Optimized properties of live vaccine influenza reassortant strains obtained by reverse genetics

Cover Page

Cite item

Full Text

Abstract

Classical reassortment in developing chicken eggs is a well-established technique for obtaining LAIV strains. Naturally generated reassortant vaccine strains are characterized by high reproductive capacity, genetically stable characteristics of temperature sensitivity and cold resistance, which correspond to the characteristics of the MDV involved in crossing with the epidemic virus. Along with antigenic relevance, natural reassortment ensures attenuation of vaccine strains, good reproduction capacity in upper respiratory tract cells and inability to reproduction in the lower respiratory tract. With classical reassortment, the speed and efficiency of obtaining vaccine reassortants largely depend on the properties of epidemic virus, and therefore cannot be stable. The potential of reverse genetics is attractive because it allows to obtain vaccine reassortants quickly and efficiently, reduce the likelihood of spontaneous mutations; however, the vaccine strain is deprived of the advantages of natural selection, in which the most viable clones are selected. This study presents the results of comparatively assessed A(H3N2) LAIVs obtained in parallel by classical reassortment and reverse genetics according to criteria confirming that vaccine strains inherit the necessary properties that guarantee their harmlessness and high reproduction in chicken embryos. Strains for LAIV obtained by both methods retained all attenuating mutations inherited from the MDV, were highly reproductive at the optimal temperature, with temperature sensitivity corresponded to the MDV. However, strains obtained by reverse genetics, was observed to have partial loss of cold resistance in comparison with that of the MDV and classical reassortants. Reduced cold adaptation may negatively affect vaccine effectiveness. It is important that after several additional passages in chicken embryos at low temperature, the cold resistance of the vaccine strain, assembled by reverse genetics, was increased. Credibly that cold resistance is a phenotypic trait, the degree of manifestation of which depends on the temperature conditions of virus multiplication. The selective factor of reduced incubation temperature is missing in reverse genetics. In order for the cold-adapted phenotype to be fully realized, additional passages at low temperature of RG-reassortants are necessary. Thus, the reverse genetics method using plasmid technology allows to effectively prepare reassortant strains for LAIV. An important stage in obtaining vaccine strains using genetic engineering techniques should be the control of their cold-adapted phenotype and its optimization by additional passages at low temperature.

About the authors

N. V. Larionova

Institute of Experimental Medicine

Email: nvlarionova@mail.ru

DSc (Biology), Leading Researcher, Laboratory of General Virology

Russian Federation, Saint Petersburg

I. V. Kiseleva

Institute of Experimental Medicine

Email: nvlarionova@mail.ru

DSc (Biology), Professor, Head of Laboratory of General Virology

Russian Federation, St. Petersburg

E. A. Bazhenova

Institute of Experimental Medicine

Email: nvlarionova@mail.ru

PhD (Biology), Senior Researcher, Laboratory of General Virology

Russian Federation, St Petersburg

E. A. Stepanova

Institute of Experimental Medicine

Email: nvlarionova@mail.ru

PhD (Biology), Leading Researcher, Laboratory of General Virology

Russian Federation, St. Petersburg

L. G. Rudenko

Institute of Experimental Medicine

Author for correspondence.
Email: nvlarionova@mail.ru

DSc (Biology), Professor, Head of the A.A. Smorodintsev Department of Virology

Russian Federation, St. Petersburg

References

  1. Александрова Г.И. Применение метода генетической рекомбинации для получения вакцинных штаммов вируса гриппа // Вопросы вирусологии. 1977. Т. 22, № 4. С. 387–395. [Alexandrova G.I. Use of the genetic recombination method for obtaining vaccinal strains of the influenza virus. Voprosy virusologii = Problems of Virology, 1977, vol. 22, no. 4, pp. 387–395. (In Russ.)]
  2. Александрова Г.И., Климов А.И. Живая вакцина против гриппа. СПб.: Наука, 1994. 152 с. [Alexandrova G.I., Klimov A.I. Live influenza vaccine. St. Petersburg: Nauka, 1994. 152 p. (In Russ.)]
  3. Киселева И.В., Ларионова Н.В., Исакова И.Н., Руденко Л.Г. Генетическая стабильность холодоадаптированных вирусов гриппа // Вопросы вирусологии. 2006. Т. 51, № 4. С. 13–16. [Kiseleva I.V., Larionova N.V., Isakova I.N., Rudenko L.G. Genetic stability of cold-adapted influenza viruses. Voprosy virusologii = Problems of Virology, 2006, vol. 51, no. 4, pp. 13–16. (In Russ.)]
  4. Киселева И.В., Руденко Л.Г. Разработка реассортантных гриппозных вакцин: классическое скрещивание или обратная генетика? // Инфекция и иммунитет. 2023. Т. 13, № 2. C. 209–218. [Kiseleva I.V., Rudenko L.G. Development of reassortant influenza vaccines: classical reassortment or reverse genetics? Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2023, vol. 13, no. 2, pp. 209–218. (In Russ.)] doi: 10.15789/2220-7619-DOR-2449
  5. Ларионова Н.В., Киселева И.В., Баженова Е.А., Григорьева Е.П., Руденко Л.Г. Влияние биологических свойств сезонных вирусов гриппа на эффективность подготовки штаммов живой гриппозной вакцины // Журнал микробиологии, эпидемиологии и иммунобиологии. 2019. № 5. С. 24–34. [Larionova N.V., Kiseleva I.V., Bazhenova E.A., Grigorieva E.P., Rudenko L.G. The influence of seasonal influenza viruses biological features on the effectiveness of development strains for live influenza vaccine. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2019, no. 5, pp. 24–34. (In Russ.)] doi: 10.36233/0372-9311-2019-5-24-34
  6. Степанова Е.А., Крутикова Е.В., Киселева И.В., Руденко Л.Г. Разработка протокола пиросеквенирования для анализа происхождения генов реассортантов при подготовке штаммов живой гриппозной вакцины // Молекулярная генетика, микробиология и вирусология. 2018. Т. 36, № 2. C. 101–107. [Stepanova E.A., Krutikova E.V., Kiseleva I.V., Rudenko L.G. Development of pyrosequencing-based assay for analyzing the origin of genes in preparing reassortant LAIV candidates. Molekulyarnaya genetika, mikrobiologiya i virusologiya = Molecular Genetics, Microbiology and Virology, 2018, vol. 36, no. 2, pp. 101–107. (In Russ.)] doi: 10.18821/0208-0613-2018-36-2-98-103
  7. Allen J.D., Ross T.M. H3N2 influenza viruses in humans: viral mechanisms, evolution, and evaluation. Hum. Vaccin. Immunother., 2018, vol. 14, no. 8, pp. 1840–1847. doi: 10.1080/21645515.2018.1462639.
  8. Cheng X., Zengel J.R., Suguitan A.L. Jr., Xu Q., Wang W., Lin J., Jin H. Evaluation of the humoral and cellular immune responses elicited by the live attenuated and inactivated influenza vaccines and their roles in heterologous protection in ferrets. J. Infect. Dis., 2013, vol. 208, no. 4, pp. 594–602. doi: 10.1093/infdis/jit207
  9. Herlocher M.L., Clavo A.C., Maassab H.F. Sequence comparisons of A/AA/6/60 influenza viruses: mutations which may contribute to attenuation. Virus Res., 1996, vo. 42, no. 1–2, pp. 11–25. doi: 10.1016/0168-1702(96)01292-0
  10. Hoffmann E., Neumann G., Kawaoka Y., Hobom G., Webster R.G. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc. Natl Acad. Sci. USA, 2000, vol. 97, no. 11, pp. 6108–6113. doi: 10.1073/pnas.100133697
  11. Hoffmann E., Krauss S., Perez D., Webby R., Webster R.G. Eight-plasmid system for rapid generation of influenza virus vaccines. Vaccine, 2002, vol. 20, no. 25–26, pp. 3165–3170. doi: 10.1016/s0264-410x(02)00268-2
  12. Isakova-Sivak I., Matyushenko V., Stepanova E., Matushkina A., Kotomina T., Mezhenskaya D., Prokopenko P., Kudryavtsev I., Kopeykin P., Sivak K., Rudenko L. Recombinant live attenuated influenza vaccine viruses carrying conserved T-cell epitopes of human adenoviruses induce functional cytotoxic T-cell responses and protect mice against both infections. Vaccines (Basel), 2020, vol. 8, no. 2: 196. doi: 10.3390/vaccines8020196
  13. Isakova-Sivak I., Chen L.M., Matsuoka Y., Voeten J.T., Kiseleva I., Heldens J.G., den Bosch Hv., Klimov A., Rudenko L., Cox N.J., Donis R.O. Genetic bases of the temperature-sensitive phenotype of a master donor virus used in live attenuated influenza vaccines: A/Leningrad/134/17/57 (H2N2). Virology, 2011, vol. 412, no. 2, pp. 297–305. doi: 10.1016/j.virol.2011.01.004
  14. Jin H., Lu B., Zhou H., Ma C., Zhao J., Yang C.F., Kemble G., Greenberg H. Multiple amino acid residues confer temperature sensitivity to human influenza virus vaccine strains (FluMist) derived from cold-adapted A/Ann Arbor/6/60. Virology, 2003, vol. 306, no. 1, pp. 18–24. doi: 10.1016/s0042-6822(02)00035-1
  15. Klimov A.I., Kiseleva I.V., Desheva J.A., Cox N.J., Alexandrova G.I., Rudenko L.G. Live attenuated reassortant influenza vaccine prepared using A/Leningrad/134/17/57 (H2N2) donor strain is genetically stable after replication in children 3–6 years of age. International Congress Series, 2001, vol. 1219, no. 2001, pp. 951–954. doi: 10.1016/S0531-5131(01)00020-6
  16. Klimov A.I., Kiseleva I.V., Alexandrova G.I., Cox N.J. Genes coding for polymerase proteins are essential for attenuation of the cold-adapted A/Leningrad/134/17/57 (H2N2) influenza virus. International Congress Series, 2001, vol. 1219, no. 2001, pp. 955–959. doi: 10.1016/S0531-5131(01)00369-7
  17. Kiseleva I. Current opinion in LAIV: a matter of parent virus choice. Int. J. Mol. Sci., 2022, vol. 23, no. 12: 6815. doi: 10.3390/ijms23126815
  18. Kurhade C., Xie X., Shi P.Y. Reverse genetic systems of SARS-CoV-2 for antiviral research. Antiviral. Res., 2023, vol. 210: 105486. doi: 10.1016/j.antiviral.2022
  19. Okonechnikov K., Golosova O., Fursov M.; UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics, 2012, vol. 28, no. 8, pp. 1166–1167. doi: 10.1093/bioinformatics/bts091
  20. Reed L., Muench H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol, 1938, vol. 27, iss. 3, pp. 493–497. doi: 10.1093/oxfordjournals.aje.a118408
  21. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA, 1977, vol. 74, no. 12, pp. 5463–5467. doi: 10.1073/pnas.74.12.5463
  22. Smolonogina T.A., Isakova-Sivak I.N., Kotomina T.S., Evsina A.S., Stepanova E.A., Prokopenko P.I., Leontieva G.F., Suvorov A.N., Rudenko L.G. Generation of a vaccine against group B streptococcal infection on the basis of a cold-adapted influenza A virus. Mol. Genet. Microbiol. Virol., 2019, vol. 34, pp. 25–34. doi: 10.3103/S0891416819010087.
  23. Wareing M.D., Marsh G.A., Tannock G.A. Preparation and characterization of attenuated cold-adapted influenza A reassortants derived from the A/Leningrad/134/17/57 donor strain. Vaccine, 2002, vol. 20, no. 16, pp. 2082–2090. doi: 10.1016/s0264-410x(02)00056-7
  24. WHO. Initiative for Vaccine Research (IVR). Options for Live Attenuated Influenza Vaccines (LAIV) In the Control of Epidemic and Pandemic Influenza 12–13 June 2007. URL: http://www.who.int/vaccine_research/di seases/influenza/ meeting_120707/en/index.html (18.10.2023)
  25. Wong S.S., Webby R.J. Traditional and new influenza vaccines. Clin. Microbiol. Rev., 2013, vol. 26, no. 3, pp. 476–492. doi: 10.1128/CMR.00097-12

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Changes in the ca-phenotype of LAIV-NR and LAIV-RG strains based on A/Darwin/09/2021 (H3N2) wild type virus during successive passages in developing chicken embryos at 26°C

Download (33KB)

Copyright (c) 2023 Larionova N.V., Kiseleva I.V., Bazhenova E.A., Stepanova E.A., Rudenko L.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies