Designing structure and E. coli strain-producer bearing SARS-CoV-2 N, S, M, E protein-related sequence antigen

Cover Page

Cite item

Full Text

Abstract

T-cell immune response is extremely important in protecting human body from diverse viral infections. It is known that it can ensure viral clearance and complete recovery in patients with humoral immunodeficiency. COVID-19 patients were found to have T-cell response primarily directed against SARS-CoV-2 structural S, M, N, E proteins, with nucleocapsid protein being most conserved. To assess patients’ immunity against coronavirus infection and evaluate an effectiveness of vaccine candidates, it is necessary to develop an optimal diagnostic antigen to evaluate arising T-cell response against SARS-CoV-2 antigenic determinants. A diagnostic test to determine host specific susceptibility to SARS-CoV-2 infection should target conserved regions of global SARS-CoV-2 variants. The study was aimed to develop a structure of an antigen bearing conserved and immunogenic sequences derived from SARS-CoV-2 structural proteins and to obtain an Escherichia coli producer strain containing a recombinant protein to be subsequently used for assessing antiviral T-cell immunity. Developing of the antigen was performed in silico: TepiTool and NetMHCIIpan were used to predict and identify high affinity epitopes spanning SARS-CoV-2 E, M, N, S proteins and MHC II binding. Several variants of recombinant antigen proteins were constructed, from which one was selected based on its physicochemical properties: isoelectric point, hydrophobicity index and aliphatic index, as well as 3D representation built by using the I-TASSER. The sequence was synthesized and cloned into the pET24a(+) vector. The resulting plasmid pCorD_PS was transformed into E. coli DH5α followed by Rosetta (DE3). The strain-producer of the recombinant E. coli protein CorD_PS was assessed for the presence and stability of IPTG-induced antigen protein expression and elimination of recombinant coronavirus antigen-bearing plasmid. Based on the study data, an antigen was developed consisting of conserved regions from SARS-CoV-2 S, M, N, E proteins. A 53 kDa recombinant protein was predicted to be stable in aqueous solutions with isoelectric point of 9.56 potentially allowing to simplify protein purification from E. coli cells. Plasmid DNA pCorD_PS (6695 bp) encoding final recombinant coronavirus antigen cloned into pET24a(+) vector was obtained. A stable, productive E. coli CorD_PS strain was obtained. The obtained strain-producer resulting in recombinant E. coli CorD_PS antigen is stable allowing to move on to design antigen purification technique and further develop SARS-CoV-2-specific diagnostic test system.

About the authors

Vladimir V. Kopat

LLC “ATG Service Gene”

Email: kopat@service-gene.ru
ORCID iD: 0000-0002-6573-6743

Development Director

Russian Federation, 199178, St. Petersburg, int. ter. municipal district Vasilyevsky, Maly pr. V.O., 57, build. 4, letter Zh, room 5-N, office 1.2.5

Anastasia A. Riabchenkova

LLC “ATG Service Gene”

Author for correspondence.
Email: riabchenkova@service-gene.ru
ORCID iD: 0000-0002-9973-0753

Researcher

Russian Federation, 199178, St. Petersburg, int. ter. municipal district Vasilyevsky, Maly pr. V.O., 57, build. 4, letter Zh, room 5-N, office 1.2.5

Evgenii L. Chirak

LLC “ATG Service Gene”

Email: chirak.evgenii@service-gene.ru
ORCID iD: 0000-0001-9167-5000

Researcher

Russian Federation, 199178, St. Petersburg, int. ter. municipal district Vasilyevsky, Maly pr. V.O., 57, build. 4, letter Zh, room 5-N, office 1.2.5

Elizaveta R. Chirak

LLC “ATG Service Gene”

Email: chirak.elizaveta@service-gene.ru
ORCID iD: 0000-0002-1610-8935

Researcher

Russian Federation, 199178, St. Petersburg, int. ter. municipal district Vasilyevsky, Maly pr. V.O., 57, build. 4, letter Zh, room 5-N, office 1.2.5

Anna I. Saenko

LLC “ATG Service Gene”

Email: anna.saenko@gmail.com
ORCID iD: 0009-0003-1059-1991

Chief Process Engineer

Russian Federation, 199178, St. Petersburg, int. ter. municipal district Vasilyevsky, Maly pr. V.O., 57, build. 4, letter Zh, room 5-N, office 1.2.5

Nikolai N. Kolmakov

Institute of Experimental Medicine

Email: kolmakov@service-gene.ru
ORCID iD: 0000-0002-4672-6208

Researcher, Department of Molecular Genetics

Russian Federation, Saint Petersburg

Andrey S. Simbirtsev

Saint Petersburg Pasteur Institute

Email: simbas@mail.ru
ORCID iD: 0000-0002-8228-4240

RAS Corresponding Member, DSc (Medicine), Professor, Head of the Laboratory of Medical Biotechnology

Russian Federation, 197101, Saint Petersburg , st. Mira, 14

Ilya V. Dukhovlinov

LLC “ATG Service Gene”

Email: atg@service-gene.ru
ORCID iD: 0000-0002-5268-9802

PhD (Biology), Director of Science

Russian Federation, 199178, St. Petersburg, int. ter. municipal district Vasilyevsky, Maly pr. V.O., 57, build. 4, letter Zh, room 5-N, office 1.2.5

Areg A. Totolian

Saint Petersburg Pasteur Institute

Email: totolian@spbraaci.ru
ORCID iD: 0000-0003-4571-8799

RAS Full Member, DSc (Medicine), Professor, Director

Russian Federation, 197101, Saint Petersburg , st. Mira, 14

References

  1. Кудрявцев И.В., Головкин А.С., Тотолян А.А. Т-хелперы и их клетки-мишени при COVID-19 // Инфекция и иммунитет. 2022. Т. 12, № 3. C. 409–426. [Kudryavtsev I.V., Golovkin A.S., Totolian A.A. T helper cell subsets and related target cells in acute COVID-19. Russian Journal of Infection and Immunity, 2022, vol. 12, no. 3, pp. 409–426. (In Russ.)] doi: 10.15789/2220-7619-THC-1882
  2. Bange E.M., Han N.A., Wileyto P., Kim J.Y., Gouma S., Robinson J., Greenplate A.R., Hwee M.A., Porterfield F., Owoyemi O., Naik K., Zheng C., Galantino M., Weisman A.R., Ittner C.A.G., Kugler E.M., Baxter A.E., Oniyide O., Agyekum R.S., Dunn T.G., Jones T.K., Giannini H.M., Weirick M.E., McAllister C.M., Babady N.E., Kumar A., Widman A.J., DeWolf S., Boutemine S.R., Roberts C., Budzik K.R., Tollett S., Wright C., Perloff T., Sun L., Mathew D., Giles J.R., Oldridge D.A., Wu J.E., Alanio C., Adamski S., Garfall A.L., Vella L.A., Kerr S.J., Cohen J.V., Oyer R.A., Massa R., Maillard I.P., Maxwell K.N., Reilly J.P., Maslak P.G., Vonderheide R.H., Wolchok J.D., Hensley S.E., Wherry E.J., Meyer N.J., DeMichele A.M., Vardhana S.A., Mamtani R., Huang A.C. CD8+ T cells contribute to survival in patients with COVID-19 and hematologic cancer. Nat. Med., 2021, vol. 27, no. 7, pp. 1280–1289. doi: 10.1038/s41591-021-01386-7
  3. Boratyn G.M., Thierry-Mieg J., Thierry-Mieg D., Busby B., Madden T.L. Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC Bioinformatics, 2019, vol. 20, no. 1, pp. 1–19. doi: 10.1186/s12859-019-2996-x
  4. Chang C.K., Hou M.H., Chang C.F., Hsiao C.D., Huang T.H. The SARS coronavirus nucleocapsid protein — forms and functions. Antiviral Res., 2014, vol. 103, pp. 39–50. doi: 10.1016/j.antiviral.2013.12.009
  5. Chen J., Lau Y.F., Lamirande E.W., Paddock C.D., Bartlett J.H., Zaki S.R., Subbarao K. Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in senescent BALB/c mice: CD4+ T cells are important in control of SARS-CoV infection. J. Virol., 2010, vol. 84, no. 3, pp. 1289–1301. doi: 10.1128/jvi.01281-09
  6. DiPiazza A.T., Graham B.S., Ruckwardt T.J. T cell immunity to SARS-CoV-2 following natural infection and vaccination. Biochem. Biophys. Res. Commun., 2021, vol. 538, pp. 211–217. doi: 10.1016/j.bbrc.2020.10.060
  7. Friberg H., Burns L., Woda M., Kalayanarooj S., Endy T.P., Stephens H.A., Green S., Rothman A.L., Mathew A. Memory CD8+ T cells from naturally acquired primary dengue virus infection are highly cross-reactive. Immunol. Cell Biol., 2011, vol. 89, no. 1, pp. 122–129. doi: 10.1038/icb.2010.61
  8. Gordon D.E., Jang G.M., Bouhaddou M., Xu J., Obernier K., White K.M., O’Meara M.J., Rezelj V.V., Guo J.Z., Swaney D.L., Tummino T.A., Hüttenhain R., Kaake R.M., Richards A.L., Tutuncuoglu B., Foussard H., Batra J., Haas K., Modak M., Kim M., Haas P., Polacco B.J., Braberg H., Fabius J.M., Eckhardt M., Soucheray M., Bennett M.J., Cakir M., McGregor M.J., Li Q., Meyer B., Roesch F., Vallet T., Mac Kain A., Miorin L., Moreno E., Naing Z.Z.C., Zhou Y., Peng S., Shi Y., Zhang Z., Shen W., Kirby I.T., Melnyk J.E., Chorba J.S., Lou K., Dai S.A., Barrio-Hernandez I., Memon D., Hernandez-Armenta C., Lyu J., Mathy C.J.P., Perica T., Pilla K.B., Ganesan S.J., Saltzberg D.J., Rakesh R., Liu X., Rosenthal S.B., Calviello L., Venkataramanan S., Liboy-Lugo J., Lin Y., Huang X.P., Liu Y., Wankowicz S.A., Bohn M., Safari M., Ugur F.S., Koh C., Savar N.S., Tran Q.D., Shengjuler D., Fletcher S.J., O’Neal M.C., Cai Y., Chang J.C.J., Broadhurst D.J., Klippsten S., Sharp P.P., Wenzell N.A., Kuzuoglu-Ozturk D., Wang H.Y., Trenker R., Young J.M., Cavero D.A., Hiatt J., Roth T.L., Rathore U., Subramanian A., Noack J., Hubert M., Stroud R.M., Frankel A.D., Rosenberg O.S., Verba K.A., Agard D.A., Ott M., Emerman M., Jura N., von Zastrow M., Verdin E., Ashworth A., Schwartz O., d’Enfert C., Mukherjee S., Jacobson M., Malik H.S., Fujimori D.G., Ideker T., Craik C.S., Floor S.N., Fraser J.S., Gross J.D., Sali A., Roth B.L., Ruggero D., Taunton J., Kortemme T., Beltrao P., Vignuzzi M., García-Sastre A., Shokat K.M., Shoichet B.K., Krogan N.J. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, vol. 583, no. 7816, pp. 459–468. doi: 10.1038/s41586-020-2286-9
  9. Grifoni A., Weiskopf D., Ramirez S.I., Mateus J., Dan J.M., Moderbacher C.R., Rawlings S.A., Sutherland A., Premkumar L., Jadi R.S., Marrama D., de Silva A.M., Frazier A., Carlin A.F., Greenbaum J.A., Peters B., Krammer F., Smith D.M., Crotty S., Sette A. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell, 2020, vol. 181, no. 7, pp. 1489–1501. doi: 10.1016/j.cell.2020.05.015
  10. Gupta S., Su H., Narsai T., Agrawal S. SARS-CoV-2-associated T-cell responses in the presence of humoral immunodeficiency. Int. Arch. Allergy Immunol., 2021, vol. 182, no. 3, pp. 195–209. doi: 10.1159/000514193
  11. Huang S., He Q., Zhou L. T cell responses in respiratory viral infections and chronic obstructive pulmonary disease. Chin. Med. J. (Engl.), 2021, vol. 134, no. 13, pp. 1522–1534. doi: 10.1097/CM9.0000000000001388
  12. Ikai A. Thermostability and aliphatic index of globular proteins. J. Biochem., 1980, vol. 88, no. 6, pp. 1895–1898. doi: 10.1093/oxfordjournals.jbchem.a133168
  13. Kozlowski L.P. IPC — isoelectric point calculator. Biology Direct, 2016, vol. 11, no. 1, pp. 1–16. doi: 10.1186/s13062-016-0159-9
  14. Kudryavtsev I.V., Arsentieva N.A., Batsunov O.K., Korobova Z.R., Khamitova I.V., Isakov D.V., Kuznetsova R.N., Rubinstein A.A., Stanevich O.V., Lebedeva A.A., Vorobyov E.A., Vorobyova S.V., Kulikov A.N., Sharapova M.A., Pevtcov D.E., Totolian A.A. Alterations in B cell and follicular T-helper cell subsets in patients with acute COVID-19 and COVID-19 convalescents. Curr. Issues Mol. Biol., 2021, vol. 44, no. 1, pp. 194–205. doi: 10.3390/cimb44010014
  15. Kudryavtsev I.V., Arsentieva N.A., Korobova Z.R., Isakov D.V., Rubinstein A.A., Batsunov O.K., Khamitova I.V., Kuznetsova R.N., Savin T.V., Akisheva T.V., Stanevich O.V., Lebedeva A.A., Vorobyov E.A., Vorobyova S.V., Kulikov A.N., Sharapova M.A., Pevtsov D.E., Totolian A.A. Heterogenous CD8+ T cell maturation and ‘polarization’ in acute and convalescent COVID-19 patients. Viruses, 2022, vol. 14, no. 9: 1906. doi: 10.3390/v14091906
  16. Kyte J., Doolittle R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol., 1982, vol. 157, no. 1, pp. 105–132. doi: 10.1016/0022-2836(82)90515-0
  17. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, vol. 227, no. 5259, pp. 680–685. doi: 10.1038/227680a0
  18. Lan L., Xu D., Ye G., Xia C., Wang S., Li Y., Xu H. Positive RT-PCR test results in patients recovered from COVID-19. JAMA, 2020, vol. 323, no. 15, pp. 1502–1503. doi: 10.1001/jama.2020.2783
  19. Le Bert N., Tan A.T., Kunasegaran K., Tham CYL, Hafezi M., Chia A., Chng MHY, Lin M., Tan N., Linster M., Chia W.N., Chen M.I., Wang L.F., Ooi E.E., Kalimuddin S., Tambyah P.A., Low J.G., Tan Y.J., Bertoletti A.. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature, 2020, vol. 584, no. 7821, pp. 457–462. doi: 10.1038/s41586-020-2550-z
  20. Matchett W.E., Joag V., Stolley J.M., Shepherd F.K., Quarnstrom C.F., Mickelson C.K., Wijeyesinghe S., Soerens A.G., Becker S., Thiede J.M., Weyu E., O’Flanagan S., Walter J.A., Vu M.N., Menachery V.D., Bold T.D., Vezys V., Jenkins M.K., Langlois R.A., Masopust D. Nucleocapsid vaccine elicits spike-independent SARS-CoV-2 protective immunity. J. Immunol., 2021, vol. 207, no. 2, pp. 376–379. doi: 10.4049/jimmunol.2100421
  21. Meckiff B.J., Ramírez-Suástegui C., Fajardo V., Chee S.J., Kusnadi A., Simon H., Eschweiler S., Grifoni A., Pelosi E., Weiskopf D., Sette A., Ay F., Seumois G., Ottensmeier C.H., Vijayanand P. Imbalance of regulatory and cytotoxic SARS-CoV-2-reactive CD4+ T cells in COVID-19. Cell, 2020, vol. 183, no. 5, pp. 1340–1353. doi: 10.1016/j.cell.2020.10.001
  22. Moss P. The T cell immune response against SARS-CoV-2. Nat. Immunol., 2022, vol. 23, no. 2, pp. 186–193. doi: 10.1038/s41590-021-01122-w
  23. O Murchu E., Byrne P., Carty P.G., De Gascun C., Keogan M., O’Neill M., Harrington P., Ryan M. Quantifying the risk of SARS-CoV-2 reinfection over time. Rev. Med. Virol., 2022, vol. 32, no. 1: e2260. doi: 10.1002/rmv.2260
  24. Paul S., Sidney J., Sette A., Peters B. TepiTool: a pipeline for computational prediction of T cell epitope candidates. Curr. Protoc. Immunol., 2016, vol. 114, no. 1, pp. 18.19.1–18.19.24. doi: 10.1002/cpim.12
  25. Qiu C., Xiao C., Wang Z., Zhu G., Mao L., Chen X., Gao L., Deng J., Su J., Su H., Fang E.F., Zhang Z.J., Zhang J., Xie C., Yuan J., Luo O.J., Huang L.A., Wang P., Chen G. CD8+ T-cell epitope variations suggest a potential antigen HLA-A2 binding deficiency for spike protein of SARS-CoV-2. Front. Immunol., 2022, vol. 12: 764949. doi: 10.3389/fimmu.2021.764949
  26. Ramachandran Gn., Ramakrishnan C., Sasisekharan V. Stereochemistry of polypeptide chain configurations. J. Mol. Biol, 1963, vol. 7, pp. 95–99. doi: 10.1016/s0022-2836(63)80023-6
  27. Reynisson B., Barra C., Kaabinejadian S., Hildebrand W.H., Peters B., Nielsen M. Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data. J. Proteome Res., 2020, vol. 19, no. 6, pp. 2304–2315. doi: 10.1021/acs.jproteome.9b00874
  28. Sauer K., Harris T. An effective COVID-19 vaccine needs to engage T cells. Front. Immunol., 2020, vol. 11: 581807. doi: 10.3389/fimmu.2020.581807
  29. Sette A., Sidney J. Nine major HLA class I supertypes account for the vast preponderance of HLA-A and-B polymorphism. Immunogenetics, 1999, vol. 50, no. 3–4, pp. 201–212. doi: 10.1007/s002510050594
  30. Smith-Garvin J.E., Koretzky G.A., Jordan M.S. T cell activation. Ann. Rev. Immunol., 2009, vol. 27, pp. 591–619. doi: 10.1146/annurev.immunol.021908.132706
  31. Springer I., Besser H., Tickotsky-Moskovitz N., Dvorkin S., Louzoun Y. Prediction of specific TCR-peptide binding from large dictionaries of TCR-peptide pairs. Front. Immunol., 2020, vol. 11: 1803. doi: 10.3389/fimmu.2020.01803
  32. Steiner S., Schwarz T., Corman V.M., Sotzny F., Bauer S., Drosten C., Volk H.D., Scheibenbogen C., Hanitsch L.G. Reactive T cells in convalescent COVID-19 patients with negative SARS-CoV-2 antibody serology. Front. Immunol., 2021, vol. 12: 2557. doi: 10.3389/fimmu.2021.687449
  33. Su L.F., Kidd B.A., Han A., Kotzin J.J., Davis M.M. Virus-specific CD4+ memory-phenotype T cells are abundant in unexposed adults. Immunity, 2013, vol. 38, no. 2, pp. 373–383. doi: 10.1016/j.immuni.2012.10.021
  34. Teng I.T., Nazzari A.F., Choe M., Liu T., Oliveira de Souza M., Petrova Y., Tsybovsky Y., Wang S., Zhang B., Artamonov M., Madan B., Huang A, Lopez Acevedo S.N., Pan X., Ruckwardt T.J., DeKosky B.J., Mascola J.R., Misasi J., Sullivan N.J., Zhou T., Kwong P.D. Molecular probes of spike ectodomain and its subdomains for SARS-CoV-2 variants, Alpha through Omicron. PLoS One, 2022, vol. 17, no. 5: e0268767. doi: 10.1371/journal.pone.0268767
  35. The proteomics protocols handbook. Ed. by Walker J.M. Humana Press, 2005. 576 p. URL: https://link.springer.com/content/pdf/10.1385/1592598900.pdf (10.07.23)
  36. Wu Y., Guo C., Tang L., Hong Z., Zhou J., Dong X., Yin H., Xiao Q., Tang Y., Qu X., Kuang L., Fang X., Mishra N., Lu J., Shan H., Jiang G., Huang X. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol. Hepatol., 2020, vol. 5, no. 5, pp. 434–435. doi: 10.1016/S2468-1253(20)30083-2
  37. Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 2008, vol. 9, pp. 1–8. doi: 10.1186/1471-2105-9-40
  38. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., Chen H.D., Chen J., Luo Y., Guo H., Jiang R.D., Liu M.Q., Chen Y., Shen X.R., Wang X., Zheng X.S., Zhao K., Chen Q.J., Deng F., Liu L.L., Yan B., Zhan F.X., Wang Y.Y., Xiao G.F., Shi Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, vol. 579, no. 7798, pp. 270–273. doi: 10.1038/s41586-020-2012-7

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Linear structure of the chimeric protein

Download (22KB)
3. Figure 2. Modeled structure of the recombinant coronavirus antigen (3D protein model) rendered with I-TASSER [31]

Download (135KB)
4. Figure_3. Schematic representation of the pCorD_PS recombinant vector construction

Download (176KB)
5. Figure 4. Electropherogram of the restricted vector pCorD_PS in 1% agarose gel

Download (84KB)
6. Figure 5. Antigen expression in cultures of 3 clones induced with the addition of 1 mM IPTG in 12% polyacrylamide gel under denaturing conditions

Download (82KB)
7. Figure 6. Electropherogram of recombinant coronavirus antigen expression after 1–9 passages

Download (109KB)
8. Figure 7. Electropherogram of plasmid DNA after successive passages

Download (100KB)
9. Figure 8. Electropherogram of plasmid DNA restriction after successive passages

Download (72KB)

Copyright (c) 2023 Kopat V.V., Riabchenkova A.A., Chirak E.L., Chirak E.R., Saenko A.I., Kolmakov N.N., Simbirtsev A.S., Dukhovlinov I.V., Totolian A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies