov/genetics-glossary/Polymorphism (14.10.2023)
- Platanias L.C. Mechanisms of type-I- and type-II-interferon-mediated signaling. Nat. Rev. Immunol., 2005, vol. 5, no. 5, pp. 375–386. doi: 10.1038/nri1604
- Primorac D., Vrdoljak K., Brlek P., Pavelić E., Molnar V., Matišić V., Erceg Ivkošić I., Parčina M. Adaptive immune responses and immunity to SARS-CoV-2. Front. Immunol., 2022, vol. 13: 848582. doi: 10.3389/fimmu.2022.848582
- Samuel C.E. Interferon at the crossroads of SARS-CoV-2 infection and COVID-19 disease. J. Biol. Chem., 2023, vol. 299, no. 8: 104960. doi: 10.1016/j.jbc.2023.104960
- Schmiedel B.J., Rocha J., Gonzalez-Colin C., Bhattacharyya S., Madrigal A., Ottensmeier C.H., Ay F., Chandra V., Vijayanand P. COVID-19 genetic risk variants are associated with expression of multiple genes in diverse immune cell types. Nat. Commun., 2021, vol. 12, no. 1: 6760. doi: 10.1038/s41467-021-26888-3
- Song le H., Xuan N.T., Toan N.L., Binh V.Q., Boldt A.B., Kremsner P.G., Kun J.F. Association of two variants of the interferon-alpha receptor-1 gene with the presentation of hepatitis B virus infection. Eur. Cytokine Netw., 2008, vol. 19, no. 4, pp. 204–210. doi: 10.1684/ecn.2008.0137
- Stertz S., Hale B.G. Interferon system deficiencies exacerbating severe pandemic virus infections. Trends Microbiol., 2021, vol. 29, no. 11, pp. 973–982. doi: 10.1016/j.tim.2021.03.001
- COVID-19 Host Genetics Initiative. The COVID-19 Host Genetics Initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 virus pandemic. Eur. J. Hum. Genet., 2020, vol. 28, no. 6, pp. 715–718. doi: 10.1038/s41431-020-0636-6
- Velavan T.P., Pallerla S.R., Rüter J., Augustin Y., Kremsner P.G., Krishna S., Meyer C.G. Host genetic factors determining COVID-19 susceptibility and severity. EBioMedicine, 2021, vol. 72: 103629. doi: 10.1016/j.ebiom.2021.103629
- Welzel T.M., Morgan T.R., Bonkovsky H.L., Naishadham D., Pfeiffer R.M., Wright E.C., Hutchinson A.A., Crenshaw A.T., Bashirova A., Carrington M., Dotrang M., Sterling R.K., Lindsay K.L., Fontana R.J., Lee W.M., Di Bisceglie A.M., Ghany M.G., Gretch D.R., Chanock S.J., Chung R.T., O’Brien T.R.; HALT-C Trial Group. Variants in interferon-alpha pathway genes and response to pegylated interferon-Alpha2a plus ribavirin for treatment of chronic hepatitis C virus infection in the hepatitis C antiviral long-term treatment against cirrhosis trial. Hepatology, 2009, vol. 49, no. 6, pp. 1847–1858. doi: 10.1002/hep.22877
- Xia C., Wolf J.J., Sun C., Xu M., Studstill C.J., Chen J., Ngo H., Zhu H., Hahm B. PARP1 enhances influenza a virus propagation by facilitating degradation of host type I interferon receptor. J. Virol., 2020, vol. 94, no. 7: e01572-19. doi: 10.1128/JVI.01572-19
- Zhang Q., Meng Y., Wang K., Zhang X., Chen W., Sheng J., Qiu Y., Diao H., Li L. Inflammation and antiviral immune response associated with severe progression of COVID-19. Front. Immunol., 2021, vol. 12: 631226. doi: 10.3389/fimmu.2021.631226
- Zheng K.I., Feng G., Liu W.Y., Targher G., Byrne C.D., Zheng M.H. Extrapulmonary complications of COVID-19: a multisystem disease? J. Med. Virol., 2021, vol. 93, no. 1, pp. 323–335. doi: 10.1002/jmv.26294
Supplementary files
