The molecular mimicry and COVID-19

Cover Page

Cite item

Full Text

Abstract

A significant part of the complications of COVID-19 and manifestations of post-COVID syndrome is associated with autoimmune reactions caused by SARS-CoV-2. The key mechanism for enabling autoimmunity in COVID-19 results from molecular mimicry, which is involved in developing cytokine storm, systemic multiorgan hyperinflammation, endothelial dysfunction, also being a trigger for arising post-COVID-19 autoimmune diseases (autoimmune thrombocytopenia, autoimmune vasculitis, Guillain–Barré syndrome, Miller–Fisher syndrome, autoimmune neuropathy, autoimmune thyroiditis, rheumatoid arthritis, etc.). Overall, there have been identified 59 common immune determinants in 80 epitopes of the SARS-CoV-2 spike protein and 53 anti-inflammatory proteins, receptors regulating cell proliferation, differentiation and apoptosis as well as immune response. It was found that among the 37 viral proteins, only 8 of them bear no immunogenic regions identical to human proteins. Cross-reactivity results in emergence of more than 15 distinct types of autoantibodies including antiphospholipid antibodies against cardiolipin and beta-2-glycoprotein I, antibodies specific to transmembrane adenosine receptor A2b, adiponectin, phosphatidylserine-prothrombin, antinuclear antigens, mitochondrial M2, type I interferons, and other cytokines, chemokines, complement components and cell membrane proteins. Autoantibodies formed during COVID-19 react to antigens of cells located in the thyroid gland, cardiac and skeletal muscles, lung, joints, liver, kidneys, brain and bone marrow, peripheral nervous system, skin and adipose tissue, gastrointestinal tract, testicles, eyes as well as mitochondrial antigens, mediating development of severe disease-related complications and post-COVID syndrome. The presence of 24 homologous pentapeptides with those found in B. pertussis, C. diphtheriaeC. tetaniH. influenzae and N. meningitidis poses a risk of developing ineffective vaccination immune response paralleled with higher risk of autoimmune complications. It is imperative to take into account the phenomenon of molecular mimicry while proposing new approaches for rehabilitation and treatment of COVID-19 as well as in development and testing of vaccines against SARS-CoV-2.

About the authors

Veronika Zorina

Golikov Research Clinical Center of Toxicology under the Federal Medical Biological Agency

Author for correspondence.
Email: nilimmun@yandex.ru
ORCID iD: 0000-0001-9183-7663
SPIN-code: 1630-1716
Scopus Author ID: 57075004700
ResearcherId: N-8811-2018

DSc (Biology), Leading Researcher, Laboratory of Applied Toxicology and Pharmacology, Toxicology Department

Russian Federation, St. Petersburg

References

  1. Довгань А.А., Драпкина Ю.С., Долгушина Н.В., Менжинская И.В., Инвияева Е.В., Вторушина В.В., Кречетова Л.В., Сухих Г.Т. Влияние вакцинации от COVID-19 на иммунный статус и профиль аутоантител у женщин репродуктивного возраста // Медицинская иммунология. 2022. Т. 24, № 5. С. 979–992. [Dovgan A.A., Drapkina Yu.S., Dolgushina N.V., Menzhinskaya I.V., Inviyaeva E.V., Vtorushina V.V., Krechetova L.V., Sukhikh G.T. Effect of COVID-19 vaccination on the immune status and autoantibody profile in women of reproductive age. Meditsinskaya Immunologiya = Medical Immunology (Russia), 2022, vol. 24, no. 5, pp. 979–992. (In Russ.)] doi: 10.15789/1563-0625-EOC-2515
  2. Кудрявцев И.В., Головкин А.С., Тотолян Арег А. Т-хелперы и их клетки-мишени при COVID-19 // Инфекция и иммунитет. 2022. Т. 12, № 3. С. 409–426. [Kudryavtsev I.V., Golovkin A.S., Totolian Areg A. T helper cell subsets and related target cells in acute COVID-19. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2022, vol. 12, no. 3, pp. 409–442. (In Russ.)] doi: 10.15789/2220-7619-THC-1882
  3. Москалец О.В. Роль инфекции в развитии аутоиммунных заболеваний // Казанский медицинский журнал. 2017. Т. 98, № 4. С. 586–591. [Moskalets O.V. Role of infections in autoimmune disease development. Kazanskii meditsinskii zhurnal = Kazan Medical Journal, 2017, vol. 98, no. 4, pp. 586–591. (In Russ.)] doi: 10.17750/KMJ2017-586
  4. Петриков С.С., Боровкова Н.В., Попугаев К.А., Сторожева М.В., Квасников А.М., Годков М.А. Аутоантитела к интерферону альфа и их значение при COVID-19 // Инфекция и иммунитет. 2022. Т. 12, № 2. C. 279–287. [Petrikov S.S., Borovkova N.V., Popugaev K.A., Storozheva M.V., Kvasnikov A.M., Godkov M.A. Anti-interferon alpha autoantibodies and their significance in COVID-19. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2022, vol. 12, no. 2, pp. 279–287. (In Russ.)] doi: 10.15789/2220-7619-AAA-1789
  5. Alam W. COVID-19 vaccine-induced immune thrombotic thrombocytopenia: a review of the potential mechanisms and proposed management. Sci. Prog., 2021, vol. 104, no. 2, pp. 1–13. doi: 10.1177/00368504211025927
  6. Bozkurt B., Kamat I., Hotez P.J. Myocarditis with COVID-19 mRNA vaccines. Circulation, 2021, vol. 144, no. 6, pp. 471–484. doi: 10.1161/CIRCULATIONAHA.121.056135
  7. Chen Y., Xu Z., Wang P., Li X.M., Shuai Z.W., Ye D.Q., Pan H.F. New-onset autoimmune phenomena post-COVID-19 vaccination. Immunology, 2022, vol. 165, no. 4, pp. 386–401. doi: 10.1111/imm.13443
  8. Dotan A., Muller S., Kanduc D., David P., Halpert G., Shoenfeld Y. The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmun. Rev., 2021, vol. 20, no. 4: 102792. doi: 10.1016/j.autrev.2021.102792
  9. Ehrenfeld M., Tincani A., Andreoli L., Cattalini M., Greenbaum A., Kanduc D., Alijotas-Reig J., Zinserling V., Semenova N., Amital H., Shoenfeld Y. Covid-19 and autoimmunity. Autoimmun. Rev., 2020, vol. 19, no. 8: 102597. doi: 10.1016/j.autrev.2020.102597
  10. Gat I., Kedem A., Dviri M., Umanski A., Levi M., Hourvitz A., Baum M. Covid-19 vaccination BNT162b2 temporarily impairs semen concentration and total motile count among semen donors. Andrology, 2022, vol. 10, no. 6, pp. 1016–1022. doi: 10.1111/andr.13209
  11. Greinacher A., Thiele T., Warkentin T.E., Weisser K., Kyrle P.A., Eichinger S. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N. Engl. J. Med., 2021, vol. 384, no. 22, pp. 2092–2101. doi: 10.1056/NEJMoa2104840
  12. Kanduc D. From anti-SARS-CoV-2 immune response to the cytokine storm via molecular mimicry. Antibodies, 2021, vol. 10, no. 36, pp. 1–13. doi: 10.3390/antib10040036
  13. Kanduc D. From anti-Severe Acute Respiratory Syndrome Coronavirus 2 immune response to cancer onset via molecular mimicry and cross-reactivity. Glob. Med. Genet., 2021, no. 8, pp. 176–182. [doi: 10.1055/s-0041-1735590
  14. Kreye J., Reincke S.M., Prüss H. Do cross-reactive antibodies cause neuropathology in COVID-19? Nat. Rev. Immunol., 2020, vol. 20, no. 11, pp. 645–646. doi: 10.1038/s41577-020-00458-y
  15. Lee E., Oh J.E. Humoral immunity against SARS-CoV-2 and the impact on COVID-19 pathogenesis. Mol. Cells, 2021, vol. 44, no. 6, pp. 392–400. doi: 10.14348/molcells.2021.0075
  16. Liu Y., Sawalha A.H., Lu Q. COVID-19 and autoimmune diseases. Curr. Opin. Rheumatol., 2021, no. 33, pp. 155–162. doi: 10.1097/BOR.0000000000000776
  17. Logunov D.Y., Dolzhikova I.V., Shcheblyakov D.V., Tukhvatulin A.I., Zubkova O.V., Dzharullaeva A.S., Kovyrshina A.V., Lubenets N.L., Grousova D.M., Erokhova A.S., Botikov A.G., Izhaeva F.M., Popova O., Ozharovskaya T.A., Esmagambetov I.B., Favorskaya I.A., Zrelkin D.I., Voronina D.V., Shcherbinin D.N., Semikhin A.S., Simakova Y.V., Tokarskaya E.A., Egorova D.A., Shmarov M.M., Nikitenko N.A., Gushchin V.A., Smolyarchuk E.A., Zyryanov S.K., Borisevich S.V., Naroditsky B.S., Gintsburg A.L., Gam-COVID-Vac Vaccine Trial Group. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet, 2021, vol. 397, no. 10275, pp. 671–681. doi: 10.1016/S0140-6736(21)00234-8
  18. McGonagle D., De Marco G., Bridgewood C. Mechanisms of immunothrombosis in vaccine-induced thrombotic thrombocytopenia (VITT) compared to natural SARS-CoV-2 infection. J. Autoimmun., 2021, vol. 121, no. 102662, pp. 1–7. doi: 10.1016/j.jaut.2021.102662
  19. Moody R., Wilson K., Flanagan K.L., Jaworowski A., Plebanski M. Adaptive immunity and the risk of autoreactivity in COVID-19. Int. J. Mol. Sci., 2021, vol. 22, no. 8965, pp. 1–13. doi: 10.3390/ijms22168965
  20. Pujol A., Gómez .LA., Gallegos C., Nicolau J., Sanchís P., González-Freire M., López-González Á.A., Dotres K., Masmiquel L. Thyroid as a target of adjuvant autoimmunity/inflammatory syndrome due to mRNA-based SARS-CoV-2 vaccination: from Graves’ disease to silent thyroiditis. J. Endocrinol. Invest., 2022, vol. 45, no. 4, pp. 875–882. doi: 10.1007/s40618-021-01707-0
  21. Ramasamy R., Mohammed F., Meier U.C. HLA DR2b-binding peptides from human endogenous retrovirus envelope, Epstein-Barr virus and brain proteins in the context of molecular mimicry in multiple sclerosis. Immunol. Lett., 2020, no. 217, pp. 15–24. doi: 10.1016/j.imlet.2019.10.017
  22. Rodda L.B., Morawski P.A., Fahning M.L., Howard C.A., Franko N., Logue J., Eggenberger J., Stokes C., Golez I., Hale M., Gale M., Chu H.Y., Campbell D.J., Pepper M. Imprinted SARS-CoV-2-specific memory lymphocytes define hybrid immunity. Cell, 2022, no. 185, pp. 1–14. doi: 10.1016/j.cell.2022.03.018
  23. Roghani A. The influence of COVID-19 vaccination on daily cases, hospitalization, and death rate in Tennessee, United States: case study. JMIRx Med., 2021, vol. 2, no. 3: e29324. doi: 10.2196/29324
  24. Schultz N.H., Sørvoll I.H., Michelsen A.E., Munthe L.A., Lund-Johansen F., Ahlen M.T., Wiedmann M., Aamodt A.H., Skattør T.H., Tjønnfjord G.E., Holme P.A. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination. N. Engl. J. Med., 2021, vol. 384, no. 22, pp. 2124–2130. doi: 10.1056/NEJMoa2104882
  25. Scully M., Singh D., Lown R., Poles A., Solomon T., Levi M., Goldblatt D., Kotoucek P., Thomas W., Lester W. Pathologic antibodies to platelet factor 4 after ChAdOx1 nCoV-19 vaccination. N. Engl. J. Med., 2021, vol. 384, no. 23, pp. 2202–2211. doi: 10.1056/NEJMoa2105385
  26. Shrock E., Fujimura E., Kula T., Timms R.T., Lee I.H., Leng Y., Robinson M.L., Sie B.M., Li M.Z., Chen Y., Logue J., Zuiani A., McCulloch D., Lelis F.JN., Henson S., Monaco D.R., Travers M., Habibi S., Clarke W.A., Caturegli P., Laeyendecker O., Piechocka-Trocha A., Li J.Z., Khatri A., Chu H.Y.; MGH COVID-19 Collection & Processing Team; Villani A.C., Kays K., Goldberg M.B., Hacohen N., Filbin M.R., Yu X.G., Walker B.D., Wesemann D.R., Larman H.B., Lederer J.A., Elledge S.J. Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity. Science, 2020, vol. 370, no. 6520: eabd4250. doi: 10.1126/science.abd4250
  27. Thant H.L., Morgan R., Paese M.M., Persaud T., Diaz J., Hurtado L. Guillain-Barré syndrome after Ad26.COV2.S vaccination. Am. J. Case. Rep., 2022, no. 23: e935275. doi: 10.12659/AJCR.935275
  28. Thiele T., Ulm L., Holtfreter S., Schönborn L., Kuhn S.O., Scheer C., Warkentin T.E., Bröker B.M., Becker K., Aurich K., Selleng K., Hübner N.O., Greinacher A. Frequency of positive anti-PF4/polyanion antibody tests after COVID-19 vaccination with ChAdOx1 nCoV-19 and BNT162b2. Blood, 2021, vol. 138, no. 4, pp. 299–303. doi: 10.1182/blood.2021012217
  29. Velikova T., Georgiev T. SARS-CoV-2 vaccines and autoimmune diseases amidst the COVID-19 crisis. Rheumatol. Int., 2021, vol. 41, no. 3, pp. 509–518. doi: 10.1007/s00296-021-04792-9
  30. Vojdani A., Vojdani E., Kharrazian D. Reaction of human monoclonal antibodies to SARS-CoV-2 proteins with tissue antigens: implications for autoimmune diseases. Front. Immunol., 2021, vol. 11, no. 617089, pp. 1–16. doi: 10.3389/fimmu.2020.617089
  31. Vojdani A., Kharrazian D. Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases. Clin. Immunol., 2020, vol. 217, no. 108480, pp. 1–2. doi: 10.1016/j.clim.2020.108480
  32. Yazdanpanah N., Rezaei N. Autoimmune complications of COVID-19. J. Med. Virol., 2022, vol. 94, no. 1, pp. 54–62. doi: 10.1002/jmv.27292
  33. Yong S.J. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments. Infect. Dis. (Lond.), 2021, vol. 53, no. 10, pp. 737–754. doi: 10.1080/23744235.2021.1924397

Copyright (c) 2023 Zorina V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies