From coronaviruses to coronaviruses

Cover Page

Cite item

Full Text

Abstract

The official history of the discovery of human coronaviruses dates back to 1965, when the first coronavirus B814, which has now been lost, was isolated on the human embryonic tracheal organ culture from the nasal swabs of a patient with acute respiratory disease. However, this time point can only be an intermediate stage on its long evolutionary path. Paleovirological studies have shown that coronaviruses could have appeared as early as in the Stone Age — in the Upper Paleolithic era, and East Asia is considered as their place of origin — a region that is well known to virologists as the source of many highly pathogenic influenza viruses and new coronaviruses, such as SARS-CoV, MERS-CoV, and SARS-CoV-2. This makes us take a different look at the seeming “innocence” of seasonal coronaviruses that circulated before 2002, when a human pathogenic virus appeared that caused SARS. This also fits well into the assumption about the coronavirus nature of the 1889 Russian flu pandemic. Today, four seasonal and three new, pathogenic for human coronaviruses are known. Two seasonal coronaviruses (229E and NL63) belong to the genus Alphacoronavirus, 2 others (OC43 and HKU1) and three new coronaviruses (SARS, MERS and SARS-CoV-2) belong to the genus Betacoronavirus. In this review, we have focused on the “extreme points” — seasonal coronaviruses and pandemic SARS-CoV-2. We attempted to draw an analogy between them and identify their main distinguishing features. From the viewpoint of epidemiology and clinic, common what they have is only the airborne transmission route, characteristic of all respiratory viruses, and the ubiquitous distribution, the nature and intensity of which were not markedly affected by the influenza epidemics/pandemics. Seasonal coronaviruses continued to circulate even during the COVID-19 pandemic, when the majority of other respiratory viruses had largely disappeared. Significant differences between seasonal coronaviruses and SARS-CoV-2 can be traced in the symptoms, severity and pathogenesis of the diseases they cause. At the structural level, they have a lot common features including taxonomic proximity, morphology, structure, physicochemical properties of virions, genome organization, the main stages of virus replication, etc. What made SARS-CoV-2 such aggressive? The few differences in the size of viral particles and viral genome that have been identified to date, the use or not of hemagglutinin esterase to penetrate into a sensitive cell, attachment to different cell receptors cannot underlie a prominent difference in severity of the infection caused by seasonal or pandemic coronavirus. Most likely, that these differences are based on delicate molecular mechanisms that have yet to be discovered.

About the authors

Irina V. Kiseleva

Institute of Experimental Medicine

Email: irina.v.kiseleva@mail.ru

DSc (Biology), Professor, Head of the Laboratory of General Virology

Russian Federation, St. Petersburg

Tamila D. Musaeva

Smorodintsev Research Institute of Influenza

Author for correspondence.
Email: tamilamusaeva94@mail.ru
ORCID iD: 0000-0002-3050-1936

Junior Researcher, Laboratory of Molecular Virology, Department of Etiology and Epidemiology

Russian Federation, St. Petersburg

References

  1. Иванова Н.А., Гринбаум Е.Б., Шадрин А.С., Олейникова Е.В., Попова Т.Л., Лузянина Т.Я., Маслова М.И. Новый вариант вируса А2-Гонконг — возбудитель эпидемии 1968 года в Ленинграде. В кн.: Этиология и диагностика вирусных острых респираторных заболеваний: cб. науч. работ. Ленинград: ВНИИ гриппа, 1971. С. 5–13. [Ivanova N.A., Grinbaum E.B., Shadrin A.S., Oleinikova E.V., Popova T.L., Luzyanina T.Ya., Maslova M.I. A new variant of the A2-Hong Kong virus is the causative agent of the 1968 epidemic in Leningrad. In: Etiology and diagnosis of viral acute respiratory diseases: collection of scientific works. Leningrad: Research Institute of Influenza, 1971, pp. 5–13. (In Russ.)]
  2. Киселева И.В., Ларионова Н.В., Григорьева Е.П., Ксенафонтов А.Д., Аль Фаррух М., Руденко Л.Г. Особенности циркуляции респираторных вирусов в пред- и пандемические по гриппу и COVID-19 периоды // Инфекция и иммунитет. 2021. Т. 11, №. 6. С. 1009–1019. [Kiseleva I.V., Larionova N.V., Grigorieva E.P., Ksenafontov A.D., Al Farroukh M., Rudenko L.G. Salient features of circulation of respiratory viruses in the pre- and pandemic influenza and COVID-19 seasons.Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2021, vol. 11, no. 6, pp. 1009–1019. (In Russ.)] doi: 10.15789/2220-7619-SFO-1662
  3. Кононенко А.А., Носков А.К., Водяницкая С.Ю., Подойницына О.А. Коронавирусы человека, способные вызывать чрезвычайные ситуации // Медицинский вестник Юга России. 2021. Т. 12, № 1. С. 14–23. [Kononenko A.A., Noskov A.K. Vodyanitskaya S.Yu., Podoynitsyna O.A. Human coronaviruses that can cause emergencies. Meditsinskii vestnik Yuga Rossii = Medical Bulletin of the South of Russia, 2021, vol. 12, no. 1, pp. 14–23. (In Russ.)] doi: 0.21886/2219-8075-2021-12-1-14-23
  4. Смирнов В.С., Петленко С.В. Грипп и острые респираторные вирусные инфекции (характеристика, патогенез, профилактика и лечение); изд. 3-е, перераб. и доп. СПб.: Гиппократ, 2019. 248 c. [Smirnov V.S., Petlenko S.V. Influenza and acute respiratory viral infections (Characteristics, pathogenesis, prevention and treatment), 3rd ed. St Petersburg: Hippocrates, 2019. 248 p. (In Russ.)]
  5. Тимченко В.Н., Суховецкая В.Ф., Чернова Т.М., Каплина Т.А., Субботина М.Д., Булина О.В., Писарева М.М. Результаты 5-летнего мониторинга за циркуляцией сезонных коронавирусов у госпитализированных детей в препандемическом периоде // Детские инфекции, 2021. Т. 20, № 1 (74). С. 5–11. [Timchenko V.N., Sukhovetskaya V.F., Chernova T.M., Kaplina T.A., Subbotina M.D., Bulina O.V., Pisareva M.M. Results of 5-year monitoring of the circulation of seasonal coronaviruses in hospitalized children in the pre-pandemic period. Detskie Infektsii = Children Infections, 2021, vol. 20, no. 1 (74), pp. 5–11. (In Russ.)] doi: 10.22627/2072-8107-2021-20-1-5-11
  6. Хайтович А.Б. Коронавирусы (таксономия, структура вируса) // Крымский журнал экспериментальной и клинической медицины, 2020, Т. 10, №. 3. С. 69–81. [Khaitovich A.B. Coronaviruses (Taxonomy, virus structure). Krymskii zhurnal eksperimental’noi i klinicheskoi meditsiny = Crimean Journal of Experimental and Clinical Medicine, 2020, vol. 10, no. 3, pp. 69–81. (In Russ.)] doi: 10.37279/2224-6444-2020-10-3-69-81
  7. Щелканов М.Ю., Попова А.Ю., Дедков В.Г., Акимкин В.Г., Малеев В.В. История изучения и современная классификация коронавирусов (Nidovirales: Coronaviridae) // Инфекция и иммунитет. 2020. Т. 10, № 2. С. 221–246. [Shchelkanov M.Yu., Popova A.Yu., Dedkov V.G., Akimkin V.G., Maleev V.V. History of investigation and current classification of coronaviruses (Nidovirales: Coronaviridae). Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2020, vol. 10, no. 2, pp. 221–246. (In Russ.)] doi: 10.15789/2220-7619-HOI-141
  8. Яцышина С.Б., Мамошина М.В., Шипулина О.Ю., Подколзин А.Т., Акимкин В.Г. Анализ циркуляции коронавирусов человека // Вопросы вирусологии. 2020. Т. 65, № 5. С. 267–275. [Yatsyshina S.V., Mamoshina M.V., Shipulina O.Yu., Podkolzin A.T., Akimkin V.G. Analysis of human coronaviruses circulation. Voprosy Virusologii = Problems of Virology, 2020, vol. 65, no. 5, pp. 267–275. (In Russ.)] doi: 10.36233/0507-4088-2020-65-5-3
  9. Akram A., Mannan N. Molecular Structure, pathogenesis and virology of SARS-CoV-2: a review. Bangladesh J. Infect. Dis., 2020, vol. 7, no. suppl_1, pp. S36–S40. doi: 10.3329/bjid.v7i0.46799
  10. Al Farroukh M., Kiseleva I., Bazhenova E., Stepanova E., Puchkova L., Rudenko L. Understanding the variability of certain biological properties of H1N1pdm09 influenza viruses. Vaccines, 2022, vol. 10, no. 3: 395. doi: 10.3390/vaccines10030395
  11. Aldridge R.W., Lewer D., Beale S., Johnson A.M., Zambon M., Hayward A.C., Fragaszy E.B.; Flu Watch Group. Seasonality and immunity to laboratory-confirmed seasonal coronaviruses (HCoV-NL63, HCoV-OC43, and HCoV-229E): results from the Flu Watch cohort study. Wellcome Open Res., 2020, vol. 5: 52. doi: 10.12688/wellcomeopenres.15812.2
  12. Allander T., Tammi M.T., Eriksson M., Bjerkner A., Tiveljung-Lindell A., Andersson B. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc. Natl Acad. Sci. USA, 2005, vol. 102, no. 36, pp. 12891–12896. doi: 10.1073/pnas.0504666102
  13. Almeida J.D., Berry D.M., Cunningham C.H., Hamre D., Hofstad M.S., Mallucci L., Mcintosh K. Virology: Coronaviruses. Nature, 1968, vol. 220, no. 5168: 650. doi: 10.1038/220650b0
  14. Audi A., Alibrahim M., Kaddoura M., Hijazi G., Yassine H.M., Zaraket H. Seasonality of respiratory viral infections: will COVID-19 follow suit? Front. Public Health, 2020, vol. 8: 567184. doi: 10.3389/fpubh.2020.567184
  15. Barupal T., Tak P., Meena M. COVID-19: morphology, characteristics, symptoms, prevention, clinical diagnosis and current scenario. Coronaviruses, 2020, vol. 1, no. 1, pp. 82–89. doi: 10.2174/2666796701999200617161348
  16. Beams A.B., Bateman R., Adler F.R. Will SARS-CoV-2 become just another seasonal coronavirus? Viruses, 2021, vol. 13, no. 5: 854. doi: 10.3390/v13050854
  17. Berche P. The enigma of the 1889 Russian flu pandemic: a coronavirus? Presse Med., 2022, vol. 51: 104111. doi: 10.1016/j.lpm.2022.104111
  18. Bochkov Y.A., Watters K., Ashraf S., Griggs T.F., Devries M.K., Jackson D.J., Palmenberg A.C., Gern J.E. Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. Proc. Natl Acad. Sci. USA, 2015, vol. 112, no. 17, pp. 5485–5490. doi: 10.1073/pnas.1421178112
  19. Brucková M., Mcintosh K., Kapikian A.Z., Chanock R.M. The adaptation of two human coronavirus strains (OC38 and OC43) to growth in cell monolayers. Proc. Soc. Exp. Biol. Med., 1970, vol. 135, no. 2, pp. 431–435. doi: 10.3181/00379727-135-35068
  20. Brüssow H., Brüssow L. Clinical evidence that the pandemic from 1889 to 1891 commonly called the Russian flu might have been an earlier coronavirus pandemic. Microb. Biotechnol., 2021, vol. 14, no. 5, pp. 1860–1870. doi: 10.1111/1751-7915.13889
  21. Cabeça T.K., Granato C., Bellei N. Epidemiological and clinical features of human coronavirus infections among different subsets of patients. Influenza Other Respir. Viruses, 2013, vol. 7, no. 6, pp. 1040–1047. doi: 10.1111/irv.12101
  22. Calderaro A., De Conto F., Buttrini M., Piccolo G., Montecchin S., Maccari C., Martinelli M., Di Maio A., Ferraglia F., Pinardi F., Montagna P., Arcangeletti M.C., Chezzi C. Human respiratory viruses, including SARS-CoV-2, circulating in the winter season 2019–2020 in Parma, Northern Italy. Int. J. Infect. Dis., 2020, vol. 102, pp. 79–84. doi: 10.1016/j.ijid.2020.09.1473
  23. Callahan Z.Y., Smith T.K., Ingersoll C., Gardner R., Korgenski E.K., Sloan C.D. Comparative seasonal respiratory virus epidemic timing in Utah. Viruses, 2020, vol. 12, no. 3: 275. doi: 10.3390/v12030275
  24. Callow K.A., Parry H.F., Sergeant M., Tyrrell D.A. The time course of the immune response to experimental coronavirus infection of man. Epidemiol. Infect., 1990, vol. 105, no. 2, pp. 435–446. doi: 10.1017/S0950268800048019
  25. Chanock R., Roizman B., Myers R. Recovery from infants with respiratory illness of a virus related to chimpanzee coryza agent (CCA). Isolation, properties and characterization. Am. J. Hyg., 1957, vol. 66, no. 3, pp. 281–290. doi: 10.1093/oxfordjournals.aje.a119901
  26. Chanock R.M. Association of a new type of cytopathogenic myxovirus with infantile croup. J. Exp. Med., 1956, vol. 104, no. 4, pp. 555–576. doi: 10.1084/jem.104.4.555
  27. Chen A.P., Chu I.Y., Yeh M.L., Chen Y.Y., Lee C.L., Lin H.H., Chan Y.J., Chen H.P. Differentiating impacts of non-pharmaceutical interventions on non-coronavirus disease-2019 respiratory viral infections: Hospital-based retrospective observational study in Taiwan. Influenza Other Respir. Viruses, 2021, vol. 15, no. 4, pp. 478–487. doi: 10.1111/irv.12858
  28. Chen Y., Liu Q., Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol., 2020, vol. 92, no. 4, pp. 418–423. doi: 10.1002/jmv.25681
  29. Chiu S.S., Chan K.H., Chu K.W., Kwan S.W., Guan Y., Poon L.L., Peiris J.S. Human coronavirus NL63 infection and other coronavirus infections in children hospitalized with acute respiratory disease in Hong Kong, China. Clin. Infect. Dis., 2005, vol. 40, no. 12, pp. 1721–1729. doi: 10.1086/430301
  30. Chua K.B., Crameri G., Hyatt A., Yu M., Tompang M.R., Rosli J., Mceachern J., Crameri S., Kumarasamy V., Eaton B.T., Wang L.F. A previously unknown reovirus of bat origin is associated with an acute respiratory disease in humans. Proc. Natl Acad. Sci. USA, 2007, vol. 104, no. 27, pp. 11424–11429. doi: 10.1073/pnas.0701372104
  31. Cimolai N. Complicating infections associated with common endemic human respiratory coronaviruses. Health Secur., 2021, vol. 19, no. 2 , pp. 195–208. doi: 10.1089/hs.2020.0067
  32. Contini C., Di Nuzzo M., Barp N., Bonazza A., De Giorgio R., Tognon M., Rubino S. The novel zoonotic COVID-19 pandemic: an expected global health concern. J. Infect. Dev. Ctries., 2020, vol. 14, no. 3, pp. 254–264. doi: 10.3855/jidc.12671
  33. Contrant M., Bigault L., Andraud M., Desdouits M., Rocq S., Le Guyader F.S., Blanchard Y. Porcine epidemic diarrhea virus, surrogate for coronavirus decay measurement in French coastal waters and contribution to coronavirus risk evaluation. Microbiol. Spectr., 2023, vol. 11, no. 4: e0184423. doi: 10.1128/spectrum.01844-23
  34. Cui J., Li F., Shi Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol., 2019, vol. 17, no. 3, pp. 181–192. doi: 10.1038/s41579-018-0118-9
  35. De Wit E., Van Doremalen N., Falzarano D., Munster V.J. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol., 2016, vol. 14, no. 8, pp. 523–534. doi: 10.1038/nrmicro.2016.81
  36. Desforges M., Le Coupanec A., Dubeau P., Bourgouin A., Lajoie L., Dubé M., Talbot P.J. Human coronaviruses and other respiratory viruses: Underestimated opportunistic pathogens of the central nervous system? Viruses, 2020, vol. 12, no. 1: 14. doi: 10.3390/v12010014
  37. Dowdle W.R. Influenza A virus recycling revisited. Bull. World Health Organ., 1999, vol. 77, no. 10, pp. 820–828. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2557748/pdf/10593030.pdf
  38. Dyrdak R., Hodcroft E.B., Wahlund M., Neher R.A., Albert J. Interactions between seasonal human coronaviruses and implications for the SARS-CoV-2 pandemic: a retrospective study in Stockholm, Sweden, 2009–2020. J. Clin. Virol., 2021, vol. 136: 104754. doi: 10.1016/j.jcv.2021.104754
  39. Edridge A.W.D., Kaczorowska J., Hoste A.C.R., Bakker M., Klein M., Loens K., Jebbink M.F., Matser A., Kinsella C.M., Rueda P., Ieven M., Goossens H., Prins M., Sastre P., Deijs M., Van Der Hoek L. Seasonal coronavirus protective immunity is short-lasting. Nat. Med., 2020, vol. 26, no. 11, pp. 1691–1693. doi: 10.1038/s41591-020-1083-1
  40. Emerman M., Malik H.S. Paleovirology — modern consequences of ancient viruses. PLoS Biol., 2010, vol. 8, no. 2: e1000301. doi: 10.1371/journal.pbio.1000301
  41. Famoroti T., Sibanda W., Ndung’u T. Prevalence and seasonality of common viral respiratory pathogens, including Cytomegalovirus in children, between 0–5 years of age in KwaZulu-Natal, an HIV endemic province in South Africa. BMC Pediatr., 2018, vol. 18: 240. doi: 10.1186/s12887-018-1222-8
  42. Farhud D.D., Bahadori M., Zarif-Yeganeh M. Evidence of the ancestries of COVID-19 virus in East Asia, more than 20,000 years ago. Iran J. Public Health, 2021, vol. 50, no. 9, pp. i–v. doi: 10.18502/ijph.v50i9.7086
  43. Fawkner-Corbett D.W., Khoo S.K., Duarte C.M., Bezerra P.G., Bochkov Y.A., Gern J.E., Le Souef P.N., Mcnamara P.S. Rhinovirus-C detection in children presenting with acute respiratory infection to hospital in Brazil. J. Med. Virol., 2016, vol. 88, no. 1, pp. 58–63. doi: 10.1002/jmv.24300
  44. Fenner F. Classification and nomenclature of viruses. Second report of the International Committee on Taxonomy of Viruses. Intervirology, 1976, vol. 7, no. 1–2, pp. 1–115. doi: 10.1159/000149938
  45. Finlayson G., Finlayson S., Finlayson C., Bensusan K., Guillem R., Holmes T., Giles Guzmán F., Carrión J., Belda C., Sawchuk L. Nocturnality, seasonality and the SARS-CoV-2 ecological niche. ArXiv 2010.16167, 2020, vol. 10, no. 19: 39. doi: 10.48550/arXiv.2010.16167
  46. Francis T.J. A new type of virus from epidemic influenza. Science, 1940, vol. 92, no. 2392, pp. 405–408. doi: 10.1126/science.92.2392.405
  47. Friedman N., Alter H., Hindiyeh M., Mendelson E., Shemer Avni Y., Mandelboim M. Human Coronavirus infections in Israel: Epidemiology, clinical symptoms and summer seasonality of HCoV-HKU1. Viruses, 2018, vol. 10, no. 10: 515. doi: 10.3390/v10100515
  48. Fung T.S., Liu D.X. Human coronavirus: Host-pathogen interaction. Annu. Rev. Microbiol., 2019, vol. 73, pp. 529–557. doi: 10.1146/annurev-micro-020518-115759
  49. Gardinassi L.G., Marques S.P.V., Salomão J.B., Durigon E.L., Zanetta Trevisan D.M., Cordeiro J.A., Lacerda M.N., Rahal P., De Souz F.P. Seasonality of viral respiratory infections in southeast of Brazil: the influence of temperature and air humidity. Braz. J. Microbiol., 2012, vol. 43, no. 1, pp. 98–108. doi: 10.1590/S1517-838220120001000011
  50. Gaunt E.R., Hardie A., Claas E.C., Simmonds P., Templeton K.E. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J. Clin. Microbiol., 2010, vol. 48, no. 8, pp. 2940–2947. doi: 10.1128/jcm.00636-10
  51. Ghareeb O., Ramadhan S. COVID-19 — a novel zoonotic disease: origin, prevention and control. P. J. M. H. S., 2021, vol. 15, no. 1, pp. 221–223. URL: https://www.researchgate.net/publication/350709607
  52. Gorbalenya A.E., Baker S.C., Baric R.S., De Groot R.J., Drosten C., Gulyaeva A.A., Haagmans B.L., Lauber C., Leontovich A.M., Neuman B.W., Penzar D., Perlman S., Poon L.L.M., Samborskiy D.V., Sidorov I.A., Sola I., Ziebuhr J. The species severe acute respiratory syndrome-related coronavirus: classifying 2019–nCoV and naming it SARS-CoV-2. Nat. Microbiol., 2020, vol. 5, no. 4, pp. 536–544. doi: 10.1038/s41564-020-0695-z
  53. Gordon D.E., Jang G.M., Bouhaddou M., Xu J., Obernier K., White K.M., O’meara M.J., Rezelj V.V., Guo J.Z., Swaney D.L., Tummino T.A., Hüttenhain R., Kaake R.M., Richards A.L., Tutuncuoglu B., Foussard H., Batra J., Haas K., Modak M., Kim M., Haas P., Polacco B.J., Braberg H., Fabius J.M., Eckhardt M., Soucheray M., Bennett M.J., Cakir M., Mcgregor M.J., Li Q., Meyer B., Roesch F., Vallet T., Mac Kain A., Miorin L., Moreno E., Naing Z.Z.C., Zhou Y., Peng S., Shi Y., Zhang Z., Shen W., Kirby I.T., Melnyk J.E., Chorba J.S., Lou K., Dai S.A., Barrio-Hernandez I., Memon D., Hernandez-Armenta C., Lyu J., Mathy C.J.P., Perica T., Pilla K.B., Ganesan S.J., Saltzberg D.J., Rakesh R., Liu X., Rosenthal S.B., Calviello L., Venkataramanan S., Liboy-Lugo J., Lin Y., Huang X.P., Liu Y., Wankowicz S.A., Bohn M., Safari M., Ugur F.S., Koh C., Savar N.S., Tran Q.D., Shengjuler D., Fletcher S.J., O’neal M.C., Cai Y., Chang J.C.J., Broadhurst D.J., Klippsten S., Sharp P.P., Wenzell N.A., Kuzuoglu-Ozturk D., Wang H.Y., Trenker R., Young J.M., Cavero D.A., Hiatt J., Roth T.L., Rathore U., Subramanian A., Noack J., Hubert M., Stroud R.M., Frankel A.D., Rosenberg O.S., Verba K.A., Agard D.A., Ott M., Emerman M., Jura N., von Zastrow M., Verdin E., Ashworth A., Schwartz O., d'Enfert C., Mukherjee S., Jacobson M., Malik H.S., Fujimori D.G., Ideker T., Craik C.S., Floor S.N., Fraser J.S., Gross J.D., Sali A., Roth B.L., Ruggero D., Taunton J., Kortemme T., Beltrao P., Vignuzzi M., García-Sastre A., Shokat K.M., Shoichet B.K., Krogan N.J. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, vol. 583, no. 7816, pp. 459–468. doi: 10.1038/s41586-020-2286-9
  54. Gorse G.J., Patel G.B., Vitale J.N., O’connor T.Z. Prevalence of antibodies to four human coronaviruses is lower in nasal secretions than in serum. Clin. Vaccine. Immunol., 2010, vol. 17, no. 12, pp. 1875–1880. doi: 10.1128/CVI.00278-10
  55. GOV.UK. Guidance COVID-19: Epidemiology, virology and clinical features. Updated 17 May 2022. URL: https://www.gov.uk/government/publications/wuhan-novel-coronavirus-background-information/wuhan-novel-coronavirus-epidemiology-virology-and-clinical-features
  56. Graham N.M. The epidemiology of acute respiratory infections in children and adults: a global perspective. Epidemiol. Rev., 1990, vol. 12, no. 1, pp. 149–178. doi: 10.1093/oxfordjournals.epirev.a036050
  57. Guan Y., Zheng B.J., He Y.Q., Liu X.L., Zhuang Z.X., Cheung C.L., Luo S.W., Li P.H., Zhang L.J., Guan Y.J., Butt K.M., Wong K.L., Chan K.W., Lim W., Shortridge K.F., Yuen K.Y., Peiris J.S., Poon L.L. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science, 2003, vol. 302, no. 5643, pp. 276–278. doi: 10.1126/science.1087139
  58. Guo Y.R., Cao Q.D., Hong Z.S., Tan Y.Y., Chen S.D., Jin H.J., Tan K.S., Wang D.Y., Yan Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak — an update on the status. Mil. Med. Res., 2020, vol. 7, no. 1: 11. doi: 10.1186/s40779-020-00240-0
  59. Guthmiller J.J., Wilson P.C. Remembering seasonal coronaviruses. Science, 2020, vol. 370, no. 6522, pp. 1272–1273. doi: 10.1126/science.abf48
  60. Hamre D., Procknow J.J. A new virus isolated from the human respiratory tract. Proc. Soc. Exp. Biol. Med., 1966, vol. 121, no. 1, pp. 190–193. doi: 10.3181/00379727-121-30734
  61. Hawkes M.T., Lee B.E., Kanji J.N., Zelyas N., Wong K., Barton M., Mukhi S., Robinson J.L. Seasonality of respiratory viruses at Northern Latitudes. JAMA Netw. Open, 2021, vol. 4, no. 9: e2124650. doi: 10.1001/jamanetworkopen.2021.24650
  62. Heimdal I., Moe N., Krokstad S., Christensen A., Skanke L.H., Nordbø S.A., Døllner H. Human coronavirus in hospitalized children with respiratory tract infections: a 9-year population-based study from Norway. J. Infect. Dis., 2019, vol. 219, no. 8, pp. 1198–1206. doi: 10.1093/infdis/jiy646
  63. Heimdal I., Valand J., Krokstad S., Moe N., Christensen A., Risnes K., Nordbø S.A., Døllner H. Hospitalized children with common human coronavirus clinical impact of codetected respiratory syncytial virus and rhinovirus. Pediatr. Infect. Dis. J., 2022, vol. 41, no. 3, pp. e95–e101. doi: 10.1097/INF.0000000000003433
  64. Hilleman M.R., Werner J.H. Recovery of new agent from patients with acute respiratory illness. Proc. Soc. Exp. Biol. Med., 1954, vol. 85, no. 1, pp. 183–188. doi: 10.3181/00379727-85-20825
  65. Hoorn B., Tyrrell D.A. A new virus cultivated only in organ cultures of human ciliated epithelium. Arch. Gesamte Virusforsch., 1966, vol. 18, no. 2, pp. 210–225. doi: 10.1007/BF01241842
  66. Hoorn B., Tyrrel D.A. On the growth of certain “newer” respiratory viruses in organ cultures. Br. J. Exp. Pathol., 1965, vol. 46, no. 2, pp. 109–118.
  67. Hu B., Guo H., Zhou P., Shi Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol., 2021, vol. 19, no. 3, pp. 141–154. doi: 10.1038/s41579-020-00459-7
  68. Huang Y., Yang C., Xu X.F., Xu W., Liu S.W. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol. Sin., 2020, vol. 41, no. 9, pp. 1141–1149. doi: 10.1038/s41401-020-0485-4
  69. ICTV. 2022 virus taxonomy. URL: https://talk.ictvonline.org/taxonomy
  70. ICTV. Taxonomic proposal to the ICTV Executive Committee. New species: Betacoronavirus 1. 2008. URL: https://ictv.global/ICTV/proposals/2008.085-122V.v4.Coronaviridae.pdf
  71. ICTV. Virus Taxonomy. Classification and Nomenclature of Viruses. Report of the International Committee on Taxonomy of Viruses. URL: https://www.academia.edu/8097730/Ninth_Report_of_the_International_Committee_on_Taxonomy_of_Viruses
  72. Jeon J.H., Han M., Chang H.E., Park S.S., Lee J.W., Ahn Y.J., Hong D.J. Incidence and seasonality of respiratory viruses causing acute respiratory infections in the Northern United Arab Emirates. J. Med. Virol., 2019, vol. 91, no. 8, pp. 1378–1384. doi: 10.1002/jmv.25464
  73. JHU. COVID-19 dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). 2023. URL: https://coronavirus.jhu.edu/map.html
  74. Jo W.K., De Oliveira-Filho E.F., Rasche A., Greenwood A.D., Osterrieder K., Drexler J.F. Potential zoonotic sources of SARS-CoV-2 infections. Transbound. Emerg. Dis., 2021, vol. 68, no. 4, pp. 1824–1834. doi: 10.1111/tbed.13872
  75. Kesheh M.M., Hosseini P., Soltani S., Zandi M. An overview on the seven pathogenic human coronaviruses. Rev. Med. Virol., 2022, vol. 32, no. 2: e2282. doi: 10.1002/rmv.2282
  76. Khaitovich A., Sataieva T., Zukow W., Malygina V., Shevkoplyas L., Logadyr T., Kirsanova M., Andronovskaya I., Soroka E. The biological diversity of coronaviruses: where will the new threat come from? J. Educ. Health Sport, 2022, vol. 12, no. 5, pp. 402–415. doi: 10.12775/JEHS.2022.12.05.032
  77. Killerby M.E., Biggs H.M., Haynes A., Dahl R.M., Mustaquim D., Gerber S.I., Watson J.T. Human coronavirus circulation in the United States 2014–2017. J. Clin. Virol., 2018, vol. 101, no. 1, pp. 52–56. doi: 10.1016/j.jcv.2018.01.019
  78. Kim M.I., Lee C. Human coronavirus OC43 as a low-risk model to study COVID-19. Viruses, 2023, vol. 15, no. 2: 578. doi: 10.3390/v15020578
  79. Kiseleva I., Grigorieva E., Larionova N., Al Farroukh M., Rudenko L. COVID-19 in light of seasonal respiratory infections. Biology (Basel), 2020, vol. 9, no. 9: 240. doi: 10.3390/biology9090240
  80. Kiseleva I., Ksenafontov A. COVID-19 shuts doors to flu but keeps them open to rhinoviruses. Biology (Basel), 2021, vol. 10, no. 8: 733. doi: 10.3390/biology10080733
  81. Kiseleva I., Musaeva T., Ksenafontov A. SARS-CoV-2 invasion: what happens to other respiratory viruses? Open Microbiol. J., 2020, vol. 16, no. 1: e187428582206100. doi: 10.2174/18742858-v16-e2206100
  82. Komabayashi K., Seto J., Matoba Y., Aoki Y., Tanaka S., Ikeda T., Matsuzaki Y., Itagaki T., Mizuta K. Seasonality of human coronavirus OC43, NL63, HKU1, and 229E infection in Yamagata, Japan, 2010–2019. Jpn J. Infect. Dis., 2020, vol. 73, no. 5, pp. 394–397. doi: 10.7883/yoken.JJID.2020.525
  83. Kong D., Zheng Y., Hu L., Chen J., Wu H., Teng Z., Zhou Y., Qiu Q., Lu Y., Pan H. Epidemiological and co-infection characteristics of common human coronaviruses in Shanghai, 2015–2020: a retrospective observational study. Emerg. Microbes. Infect., 2021, vol. 10, no. 1, pp. 1660–1668. doi: 10.1080/22221751.2021.1965498
  84. Kuypers J., Martin E.T., Heugel J., Wright N., Morrow R., Englund J.A. Clinical disease in children associated with newly described coronavirus subtypes. Pediatrics, 2007, vol. 119, no. 1, pp. 70–76. doi: 10.1542/peds.2006-1406
  85. La Scola B., Audic S., Robert C., Jungang L., De Lamballerie X., Drancourt M., Birtles R., Claverie J.M., Raoult D. A giant virus in amoebae. Science, 2003, vol. 299, no. 5615: 2033. doi: 10.1126/science.1081867
  86. Lalchhandama K. The chronicles of coronaviruses: The bronchitis, the hepatitis and the common cold. Sci. Vis., 2020, vol. 20, no. 1, pp. 43–53. doi: 10.33493/scivis.20.01.04
  87. Li F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol., 2016, vol. 3, no. 1, pp. 237–261. doi: 10.1146/annurev-virology-110615-042301
  88. Li W., Shi Z., Yu M., Ren W., Smith C., Epstein J.H., Wang H., Crameri G., Hu Z., Zhang H., Zhang J., Mceachern J., Field H., Daszak P., Eaton B.T., Zhang S., Wang L.F. Bats are natural reservoirs of SARS-like coronaviruses. Science, 2005, vol. 310, no. 5748, pp. 676–679. doi: 10.1126/science.1118391
  89. Li Y., Wang X., Nair H. Global seasonality of human seasonal coronaviruses: a clue for postpandemic circulating season of severe acute respiratory syndrome coronavirus 2? J. Infect. Dis., 2020, vol. 222, no. 7, pp. 1090–1097. doi: 10.1093/infdis/jiaa436
  90. Liu D., Liang J., Fung T.S. Human Coronavirus-229E, -OC43, -NL63, and -HKU1. Encyclopedia of Virology, 2021, vol. 2, no. 1, pp. 428–440. doi: 10.1016/B978-0-12-809633-8.21501-X
  91. Liu L., Wang T., Lu J. The prevalence, origin, and prevention of six human coronaviruses. Virol. Sin., 2016, vol. 31, no. 1, pp. 94–99. doi: 10.1007/s12250-015-3687-z
  92. Liu X., Huang J., Li C., Zhao Y., Wang D., Huang Z., Yang K. The role of seasonality in the spread of COVID-19 pandemic. Environ. Res., 2021, vol. 195: 110874. doi: 10.1016/j.envres.2021.110874
  93. Liu Y., Lam T.T.Y., Lai F.Y.L., Krajden M., Drews S.J., Hatchette T.F., Fraaij P.L.A., Van Kampen J.J.A., Badarch D., Nymadawa P., Tee K.K., Lee H.K., Koay E.S.C., Jennings L., Koopmans M., Tang J.W. Comparative seasonalities of influenza A, B and “common cold” coronaviruses — setting the scene for SARS-CoV-2 infections and possible unexpected host immune interactions. J. Infect., 2020, vol. 81, no. 2, pp. 62–64. doi: 10.1016/j.jinf.2020.04.032
  94. Ljubin-Sternak S., Meštrović T., Lukšić I., Mijač M., Vraneš J. Seasonal coronaviruses and other neglected respiratory viruses: a global perspective and a local snapshot. Front. Public Health, 2021, vol. 9: 691163. doi: 10.3389/fpubh.2021.691163
  95. Lowen A.C., Mubareka S., Tumpey T.M., Garcia-Sastre A., Palese P. The guinea pig as a transmission model for human influenza viruses. Proc. Natl Acad. Sci. USA, 2006, vol. 103, no. 26, pp. 9988–9992. doi: 10.1073/pnas.0604157103
  96. Lu Q.B., Wo Y., Wang L.Y., Wang H.Y., Huang D.D., Zhang X.A., Liu W., Cao W.C. Molecular epidemiology of human rhinovirus in children with acute respiratory diseases in Chongqing, China. Sci. Rep., 2014, vol. 4: 6686. doi: 10.1038/srep06686
  97. Lv L., Li G., Chen J., Liang X., Li Y. Comparative genomic analyses reveal a specific mutation pattern between human coronavirus SARS-CoV-2 and Bat-CoV RaTG13. Front. Microbiol., 2020, vol. 11: 584717. doi: 10.3389/fmicb.2020.584717
  98. Mcintosh K., Dees J.H., Becker W.B., Kapikian A.Z., Chanock R.M. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc. Natl Acad. Sci. USA, 1967, vol. 57, no. 4, pp. 933–940. doi: 10.1073/pnas.57.4.933
  99. Menachery V.D., Yount B.L.Jr., Debbink K., Agnihothram S., Gralinski L.E., Plante J.A., Graham R.L., Scobey T., Ge X.Y., Donaldson E.F., Randell S.H., Lanzavecchia A., Marasco W.A., Shi Z.L., Baric R.S. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med., 2015, vol. 21, no. 12, pp. 1508–1513. doi: 10.1038/nm.3985
  100. Mohd H.A., Al-Tawfiq J.A., Memish Z.A. Middle East respiratory syndrome coronavirus (MERS-CoV) origin and animal reservoir. Virol. J., 2016, vol. 13, no. 1: 87. doi: 10.1186/s12985-016-0544-0
  101. Moriyama M., Hugentobler W.J., Iwasaki A. Seasonality of respiratory viral infections. Annu. Rev. Virol., 2020, vol. 7, no. 1, pp. 83–101. doi: 10.1146/annurev-virology-012420-022445
  102. Mulder J., Masurel N., Hers J.F.P. The Asian influenza pandemic of 1957. Ned. Tijdschr. Geneeskd., 1958, vol. 102, no. 41, pp. 1992–1999.
  103. Myint S.H. Human coronaviruses: a brief review. Rev. Med. Virol., 1994, vol. 4, pp. 35–46. doi: 10.1002/rmv.1980040108
  104. Nickbakhsh S., Ho A., Marques D.F.P., Mcmenamin J., Gunson R.N., Murcia P.R. Epidemiology of seasonal coronaviruses: Establishing the context for COVID-19 emergence. J. Infect. Dis., 2020, vol. 222, no. 1, pp. 17–25. doi: 10.1093/infdis/jiaa185
  105. Novak N., Cabanillas B. Viruses and asthma: the role of common respiratory viruses in asthma and its potential meaning for SARS-CoV-2. Immunology, 2020, vol. 161, no. 2, pp. 83–93. doi: 10.1111/imm.13240
  106. Payne S. Family Coronaviridae. Viruses, 2017, pp. 149–158. doi: 10.1016/b978-0-12-803109-4.00017-9
  107. Peng Y., Du N., Lei Y., Dorje S., Qi J., Luo T., Gao G.F., Song H. Structures of the SARS-CoV-2 nucleocapsid and their perspectives for drug design. Embo J., 2020, vol. 39, no. 20: e105938. doi: 10.15252/embj.2020105938
  108. Poole S., Brendish N.J., Clark T.W. SARS-CoV-2 has displaced other seasonal respiratory viruses: results from a prospective cohort study. J. Infect., 2020, vol. 81, no. 6, pp. 966–972. doi: 10.1016/j.jinf.2020.11.010
  109. Price R.H.M., Graham C., Ramalingam S. Association between viral seasonality and meteorological factors. Sci. Rep., 2019, vol. 9, no. 1: 929. doi: 10.1038/s41598-018-37481-y
  110. Price W.H. The isolation of a new virus associated with respiratory clinical disease in humans. Proc. Natl Acad. Sci. USA, 1956, vol. 42, no. 12, pp. 892–896. doi: 10.1073/pnas.42.12.892
  111. Rabaan A.A., Al-Ahmed S.H., Haque S., Sah R., Tiwari R., Malik Y.S., Dhama K., Yatoo M.I., Bonilla-Aldana D.K., Rodriguez-Morales A.J. SARS-CoV-2, SARS-CoV, and MERS-COV: a comparative overview. Infez. Med., 2020, vol. 28, no. 2, pp. 174–184.
  112. Rodgers L., Sheppard M., Smith A., Dietz S., Jayanthi P., Yuan Y., Bull L., Wotiz S., Schwarze T., Azondekon R., Hartnett K., Adjemian J., Kirking H.L., Kite Powell A. Changes in seasonal respiratory illnesses in the United States during the COVID-19 pandemic. Clin. Infect. Dis., 2021, vol. 73, no. 1, pp. 110–117. doi: 10.1093/cid/ciab311
  113. Rowe W.P., Huebner R.J., Gilmore L.K., Parrott R.H., Ward T.G. Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc. Soc. Exp. Biol. Med., 1953, vol. 84, no. 3, pp. 570–573. doi: 10.3181/00379727-84-20714
  114. Sampson A.T., Heeney J., Cantoni D., Ferrari M., Sans M.S., George C., Di Genova C., Mayora Neto M., Einhauser S., Asbach B., Wagner R., Baxendale H., Temperton N., Carnell G. Coronavirus pseudotypes for all circulating human coronaviruses for quantification of cross-neutralizing antibody responses. Viruses, 2021, vol. 13, no. 8: 1579. doi: 10.3390/v13081579
  115. Sermet I., Temmam S., Huon C., Behillil S., Gadjos V., Bigot T., Lurier T., Chrétien D., Backovick M., Moisan-Delaunay A., Donati F., Albert M., Foucaud E., Mesplées B., Benoist G., Fayes A., Duval-Arnould M., Crétolle C., Charbit M., Aubart M., Auriau J., Lorrot M., Kariyawasam D., Fertita L., Orliaguet G., Pigneur B., Bader-Meunier B., Briand C., Toubiana J., Guilleminot T., van der Werf S., Leruez-Ville M., Eloit M. Prior infection by seasonal coronaviruses does not prevent SARS-CoV-2 infection and associated Multisystem Inflammatory Syndrome in children. Euro Surveill., 2020, vol. 26, no. 13: 2001782. doi: 10.2807/1560-7917.ES.2021.26.13.2001782
  116. Shah M.M., Winn A., Dahl R.M., Kniss K.L., Silk B.J., Killerby M.E. Seasonality of common human coronaviruses, United States, 2014–2021. Emerg. Infect. Dis., 2022, vol. 28, no. 10, pp. 1970–1976. doi: 10.3201/eid2810.220396
  117. Shaw B., Gatherer D. Candidate historical events for the emergence of Human Coronavirus OC43: a critical reassessment of the molecular evidence. PLoS One, 2023, vol. 18, no. 5: e0285481. doi: 10.1371/journal.pone.0285481
  118. Smith W., Andrewes C.H., Laidlaw P.P. A virus obtained from influenza patients. Lancet, 1933, vol. 222, no. 5732, pp. 66–68. doi: 10.1016/S0140-6736(00)78541-2
  119. Souilmi Y., Lauterbur M.E., Tobler R., Huber C.D., Johar A.S., Moradi S.V., Johnston W.A., Krogan N.J., Alexandrov K., Enard D. An ancient viral epidemic involving host coronavirus interacting genes more than 20,000 years ago in East Asia. Curr. Biol., 2021, vol. 31, no. 16, pp. 3504–3514. doi: 10.1016/j.cub.2021.05.067
  120. St John S.E., Tomar S., Stauffer S.R., Mesecar A.D. Targeting zoonotic viruses: structure-based inhibition of the 3C-like protease from bat coronavirus HKU4 — the likely reservoir host to the human coronavirus that causes Middle East Respiratory Syndrome (MERS). Bioorg. Med. Chem., 2015, vol. 23, no. 17, pp. 6036–6048. doi: 10.1016/j.bmc.2015.06.039
  121. Tang D., Comish P., Kang R. The hallmarks of COVID-19 disease. PLoS Pathog., 2020, vol. 16, no. 5: e1008536. doi: 10.1371/journal.ppat.1008536
  122. Tang G., Liu Z., Chen D. Human coronaviruses: origin, host and receptor. J. Clin. Virol., 2022, vol. 155, no. 1: 105246. doi: 10.1016/j.jcv.2022.105246
  123. Taubenberger J.K., Morens D.M., Fauci A.S. The next influenza pandemic: can it be predicted? JAMA, 2007, vol. 297, no. 18, pp. 2025–2027. doi: 10.1001/jama.297.18.2025
  124. Taubenberger J.K., Reid A.H., Krafft A.E., Bijwaard K.E., Fanning T.G. Initial genetic characterization of the 1918 “Spanish” influenza virus. Science, 1997, vol. 275, no. 5307, pp. 1793–1796. doi: 10.1126/science.275.5307.1793
  125. Taylor R.M. Studies on survival of influenza virus between epidemics and antigenic variants of the virus. Am. J. Public Health Nations Health., 1949, vol. 39, no. 2, pp. 171–178. doi: 10.2105/ajph.39.2.171
  126. Thomas S. Mapping the nonstructural transmembrane proteins of severe acute respiratory syndrome coronavirus 2. J. Comput. Biol., 2021, vol. 28, no. 9, pp. 909–921. doi: 10.1089/cmb.2020.0627
  127. Toze S.J., Lambert S.B., Whiley D.M., Bialasiewicz S., Lyon M.J., Nissen M.D., Sloots T.P. Detection of human bocavirus in respiratory, fecal, and blood samples by real-time PCR. J. Med. Virol., 2009, vol. 81, no. 3, pp. 488–493. doi: 10.1002/jmv.21409
  128. Tsai S.C., Lu C.C., Bau D.T., Chiu Y.J., Yen Y.T., Hsu Y.M., Fu C.W., Kuo S.C., Lo Y.S., Chiu H.Y., Juan Y.N., Tsai F.J., Yang J.S. Approaches towards fighting the COVID-19 pandemic (Review). Int. J. Mol. Med., 2021, vol. 47, no. 1, pp. 3–22. doi: 10.3892/ijmm.2020.4794
  129. Tumpey T.M., Basler C.F., Aguilar P.V., Zeng H., Solorzano A., Swayne D.E., Cox N.J., Katz J.M., Taubenberger J.K., Palese P., Garcia-Sastre A. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science, 2005, vol. 310, no. 5745, pp. 77–80. doi: 10.1126/science.1119392
  130. Tyrrell D.A., Bynoe M.L. Cultivation of a novel type of common-cold virus in organ cultures. Br. Med. J., 1965, vol. 1, no. 5448, pp. 1467–1470. doi: 10.1136/bmj.1.5448.1467
  131. Valleron A.J., Cori A., Valtat S., Meurisse S., Carrat F., Boëlle P.Y. Transmissibility and geographic spread of the 1889 influenza pandemic. Proc. Natl Acad. Sci. USA, 2010, vol. 107, no. 19, pp. 8778–8781. doi: 10.1073/pnas.1000886107
  132. Van Den Hoogen B.G., De Jong J.C., Groen J., Kuiken T., De Groot R., Fouchier R.A., Osterhaus A.D. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat. Med., 2001, vol. 7, no. 6, pp. 719–724. doi: 10.1038/89098
  133. Van der Hoek L., Pyrc K., Jebbink M.F., Vermeulen-Oost W., Berkhout R.J.M., Wolthers K.C., Wertheim-van Dillen P.M.E., Kaandorp J., Spaargaren J., Berkhout B. Identification of a new human coronavirus. Nat. Med., 2004. vol. 10, no. 4, pp. 368–373.
  134. Varghese L., Zachariah P., Vargas C., LaRussa P., Demmer R.T., Furuya Y.E., Whittier S., Reed C., Stockwell M.S., Saiman L. Epidemiology and clinical features of human coronaviruses in the pediatric population. J. Pediatric Infect. Dis. Soc., 2018, vol. 7, no. 2, pp. 151–158. doi: 10.1093/jpids/pix027
  135. Vijgen L., Keyaerts E., Moës E., Thoele I., Wollants E., Lemey P., Vandamme A.M., Van Ranst M. Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. J. Virol., 2005, vol. 79, no. 3, pp. 1595–1604. doi: 10.1128/JVI.79.3.1595-1604.2005
  136. Waterlow N.R., Van Leeuwen E., Davies N.G., Flasche S., Eggo R.M. How immunity from and interaction with seasonal coronaviruses can shape SARS-CoV-2 epidemiology. Proc. Natl Acad. Sci. USA, 2021, vol. 118, no. 49: e2108395118. doi: 10.1073/pnas.2108395118
  137. Wen C., Sun L., Zhao M.C., Duan S.X., Wang L., Cui X.W. Clinical study of human coronavirus NL63, OC43, 229E, HKU1 infentions in hospitalized children from 2015 to 2020. Infect. Drug. Resist., 2022, vol. 15, no. 1, pp. 1093–1101. doi: 10.2147/IDR.S357193
  138. WHO. Middle East respiratory syndrome coronavirus (MERS-CoV). 2023. URL: https://www.who.int/health-topics/middle-east-respiratory-syndrome-coronavirus-mers#tab=tab_1
  139. WHO. Severe Acute Respiratory Syndrome (SARS). 2023. URL: https://www.who.int/health-topics/severe-acute-respiratory-syndrome#tab=tab_1
  140. Wong-Chew R.M., Fernández J.A.M. Generalities, clinical and prevention aspects of COVID-19: Mexico and Latin America. Univ. Med., 2021, vol. 62, no. 3, pp. 97–114. doi: 10.11144/javeriana.umed62-3.gacp
  141. Woo P.C., Lau S.K., Chu C.M., Chan K.H., Tsoi H.W., Huang Y., Wong B.H., Poon R.W., Cai J.J., Luk W.K., Poon L.L., Wong S.S., Guan Y., Peiris J.S., Yuen K.Y. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J. Virol., 2005, vol. 79, no. 2, pp. 884–895. doi: 10.1128/JVI.79.2.884-895.2005
  142. Woo P.C.Y., Huang Y., Lau S.K.P., Yuen K.Y. Coronavirus genomics and bioinformatics analysis. Viruses, 2010, vol. 2, no. 8, pp. 1804–1820. doi: 10.3390/v2081803
  143. Yin Y., Wunderink R.G. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology, 2018, vol. 23, no. 2, pp. 130–137. doi: 10.1111/resp.13196
  144. Yoshimoto F.K. The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19. Protein J., 2020, vol. 39, no. 3, pp. 198–216. doi: 10.1007/s10930-020-09901-4
  145. Zeng Q., Langereis M.A., Van Vliet A.L., Huizinga E.G., De Groot R.J. Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution. Proc. Natl Acad. Sci. USA, 2008, vol. 105, no. 26, pp. 9065–9069. doi: 10.1073/pnas.0800502105
  146. Zeyaullah M., Alshahrani A.M., Muzammil K., Ahmad I., Alam S., Khan W.H., Ahmad R. COVID-19 and SARS-CoV-2 variants: current challenges and health concern. Front. Genet., 2021, vol. 12: 693916. doi: 10.3389/fgene.2021.693916
  147. Zhao X., Ding Y., Du J., Fan Y. 2020 update on human coronaviruses: one health, one world. Med. Nov. Technol. Devices, 2020, vol. 8: 100043. doi: 10.1016/j.medntd.2020.100043
  148. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., Chen H.D., Chen J., Luo Y., Guo H., Jiang R.D., Liu M.Q., Chen Y., Shen X.R., Wang X., Zheng X.S., Zhao K., Chen Q.J., Deng F., Liu L.L., Yan B., Zhan F.X., Wang Y.Y., Xiao G.F., Shi Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, vol. 579, no. 7798, pp. 270–273. doi: 10.1038/s41586-020-2012-7
  149. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., Niu P., Zhan F., Ma X., Wang D., Xu W., Wu G., Gao G.F., Tan W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, vol. 382, no. 8, pp. 727–733. doi: 10.1056/NEJMoa2001017

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Chronology of discovery of major seasonal human respiratory viruses (based on [25, 26, 30, 40, 64, 65, 66, 85, 110, 113, 118, 125, 130, 132])

Download (133KB)
3. Figure 2. Timeline of discovery of human coronaviruses

Download (138KB)
4. Figure 3. Taxonomy of seasonal and pandemic coronaviruses (based on [48, 52, 67, 69, 121])

Download (1018KB)

Copyright (c) 2023 Kiseleva I.V., Musaeva T.D.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies