Prediction of inflammation in hemodialysis patients using neural network analysis

Cover Page

Cite item

Full Text

Abstract

Background. Numerous hemodialysis patients (HD) suffer from severe, life-threatening inflammation that must be treated to prevent further complications. Early diagnosis of inflammation in HD is highly needed. The present study used matrix metalloproteinase-1 (MMP3) and tissue inhibitor of metalloproteinases-1 (TIMP1) to differentiate between patients with/without inflammation using the neural network analysis (NN).

Methods. The positive results of C-reactive protein were used as a criterion for the presence of inflammation in the patients (HD+CRP) versus the negative group (HD-CRP). The NN analysis was used to discriminate between groups using the measured biomarkers.

Results. HD+CRP patients have a higher duration of disease, MMP3 and lower calcium than the HD-CRP level is significantly higher, while vitamin D is significantly lower in the HD+CRP group compared with both other groups (all p<0.05). TIMP1 is significantly correlated with inorganic phosphate and CRP. In NN#1, the model for the prediction of HD+CRP from HD-CRP has an area under the curve (AUC) of the receiver operating characteristic (ROC) of 0.907 with a sensitivity and specificity 89.2% and a specificity of 100.0%. The top predicting variable for the prediction of HD+CRP is MMP3 (100%), followed by creatinine (87.1%). MMP3 is linked to the pathophysiology of HD, at least through their correlation with the inflammation in HD. In NN#2, the AUC of the ROC for predicting the kidney disease and subsequent HD was 98.9%, with a sensitivity of 100.0% and a specificity of 97.1%. The top four predicting variables for the prediction of high risk of inflammation in HD patients are urea (100%), creatinine (100%), MMP3 (59.7%), and vitamin D (57.1%).

Conclusion. The NN analysis may differentiate between HD patients with inflammation from the HD without inflammation. Also, the measured parameters, especially MMP3, TIMP1, and vitamin D are useful as a diagnostic tools for the kidney diseases and inflammation linked with the disease.

About the authors

Hadi H. Hadi

University of Kufa

Author for correspondence.
Email: hhadi0615@gmail.com

Researcher, Department of Chemistry, Faculty of Science

Iraq, Najaf

Hawraa H. Al-Mayali

Al-Furat Al-Awsat Technical University

Email: hawaraalmyaly1@gmail.com

Instructor

Iraq, Najaf

Habiba K. Abdalsada

Al-Muthanna University

Email: habiba.khdair@mu.edu.iq

Assistant Professor, College of Pharmacy

Iraq, Al-Muthanna

Shatha R. Moustafa

Hawler Medical University

Email: shatha003@yahoo.com

Professor, Clinical Analysis Department, College of Pharmacy

Iraq, Havalan

Abbas F. Almulla

The Islamic University

Email: abbass.chem.almulla1991@gmail.com

Assistant Professor, Medical Laboratory Technology Department, College of Medical Technology

Iraq, Najaf

Hussein K. Al-Hakeim

University of Kufa

Email: headm2010@yahoo.com
ORCID iD: 0000-0001-6143-5196

Professor, Department of Chemistry, Faculty of Science

Iraq, Najaf

References

  1. Abdalsada H.K., Hadi H.H., Almulla A.F., Najm A.H., Al-Isa A., Al-Hakeim H.K. Correlation of Stromelysin-1 and tissue inhibitor of Metalloproteinase-1 with lipid profile and atherogenic indices in end-stage renal disease patients: a neural network study. Pertanika J. Sci. & Technol., 2023, vol. 31, no. 4, pp. 2067–2087. doi: 10.47836/pjst.31.4.27
  2. Agarwal R. Defining end-stage renal disease in clinical trials: a framework for adjudication. Nephrol Dial Transplant., 2016, vol. 31, iss. 6, pp. 864–867. doi: 10.1093/ndt/gfv289
  3. Amanzadeh M., Mota A., Zarghami N., Abedi-Azar S., Abroon S., Akbarian N., Mihanfar A., Rahmati-Yamchi M. Association between matrix Metalloproteinase-3 activity and glomerular filtration rate and albuminuria status in patients with type 2 diabetes mellitus. Iran J. Kidney Dis., 2018, vol. 12, no. 1, pp. 40–47.
  4. Avram M.M., Mittman N., Myint M.M., Fein P. Importance of low serum intact parathyroid hormone as a predictor of mortality in hemodialysis and peritoneal dialysis patients: 14 years of prospective observation. Am. J. Kidney Dis., 2001, vol. 38, iss. 6, pp. 1351–1357. doi: 10.1053/ajkd.2001.29254
  5. Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol., 1995, vol. 57, iss. 1, pp. 289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x
  6. Block G.A., Klassen P.S., Lazarus J.M., Ofsthun N., Lowrie E.G., Chertow G.M. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J. Am. Soc. Nephrol., 2004, vol. 15, iss. 8, pp. 2208–2218. doi: 10.1097/01.ASN.0000133041.27682.A2
  7. Bohle A., Wehrmann M., Bogenschütz O., Batz C., Müller C.A., Müller G.A. The pathogenesis of chronic renal failure in diabetic nephropathy. Investigation of 488 cases of diabetic glomerulosclerosis. Pathol. Res. Pract., 1991, vol. 187, iss. 2–3, pp. 251–259. doi: 10.1016/s0344-0338(11)80780-6
  8. Cantaluppi V., Quercia A.D., Dellepiane S., Ferrario S., Camussi G., Biancone L. Interaction between systemic inflammation and renal tubular epithelial cells. Nephrol. Dial. Transplant., 2014, vol. 29, no. 11, pp. 2004–2011. doi: 10.1093/ndt/gfu046
  9. Carome M.A., Striker L.J., Peten E.P., Moore J., Yang C.W., Stetler-Stevenson W.G., Striker G.E. Human glomeruli express TIMP-1 mRNA and TIMP-2 protein and mRNA. Am. J. Physiol., 1993, vol. 264, no. 6, pt 2: F923-F929. doi: 10.1152/ajprenal.1993.264.6.F923
  10. Chen D.Q., Cao G., Chen H., Liu D., Su W., Yu X-Y., Vaziri N.D., Liu X-H., Bai X., Zhang L., Zhao Y-Y. Gene and protein expressions and metabolomics exhibit activated redox signaling and wnt/β-catenin pathway are associated with metabolite dysfunction in patients with chronic kidney disease. Redox. Biol., 2017, vol. 12, pp. 505–521. doi: https://doi.org/10.1016/j.redox.2017.03.017
  11. Clemmer J.S., Shafi T., Obi Y. Physiological mechanisms of hypertension and cardiovascular disease in end-stage kidney disease. Curr. Hypertens. Rep., 2022, vol. 24, no. 10, pp. 413–424. doi: 10.1007/s11906-022-01203-7
  12. Crespo-Salgado J., Vehaskari V.M., Stewart T., Ferris M., Zhang Q., Wang G., Blanchard E.E., Taylor C.M., Kallash M., Greenbaum L.A., Aviles D.H. Intestinal microbiota in pediatric patients with end stage renal disease: a Midwest Pediatric Nephrology Consortium study. Microbiome, 2016, vol. 4, no. 1: 50. doi: 10.1186/s40168-016-0195-9
  13. DeSoi C.A., Umans J.G. Phosphate kinetics during high-flux hemodialysis. J. Am. Soc. Nephrol., 1993, vol. 4, no. 5, pp. 1214–1218. doi: 10.1681/ASN.V451214
  14. Eguchi T, Kubota S., Kawata K., Mukudai Y., Uehara J., Ohgawara T., Ibaragi S., Sasaki A., Kuboki T., Takigawa M. Novel transcription-factor-like function of human matrix metalloproteinase 3 regulating the CTGF/CCN2 gene. Mol. Cell. Biol., 2008, vol. 28, no. 7, pp. 2391–2413. doi: 10.1128/MCB.01288-07
  15. Gluba-Brzózka A., Michalska-Kasiczak M., Franczyk-Skóra B., Nocuń M., Banach M., Rysz J. Markers of increased cardiovascular risk in patients with chronic kidney disease. Lipids Health Dis., 2014, vol. 13: 135. doi: 10.1186/1476-511X-13-135.
  16. Guizani I., Zidi W., Zayani Y., Boudiche S., Hadj-Taieb S., Sanhaji H., Zaroui A., Mechmeche R., Mourali M.S., Feki M., Allal-Elasmi M. Matrix metalloproteinase-3 predicts clinical cardiovascular outcomes in patients with coronary artery disease: a 5 years cohort study. Mol. Biol. Rep., 2019, vol. 46, no. 5, pp. 4699–4707. doi: 10.1007/s11033-019-04914-4
  17. Hadi T., Boytard L., Silvestro M., Alebrahim .D, Jacob S., Feinstein J., Barone K., Spiro W., Hutchison S., Simon R., Rateri D., Pinet F., Fenyo D., Adelman M., Moore K.J., Eltzschig H.K., Daugherty A., Ramkhelawon B. Macrophage-derived netrin-1 promotes abdominal aortic aneurysm formation by activating MMP3 in vascular smooth muscle cells. Nat. Commun., 2018, vol. 9, no. 1:5022. doi: 10.1038/s41467-018-07495-1
  18. Hendriks F.K., Kooman J.P., van Loon L.J.C. Dietary protein interventions to improve nutritional status in end-stage renal disease patients undergoing hemodialysis. Curr. Opin. Clin. Nutr. Metab. Care, 2021, vol. 24, no. 1, pp. 79–87. doi: 10.1097/MCO.0000000000000703
  19. Housley T.J., Baumann A.P, Braun I.D., Davis G., Seperack P.K., Wilhelm S.M. Recombinant Chinese hamster ovary cell matrix metalloprotease-3 (MMP-3, stromelysin-1). Role of calcium in promatrix metalloprotease-3 (pro-MMP-3, prostromelysin-1) activation and thermostability of the low mass catalytic domain of MMP-3. J. Biol. Chem., 1993, vol. 268, no. 6, pp. 4481–4487. doi: 10.1016/S0021-9258(18)53634-6
  20. Ishizaki M., Matsunaga T., Adachi K., Miyashita E. Serum matrix metalloproteinase-3 in hemodialysis patients with dialysis-related amyloidosis. Hemodial. Int., 2004, vol. 8, no. 3, pp. 219–225. doi: 10.1111/j.1492-7535.2004.01099.x
  21. Kanda H., Hirasaki Y., Iida T., Kanao-Kanda M., Toyama Y., Chiba T., Kunisawa T. Perioperative management of patients with end-stage renal disease. J. Cardiothorac. Vasc. Anesth., 2017, vol. 31, no. 6, pp. 2251–2267. doi: 10.1053/j.jvca.2017.04.019
  22. Khokha R., Murthy A., Weiss A. Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat. Rev. Immunol., 2013, vol. 13, no. 9, pp. 649–665. doi: 10.1038/nri3499
  23. Kobusiak-Prokopowicz M., Kaaz K., Marciniak D., Karolko B., Mysiak A. Relationships between circulating matrix metalloproteinases, tissue inhibitor TIMP-2, and renal function in patients with myocarditis. Kidney Blood. Press. Res., 2021, vol. 46, no. 6, pp. 749–757. doi: 10.1159/000519594
  24. Kostov K., Blazhev A. Changes in serum levels of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinases-1 in patients with essential hypertension. Bioengineering (Basel). 2022, vol. 9, no. 3: 119. doi: 10.3390/bioengineering9030119
  25. Lerner A., Neidhöfer S., Reuter S., Matthias T. MMP3 is a reliable marker for disease activity, radiological monitoring, disease outcome predictability, and therapeutic response in rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol., 2018, vol. 32, no. 4, pp. 550–562. doi: 10.1016/j.berh.2019.01.006
  26. Levey A.S., Coresh J., Greene T., Marsh J., Stevens L.A, Kusek J.W., Van Lente F.; Chronic Kidney Disease Epidemiology Collaboration. Expressing the modification of diet in renal disease study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin. Chem., 2007, vol. 53, no. 4, pp. 766–772. doi: 10.1373/clinchem.2006.077180
  27. Lim A.I., Chan L.Y., Lai K.N., Tang S.C., Chow C.W., Lam M.F., Leung J.C. Distinct role of matrix metalloproteinase-3 in kidney injury molecule-1 shedding by kidney proximal tubular epithelial cells. Int J. Biochem. Cell. Biol., 2012, vol. 44, no. 6, pp. 1040–1050. doi: 10.1016/j.biocel.2012.03.015
  28. Luczyszyn S.M., de Souza C.M., Braosi A.P., Dirschnabel A.J., Claudino M., Repeke C.E., Faucz F.R., Garlet G.P., Pecoits-Filho R., Trevilatto P.C. Analysis of the association of an MMP1 promoter polymorphism and transcript levels with chronic periodontitis and end-stage renal disease in a Brazilian population. Arch. Oral. Biol., 2012, vol. 57, no. 7, pp. 954–963. doi: 10.1016/j.archoralbio.2012.01.013
  29. Lynch C.C., Matrisian L.M. Matrix metalloproteinases in tumor-host cell communication. Differentiation, 2002, vol. 70, no. 9–10, pp. 561–573. doi: 10.1046/j.1432-0436.2002.700909.x
  30. Matulka M., Konopka A., Mroczko B., Pryczynicz A., Kemona A., Groblewska M., Sieskiewicz A., Olszewska E. Expression and concentration of matrix metalloproteinase 9 and tissue inhibitor of matrix metalloproteinases 1 in laryngeal squamous cell carcinoma. Dis. Markers., 2019, vol. 2019: 3136792. doi: 10.1155/2019/3136792
  31. Melamed M.L., Eustace J.A, Plantinga L., Jaar B.G., Fink N.E., Coresh J., Klag M.J., Powe N.R. Changes in serum calcium, phosphate, and PTH and the risk of death in incident dialysis patients: a longitudinal study. Kidney Int., 2006, vol. 70, no. 2, pp. 351–357. doi: 10.1038/sj.ki.5001542
  32. Miljković M., Stefanović A., Bogavac-Stanojević N., Simić-Ogrizović S., Dumić J., Černe D., Jelić-Ivanović Z., Kotur-Stevuljević J. Association of Pentraxin-3, Galectin-3 and Matrix Metalloproteinase-9/Timp-1 with cardiovascular risk in renal disease patients. Acta Clin. Croat., 2017, vol. 56, no. 4, pp. 673–680. doi: 10.20471/acc.2017.56.04.14
  33. Modi Z.J., Lu Y., Ji N., Kapke A., Selewski D.T., Dietrich X., Abbott K., Nallamothu B.K., Schaubel D.E., Saran R., Gipson D.S. Risk of cardiovascular disease and mortality in young adults with end-stage renal disease: an analysis of the us renal data system. JAMA Cardiol., 2019, vol. 4, no. 4, pp. 353–362. doi: 10.1001/jamacardio.2019.0375
  34. Mora-Gutiérrez J.M., Fernández-Seara M.A., Slon Roblero M.F., Gonzalez O., Escalada F.J., Soler M.J, Páramo J.A., Garcia-Fernandez N. SP453 matrix metalloproteinase-10 and tissue inhibitor of metalloproteinase-1 (TIMP-1) as early predictors of nephropathy in patients with type 2 diabetes mellitus. Nephrol. Dial. Transplant., 2018, vol. 33, iss. suppl_1: i500-i. doi: 10.1093/ndt/gfy104.SP453
  35. Mora-Gutiérrez J.M., Rodríguez J.A., Fernández-Seara M.A., Orbe J., Escalada F.J., Soler M.J., Slon Roblero M.F., Riera M., Páramo J.A., Garcia-Fernandez N. MMP-10 is increased in early stage diabetic kidney disease and can be reduced by renin-angiotensin system blockade. Sci. Rep., 2020 vol. 10, no. 1: 26. doi: 10.1038/s41598-019-56856-3
  36. Nguyen-Khoa T., Massy Z.A., De Bandt J.P., Kebede M., Salama L., Lambrey G., Witko-Sarsat V., Drüeke T.B., Lacour B., Thévenin M. Oxidative stress and haemodialysis: role of inflammation and duration of dialysis treatment. Nephrol. Dial. Transplant., 2001, vol. 16, no. 2, pp. 335–340. doi: 10.1093/ndt/16.2.335
  37. Preston G.A., Barrett C.V., Alcorta D.A., Hogan S.L., Dinwiddie L., Jennette J.C., Falk R.J. Serum matrix metalloproteinases MMP-2 and MMP-3 levels in dialysis patients vary independently of CRP and IL-6 levels. Nephron, 2002, vol. 92, no. 4, pp. 817–823. doi: 10.1159/000065464
  38. Punsawad C., Viriyavejakul P. Increased expression of kidney injury molecule-1 and matrix metalloproteinase-3 in severe Plasmodium falciparum malaria with acute kidney injury. Int. J. Clin. Exp. Pathol., 2017, vol. 10, no. 7, pp. 7856–7864.
  39. Rashpa R.S., Mahajan V.K., Kumar P., Mehta K.S., Chauhan P.S., Rawat R., Sharma V. Mucocutaneous manifestations in patients with chronic kidney disease: a cross-sectional study. Indian Dermatol. Online J., 2018, vol. 9, no. 1, pp. 20–26. doi: 10.4103/idoj.IDOJ_160_17
  40. Ralay Ranaivo H., Hodge J.N., Choi N., Wainwright M.S. Albumin induces upregulation of matrix metalloproteinase-9 in astrocytes via MAPK and reactive oxygen species-dependent pathways. J. Neuroinflammation, 2012, vol. 9: 68. doi: 10.1186/1742-2094-9-68
  41. Rymarz A., Mosakowska M., Niemczyk S. The significance of metalloproteinase 3 (MMP-3), chemokine CXC ligand 13 (CXCL-13) and complement component C5a in different stages of ANCA associated vasculitis. Sci. Rep., 2021, vol. 11, no. 1: 5132. doi: 10.1038/s41598-021-84662-3
  42. Rysz J., Banach M., Stolarek R.A., Pasnik J., Cialkowska-Rysz A., Koktysz R., Piechota M., Baj Z. Serum matrix metalloproteinases MMP-2 and MMP-9 and metalloproteinase tissue inhibitors TIMP-1 and TIMP-2 in diabetic nephropathy. J. Nephrol., 2007, vol. 20, no. 4, pp. 444–452.
  43. Sabbagh Y. Phosphate as a sensor and signaling molecule. Clin. Nephrol. 2013, vol. 79, no. 1, pp. 57–65. doi: 10.5414/CN107322
  44. Sakaguchi Y., Hamano T., Isaka Y. Magnesium in hemodialysis patients: a new understanding of the old problem. Contrib. Nephrol., 2018, vol. 196, pp. 58–63. doi: 10.1159/000485700
  45. Saran R., Robinson B., Abbott K.C., Agodoa L.Y., Albertus P., Ayanian J., Balkrishnan R., Bragg-Gresham J., Cao J., Chen J.L., Cope E., Dharmarajan S., Dietrich X., Eckard A., Eggers P.W., Gaber C., Gillen D., Gipson D., Gu H., Hailpern S.M., Hall Y.N., Han Y., He K., Hebert H., Helmuth M., Herman W., Heung M., Hutton D., Jacobsen S.J., Ji N., Jin Y., Kalantar-Zadeh K., Kapke A., Katz R., Kovesdy C.P., Kurtz V., Lavalee D., Li Y., Lu Y., McCullough K., Molnar M.Z, Montez-Rath M., Morgenstern H., Mu Q., Mukhopadhyay P., Nallamothu B., Nguyen D.V., Norris K.C., O’Hare A.M., Obi Y., Pearson J., Pisoni R., Plattner B., Port F.K., Potukuchi P., Rao P., Ratkowiak K., Ravel V., Ray D., Rhee C.M., Schaubel D.E., Selewski D.T., Shaw S., Shi J., Shieu M., Sim J.J., Song P., Soohoo M., Steffick D., Streja E., Tamura M.K., Tentori F., Tilea A., Tong L., Turf M., Wang D., Wang M., Woodside K., Wyncott A., Xin X., Zang W., Zepel L., Zhang S., Zho H., Hirth R.A., Shahinian V. US renal data system 2016 annual data report: epidemiology of kidney disease in the United States. Am. J. Kidney Dis., 2017, vol. 69, no. 3, suppl. 1, pp. A7–A8. doi: 10.1053/j.ajkd.2016.12.004
  46. Sarnak M.J. Cardiovascular complications in chronic kidney disease. Am. J. Kidney Dis., 2003, vol. 41, suppl. 5, pp. 11–17. doi: 10.1016/s0272-6386(03)00372-x
  47. Shi S., Su M., Shen G., Hu Y., Yi F., Zeng Z., Zhu P., Yang G., Zhou H., Li Q., Xie X. Matrix metalloproteinase 3 as a valuable marker for patients with COVID-19. J. Med. Virol., 2021, vol. 93, no. 1, pp. 528–532. doi: 10.1002/jmv.26235
  48. Siloşi I., Boldeanu M.V., Mogoantă S.Ş., Ghiluşi M., Cojocaru M., Biciuşcă V., Cojocaru I.M., Avrămescu C.S., Gheonea D.I., Siloşi C.A., Turculeanu A. Matrix metalloproteinases (MMP-3 and MMP-9) implication in the pathogenesis of inflammatory bowel disease (IBD). Rom. J. Morphol. Embryol., 2014, vol. 55, no. 4, pp. 1317–1324.
  49. Tuncer T., Kaya A., Gulkesen A., Kal G.A., Kaman D., Akgol G. Matrix metalloproteinase-3 levels in relation to disease activity and radiological progression in rheumatoid arthritis. Adv. Clin. Exp. Med., 2019, vol. 28, no. 5, pp. 665–670. doi: 10.17219/acem/94065
  50. Vaidya H., Giri S., Jain M., Goyal R. Decrease in serum matrix metalloproteinase-9 and matrix metalloproteinase-3 levels in Zucker fa/fa obese rats after treatment with swertiamarin. Exp. Clin. Cardiol., 2012, vol. 17, no. 1, pp. 12–16.
  51. Wan C.Y., Li L., Liu L.S., Jiang C.M., Zhang H.Z., Wang J.X. Expression of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinases during apical periodontitis development. J. Endod., 2021, vol. 47, no. 7, pp. 1118–1125. doi: 10.1016/j.joen.2021.04.005
  52. Wanchaitanawong W., Tantiworawit A., Piriyakhuntorn P., Rattanathammethee T., Hantrakool S., Chai-Adisaksopha C., Rattarittamrong E., Norasetthada L., Niprapan P., Fanhchaksai K., Charoenkwan P. The association between pre-transfusion hemoglobin levels and thalassemia complications. Hematology, 2021, vol. 26, no. 1, pp. 1–8. doi: 10.1080/16078454.2020.1856513
  53. Warner R.B., Najy A.J., Jung Y.S., Fridman R., Kim S., Kim H.C. establishment of structure-function relationship of tissue inhibitor of metalloproteinase-1 for its interaction with CD63: implication for cancer therapy. Sci. Rep., 2020, vol. 10, no. 1: 2099. doi: 10.1038/s41598-020-58964-x
  54. Warner R.L., Bhagavathula N., Nerusu K.C., Lateef H., Younkin E., Johnson K.J., Varani J. Matrix metalloproteinases in acute inflammation: induction of MMP-3 and MMP-9 in fibroblasts and epithelial cells following exposure to pro-inflammatory mediators in vitro. Exp. Mol. Pathol., 2004, vol. 76, no. 3, pp. 189–195. doi: 10.1016/j.yexmp.2004.01.003
  55. Wu C.F., Hou J.S., Wang C.H., Lin Y.L., Lai Y.H., Kuo C.H., Liou H.H., Tsai J.P., Hsu B.G. Serum sclerostin but not DKK-1 correlated with central arterial stiffness in end stage renal disease patients. Int. J. Environ. Res. Public Health, 2020, vol. 17, no. 4: 1230. doi: 10.3390/ijerph17041230
  56. Yang B., Vohra P.K., Janardhanan R., Misra K.D., Misra S. Expression of profibrotic genes in a murine remnant kidney model. J. Vasc. Interv. Radiol., 2011, vol. 22, no. 12, pp. 1765-1772.e1. doi: 10.1016/j.jvir.2011.08.026
  57. Yatsyshyn R., Salyzhyn T. The role of tissue inhibitor of matrix metalloproteinase-1 in cardiac and blood vessels remodeling and in potential for survival in case of chronic heart failure of various origins. Pharma Innov., 2016, vol. 5, iss. 10, pt. B, pp. 85–91.
  58. Yazgan B., Avci F., Memi G., Tastekin E. Inflammatory response and matrix metalloproteinases in chronic kidney failure: modulation by adropin and spexin. Exp. Biol. Med. (Maywood)., 2021, vol. 246, no. 17, pp. 1917–1927. doi: 10.1177/15353702211012417
  59. Zhu Q.Q., Li T.T., Chen R., Pan H.F., Tao J.H., Li X.P., Ye D.Q. Elevated serum levels of MMP-2, MMP-3, and MMP-13 in Chinese patients with systemic lupus erythematosus. Scand. J. Rheumatol., 2010, vol. 39, no. 5, pp. 439–441. doi: 10.3109/03009741003742789

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Results of neural network 1 (NN#1) (importance chart) with HD+CRP and HD–CRP as output variables and biomarkers as input variables Note. B.ur — Blood urea, Ca — calcium, eGFR — estimated glomerular filtration rate, Mg — Magnesium, Pi — inorganic phosphate, MMP3 — matrix metalloproteinase-3, S.Cr — serum creatinine, TIMP1 — tissue inhibitor of metalloproteinases-1, U.A. — uric acid.

Download (28KB)
3. Figure 2. Results of neural network 2 (NN#2) (importance chart) with HD and healthy controls as output variables and biomarkers as input variables Note. B.ur — Blood urea, Ca — calcium, eGFR — estimated glomerular filtration rate, Mg — Magnesium, Pi — inorganic phosphate, MMP3 — matrix metalloproteinase-3, S.Cr — serum creatinine, TIMP1 — tissue inhibitor of metalloproteinases-1, U.A. — uric acid.

Download (27KB)

Copyright (c) 2023 Hadi H.H., Al-Mayali H.H., Abdalsada H.K., Moustafa S.R., Almulla A.F., Al-Hakeim H.K.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies