Crosstalk between ESKAPE bacteria and NK cells: mutual regulation and role in developing reproductive tract pathologies

Cover Page

Cite item

Full Text

Abstract

Natural killer (NK) cells represent one of the innate lymphoid cell subsets, which are often studied in the context of antitumor and antiviral immunity, as well as due to their localization in the zone of the mother-fetus contact (in the uterus), therefore underlying their extensive investigation in developing pregnancy. At the same time, their role in antibacterial immune response has been poorly examined. Because NK cells can produce cytokines, one of putative options for their participation in eliminating prokaryotic pathogens may be coupled to regulation of immune system cells such as dendritic cells, macrophages, etc. However, there have been also described variants of contact cytolysis of cells infected with intracellular bacteria enabled due to cytotoxic proteins — perforin, granzymes, granulisin found in NK cells. In recent years, it has become known that NK cells take part in development of immune response against extracellular bacteria including the ESKAPE group bacteria, which includes opportunistic prokaryotes that most actively develop antibiotic resistance and cause nosocomial infections. Here, we attempted to review the data on the role NK cells play in antibacterial immunity. Assessing a crosstalk between ESKAPE group bacteria and NK cells also attracts researchers due to the ability of prokaryotes to alter functions of immune cells, but very little is known about the effects they exert on NK cells. At the same time, such data could be applied to seek out for new ways to treat oncological diseases as well as pave the basis for new approaches to regulating NK cell characteristics in reproductive pathologies. As mentioned earlier, the latter occur in the decidual membrane, where they can interact with fetal cells including trophoblast cells. It is believed that cells can mutually regulate each other’s properties necessary for the course of physiological pregnancy. Probably, imbalance in this system can lead to development of reproductive pathologies. The review summarizes the currently available data on the effects of ESKAPE group bacteria on NK cells, and also considers putative mechanisms for emergence of impaired interaction between NK cells and trophoblasts exposed to ESKAPE group bacteria. Owing to few publications available on this phenomenon, the experimental study assessing an impact of ESKAPE group bacteria on NK cell properties is envisioned as a necessary stage in development of contemporary biology.

About the authors

Polina V. Grebenkina

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott; Saint Petersburg Pasteur Institute

Author for correspondence.
Email: grebenkinap@gmail.com
ORCID iD: 0000-0002-5229-9732

Junior Researcher, PhD Student

Russian Federation, 199034, Saint Petersburg, Mendeleyevskaya line, 3; 197101, Saint Petersburg, st. Mira, 14

Sergey A. Selkov

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: selkovsa@mail.ru
ORCID iD: 0000-0003-1560-7529

DSc (Medicine), Professor, Head of the Department of Immunology and Intercellular Interactions

Russian Federation, 199034, Saint Petersburg, Mendeleyevskaya line, 3

Lyudmila А. Kraeva

Saint Petersburg Pasteur Institute; Military Medical Academy named after S.M. Kirov

Email: lykraeva@yandex.ru
ORCID iD: 0000-0002-9115-3250

DSc (Medicine), Head of the Laboratory of Medical Bacteriology, Professor of the Department of Microbiology

Russian Federation, 197101, Saint Petersburg, st. Mira, 14; Saint Petersburg

Dmitriy I. Sokolov

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott; Saint Petersburg Pasteur Institute

Email: falcojugger@yandex.ru
ORCID iD: 0000-0002-5749-2531

DSc (Biology), Associate Professor, Head of Laboratory of Intercellular Interactions, Researcher, Laboratory of Molecular Immunology

Russian Federation, 199034, Saint Petersburg, Mendeleyevskaya line, 3; 197101, Saint Petersburg, st. Mira, 14

References

  1. Малышкина Д.А., Анциферова Ю.С., Долгушина Н.В. Особенности экспрессии рецепторов семейства NCR в популяции эндометриальных естественных киллеров у пациенток с лейомиомой матки // Российский иммунологический журнал. 2019. Т. 22, № 2-1. C. 391–393. [Malyshkina D.A., Antsiferova Yu.S., Dolgushina N.V. The expresiion of NCR receptors by endometrial natural killers in women with uterine leiomyoma. Rossiiskii immunologicheskii zhurnal = Russian Journal of Immunology, 2019, vol. 22, no. 2-1, pp. 391–393. (In Russ.)] doi: 10.31857/S102872210006907-2
  2. Мерфи К., Уивер К. Иммунобиология по Джанвэю. М.: Логосфера, 2020. 1184 с. [Murphy K., Weaver K. Immunobiology by Janway. Moscow: Logosphere, 2020. 1184 p. (In Russ.)]
  3. Abbas Y., Oefner C.M., Polacheck W.J., Gardner L., Farrell L., Sharkey A., Kamm R., Moffett A., Oyen M.L. A microfluidics assay to study invasion of human placental trophoblast cells. J. R. Soc. Interface, 2017, vol. 14, no. 130: 20170131. doi: 10.1098/rsif.2017.0131
  4. Ahmadi M., Ghaebi M., Abdolmohammadi-Vahid S., Abbaspour-Aghdam S., Hamdi K., Abdollahi-Fard S., Danaii S., Mosapour P., Koushaeian L., Dolati S., Rikhtegar R., Oskouei F.D., Aghebati-Maleki L., Nouri M., Yousefi M. NK cell frequency and cytotoxicity in correlation to pregnancy outcome and response to IVIG therapy among women with recurrent pregnancy loss. J. Cell. Physiol., 2018, vol. 234, no. 6, pp. 9428–9437. doi: 10.1002/jcp.27627
  5. Andersson M., Gunne H., Agerberth B., Boman A., Bergman T., Sillard R., Jörnvall H., Mutt V., Olsson B., Wigzell H. NK-lysin, a novel effector peptide of cytotoxic T and NK cells. Structure and cDNA cloning of the porcine form, induction by interleukin 2, antibacterial and antitumour activity. EMBO J., 1995, vol. 14, no. 8, pp. 1615–1625. doi: 10.1002/j.1460-2075.1995.tb07150.x
  6. Ao X., Gan Q., Huang X., Bao D., Wu X., Lin Q., Lin A., Ding Y., Wang L., Chen Y., Huang Z. TLR8 agonist partially improves IFNγ deficiency of NK cells in chronic hepatitis B through the synergy of monocytes. Aliment. Pharmacol. Ther., 2022, vol. 57, no. 4, pp. 387–398. doi: 10.1111/apt.17382
  7. Augusto L.A., Bourgeois-Nicolaos N., Breton A., Barreault S., Alonso E.H., Gera S., Faraut-Derouin V., Semaan N., De Luca D., Chaby R., Doucet-Populaire F., Tissières P. Presence of 2-hydroxymyristate on endotoxins is associated with death in neonates with Enterobacter cloacae complex septic shock. iScience, 2021, vol. 24, no. 8: 102916. doi: 10.1016/j.isci.2021.102916
  8. Avendaño-Ortiz J., Llanos-González E., Toledano V., del Campo R., Cubillos-Zapata C., Lozano-Rodríguez R., Ismail A., Prados C., Gómez-Campelo P., Aguirre L.A., García-Río F., López-Collazo E. Pseudomonas aeruginosa colonization causes PD-L1 overexpression on monocytes, impairing the adaptive immune response in patients with cystic fibrosis. J. Cyst. Fibros., 2019, vol. 18, no. 5, pp. 630–635. doi: 10.1016/j.jcf.2018.11.002
  9. Ayobami O., Willrich N., Reuss A., Eckmanns T., Markwart R. The ongoing challenge of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis in Europe: an epidemiological analysis of bloodstream infections. Emerg. Microbes Infect., 2020, vol. 9, no. 1, pp. 1180–1193. doi: 10.1080/22221751.2020.1769500
  10. Bae J.S., Da F., Liu R., He L., Lv H., Fisher E.L., Rajagopalan G., Li M., Cheung G.Y.C., Otto M. Contribution of Staphylococcal enterotoxin B to Staphylococcus aureus systemic infection. J. Infect. Dis., 2021, vol. 223, no. 10, pp. 1766–1775. doi: 10.1093/infdis/jiaa584
  11. Balle C., Esra R., Havyarimana E., Jaumdally S.Z., Lennard K., Konstantinus I.N., Barnabas S.L., Happel A.U., Gill K., Pidwell T., Lingappa J.R., Gamieldien H., Bekker L.G., Passmore J.S., Jaspan H.B. Relationship between the oral and vaginal microbiota of South African adolescents with high prevalence of bacterial vaginosis. Microorganisms, 2020, vol. 8, no. 7: 1004. doi: 10.3390/microorganisms8071004
  12. Bengoechea J.A., Sa Pessoa J. Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol. Rev., 2019, vol. 43, no. 2, pp. 123–144. doi: 10.1093/femsre/fuy043
  13. Bernardy E.E., Petit R.A., Raghuram V., Alexander A.M., Read T.D., Goldberg J.B., Harwood C.S. Genotypic and phenotypic diversity of Staphylococcus aureus isolates from cystic fibrosis patient lung infections and their interactions with Pseudomonas aeruginosa. mBio, 2020, vol. 11, no. 3: e00735-20. doi: 10.1128/mBio.00735-20
  14. Boucher H.W., Talbot G.H., Bradley J.S., Edwards J.E., Gilbert D., Rice L.B., Scheld M., Spellberg B., Bartlett J. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis., 2009, vol. 48, no. 1, pp. 1–12. doi: 10.1086/595011
  15. Brennan T.V., Lin L., Brandstadter J.D., Rendell V.R., Dredge K., Huang X., Yang Y. Heparan sulfate mimetic PG545-mediated antilymphoma effects require TLR9-dependent NK cell activation. J. Clin. Invest., 2016, vol. 126, no. 1, pp. 207–219. doi: 10.1172/JCI76566
  16. Cai G., Kastelein R.A., Hunter C.A. IL-10 enhances NK cell proliferation, cytotoxicity and production of IFN-gamma when combined with IL-18. Eur. J. Immunol., 1999, vol. 29, no. 9, pp. 2658–2665. doi: 10.1002/(SICI)1521-4141(199909)29:09<2658::AID-IMMU2658>3.0.CO;2-G
  17. Cai S., Wang J., Wang K., Chen D., Dong X., Liu T., Zeng Y., Wang X., Wu D. Expression, purification and antibacterial activity of NK-lysin mature peptides from the channel catfish (Ictalurus punctatus). Appl. Sci., 2016, vol. 6, no. 9: 240. doi: 10.3390/app6090240
  18. Caneiras C., Lito L., Melo-Cristino J., Duarte A. Community- and hospital-acquired Klebsiella pneumoniae urinary tract infections in portugal: virulence and antibiotic resistance. Microorganisms, 2019, vol. 7, no. 5: 138. doi: 10.3390/microorganisms7050138
  19. Cavalcanti Y.V.N., Brelaz M.C.A., Lemoine Neves J.K.d.A., Ferraz J.C., Pereira V.R.A. Role of TNF-alpha, IFN-gamma, and IL-10 in the development of pulmonary tuberculosis. Pulm. Med., 2012, vol. 2012: 745483. doi: 10.1155/2012/745483
  20. Chalifour A., Jeannin P., Gauchat J.F., Blaecke A., Malissard M., N’Guyen T., Thieblemont N., Delneste Y. Direct bacterial protein PAMP recognition by human NK cells involves TLRs and triggers alpha-defensin production. Blood, 2004, vol. 104, no. 6, pp. 1778–1783. doi: 10.1182/blood-2003-08-2820
  21. Chambers H.F. The changing epidemiology of Staphylococcus aureus? Emerg. Infect. Dis., 2001, vol. 7, no. 2, pp. 178–182. doi: 10.3201/eid0702.010204
  22. Chen L., Yi L., Ren Y., Zhang J., Kinghorn A.D., Caligiuri M.A., Yu J. Enhancement of natural killer cell interferon-gamma production by the derivatives of the natural product phyllanthusmins via TLR-mediated NF-kb and STAT3 signaling pathways. Blood, 2015, vol. 126, no. 23, pp. 1031–1031. doi: 10.1182/blood.V126.23.1031.1031
  23. Chung J.W., Piao Z.H., Yoon S.R., Kim M.S., Jeong M., Lee S.H., Min J.K., Kim J.W., Cho Y.H., Kim J.C., Ahn J.K., Kim K.E., Choi I. Pseudomonas aeruginosa eliminates natural killer cells via phagocytosis-induced apoptosis. PLoS Pathog., 2009, vol. 5, no. 8: e1000561. doi: 10.1371/journal.ppat.1000561
  24. Cimpean M., Cooper M.A. Metabolic regulation of NK cell antiviral functions during cytomegalovirus infection. J. Leuk. Biol., 2023, vol. 113, no. 5, pp. 525–534. doi: 10.1093/jleuko/qiad018
  25. Comin F., Speziali E., Martins-Filho O.A., Caldas I.R., Moura V., Gazzinelli A., Correa-Oliveira R., Faria A.M.C. Ageing and Toll-like receptor expression by innate immune cells in chronic human schistosomiasis. Clin. Exp. Immunol., 2007, vol. 149, no. 2, pp. 274–284. doi: 10.1111/j.1365-2249.2007.03403.x
  26. Cong Y., Yang S., Rao X. Vancomycin resistant Staphylococcus aureus infections: a review of case updating and clinical features. J. Adv. Res., 2020, vol. 21, pp. 169–176. doi: 10.1016/j.jare.2019.10.005
  27. Coombs G.W., Daley D.A., Thin Lee Y., Pang S., Pearson J.C., Robinson J.O., Johnson P.D., Kotsanas D., Bell J.M., Turnidge J.D., Australian Group on Antimicrobial R. Australian Group on Antimicrobial Resistance Australian Enterococcal Sepsis Outcome Programme annual report, 2014. Commun. Dis. Intell. Q Rep., 2016, vol. 40, no. 2, pp. E236–E243.
  28. Cortez V.S., Fuchs A., Cella M., Gilfillan S., Colonna M. Cutting edge: salivary gland NK cells develop independently of Nfil3 in steady-state. J. Immunol., 2014, vol. 192, no. 10, pp. 4487–4491. doi: 10.4049/jimmunol.1303469
  29. Dadashi M., Hajikhani B., Darban-Sarokhalil D., van Belkum A., Goudarzi M. Mupirocin resistance in Staphylococcus aureus: a systematic review and meta-analysis. J. Glob. Antimicrob. Resist., 2020, vol. 20, pp. 238–247. doi: 10.1016/j.jgar.2019.07.032
  30. Davin-Regli A., Lavigne J.P., Pages J.M. Enterobacter spp.: update on taxonomy, clinical aspects, and emerging antimicrobial resistance. Clin. Microbiol. Rev., 2019, vol. 32, no. 4: e00002-19. doi: 10.1128/CMR.00002-19
  31. De Oliveira D.M.P., Forde B.M., Phan M.-D., Steiner B., Zhang B., Zuegg J., El-deeb I.M., Li G., Keller N., Brouwer S., Harbison-Price N., Cork A.J., Bauer M.J., Alquethamy S.F., Beatson S.A., Roberts J.A., Paterson D.L., McEwan A.G., Blaskovich M.A.T., Schembri M.A., McDevitt C.A., von Itzstein M., Walker M.J., Ballard J.D. Rescuing tetracycline class antibiotics for the treatment of multidrug-resistant Acinetobacter baumannii pulmonary infection. mBio, 2022, vol. 13, no. 1: e0351721. doi: 10.1128/mbio.03517-21
  32. Devi C.A., Ranjani A., Dhanasekaran D., Thajuddin N., Ramanidevi T. Surveillance of multidrug resistant bacteria pathogens from female infertility cases. Afr. J. Biotechnol., 2013, vol. 12, no. 26, pp. 4129–4134. doi: 10.5897/AJB2013.12507
  33. Dons’koi B.V., Chernyshov V.P., Sirenko V.Y., Strelko G.V., Osypchuk D.V. Peripheral blood natural killer cells activation status determined by CD69 upregulation predicts implantation outcome in IVF. Immunobiology, 2014, vol. 219, no. 3, pp. 167–171. doi: 10.1016/j.imbio.2013.09.002
  34. Ebbo M., Gérard L., Carpentier S., Vély F., Cypowyj S., Farnarier C., Vince N., Malphettes M., Fieschi C., Oksenhendler E., Schleinitz N., Vivier E. Low circulating natural killer cell counts are associated with severe disease in patients with common variable immunodeficiency. EBioMedicine, 2016, vol. 6, pp. 222–230. doi: 10.1016/j.ebiom.2016.02.025
  35. Eckert L.O., Moore D.E., Patton D.L., Agnew K.J., Eschenbach D.A. Relationship of vaginal bacteria and inflammation with conception and early pregnancy loss following in-vitro fertilization. Infect. Dis. Obstet. Gynecol., 2003, vol. 11, no. 1, pp. 11–17. doi: 10.1155/S1064744903000024
  36. El Zowalaty M.E., Al Thani A.A., Webster T.J., El Zowalaty A.E., Schweizer H.P., Nasrallah G.K., Marei H.E., Ashour H.M. Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiol., 2015, vol. 10, no. 10, pp. 1683–706. doi: 10.2217/fmb.15.48
  37. Enright M.C., Robinson D.A., Randle G., Feil E.J., Grundmann H., Spratt B.G. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc. Natl Acad. Sci. USA, 2002, vol. 99, no. 11, pp. 7687–7692. doi: 10.1073/pnas.122108599
  38. Eriksson M., Meadows S.K., Basu S., Mselle T.F., Wira C.R., Sentman C.L. TLRs mediate IFN-gamma production by human uterine NK cells in endometrium. J. Immunol., 2006, vol. 176, no. 10, pp. 6219–6224. doi: 10.4049/jimmunol.176.10.6219
  39. Feasey N.A., Garner P., Hamer D.H., Dramowski A., van Ginneken N., Musicha P., Lester R. Prevalence and outcome of bloodstream infections due to third-generation cephalosporin-resistant Enterobacteriaceae in sub-Saharan Africa: a systematic review. J. Antimicrob. Chemother., 2020, vol. 75, no. 3, pp. 492–507. doi: 10.1093/jac/dkz464
  40. Fu Q., Maniar A., Quevedo Diaz M., Chapoval A.I., Medvedev A.E. Activation of cytokine-producing and antitumor activities of natural killer cells and macrophages by engagement of Toll-like and NOD-like receptors. Innate Immunity, 2010, vol. 17, no. 4, pp. 375–387. doi: 10.1177/1753425910372000
  41. Fukui A., Funamizu A., Fukuhara R., Shibahara H. Expression of natural cytotoxicity receptors and cytokine production on endometrial natural killer cells in women with recurrent pregnancy loss or implantation failure, and the expression of natural cytotoxicity receptors on peripheral blood natural killer cells in pregnant women with a history of recurrent pregnancy loss. J. Obstet. Gynaecol. Res., 2017, vol. 43, no. 11, pp. 1678–1686. doi: 10.1111/jog.13448
  42. Gan L., Yan C., Cui J., Xue G., Fu H., Du B., Zhao H., Feng J., Feng Y., Fan Z., Mao P., Fu T., Xu Z., Du S., Liu S., Zhang R., Zhang Q., Li N., Cui X., Li X., Zhou Y., Huang L., Yuan J., Teo J.W.P. Genetic diversity and pathogenic features in Klebsiella pneumoniae isolates from patients with pyogenic liver abscess and pneumonia. Microbiol. Spectr., 2022, vol. 10, no. 2: e0264621. doi: 10.1128/spectrum.02646-21
  43. Gao W., Howden B.P., Stinear T.P. Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen. Curr. Opin. Microbiol., 2018, vol. 41, pp. 76–82. doi: 10.1016/j.mib.2017.11.030
  44. García-Laorden M.I., Stroo I., Blok D.C., Florquin S., Medema J.P., de Vos A.F., van der Poll T. Granzymes A and B regulate the local inflammatory response during Klebsiella pneumoniae pneumonia. J. Innate Immun., 2016, vol. 8, no. 3, pp. 258–268. doi: 10.1159/000443401
  45. Girardin S.E., Tournebize R., Mavris M., Page A.L., Li X., Stark G.R., Bertin J., DiStefano P.S., Yaniv M., Sansonetti P.J., Philpott D.J. CARD4/Nod1 mediates NF-κB and JNK activation by invasive Shigella flexneri. EMBO Rep., 2001, vol. 2, no. 8, pp. 736–742. doi: 10.1093/embo-reports/kve155
  46. Giuliani E., Parkin K.L., Lessey B.A., Young S.L., Fazleabas A.T. Characterization of uterine NK cells in women with infertility or recurrent pregnancy loss and associated endometriosis. Am. J. Reprod. Immunol., 2014, vol. 72, no. 3, pp. 262–269. doi: 10.1111/aji.12259
  47. Goldenson B.H., Zhu H., Wang Y.M., Heragu N., Bernareggi D., Ruiz-Cisneros A., Bahena A., Ask E.H., Hoel H.J., Malmberg K.-J., Kaufman D.S. Umbilical cord blood and iPSC-derived natural killer cells demonstrate key differences in cytotoxic activity and KIR profiles. Front. Immunol., 2020, vol. 11, no. doi: 10.3389/fimmu.2020.561553
  48. Gorrie C., Higgs C., Carter G., Stinear T.P., Howden B. Genomics of vancomycin-resistant Enterococcus faecium. Microb. Genom., 2019, vol. 5, no. 7: e000283. doi: 10.1099/mgen.0.000283
  49. Graham C.H., Lysiak J.J., McCrae K.R., Lala P.K. Localization of transforming growth factor-beta at the human fetal-maternal interface: role in trophoblast growth and differentiation. Biol. Reprod., 1992, vol. 46, no. 4, pp. 561–572. doi: 10.1095/biolreprod46.4.561
  50. Grebenkina P.V., Mikhailova V.A., Oshkolova A.A., Vershinina S.O., Dukhinova M.S., Bazhenov D.O., Selkov S.A., Sokolov D.I. Decidual natural killer cells and trophoblast cells: cellular, humoral and molecular mechanisms of interaction. Medical Immunology (Russia), 2022, vol. 24, no. 6, pp. 1085–1108. doi: 10.15789/1563-0625-dnk-2540
  51. Groslambert M., Py B. Spotlight on the NLRP3 inflammasome pathway. J. Inflam. Res., 2018, vol. 11, pp. 359–374. doi: 10.2147/jir.S141220
  52. Guan Z., Liu Y., Liu C., Wang H., Feng J., Yang G. Staphylococcus aureus β-hemolysin up-regulates the expression of IFN-γ by human CD56bright NK сells. Front. Cell. Infect. Microbiol., 2021, vol. 11 : 658141. doi: 10.3389/fcimb.2021.658141
  53. Halabian R., Jahangiri A., Sedighian H., Behzadi E., Fooladi A.A.I. Staphylococcal enterotoxin B as DNA vaccine against breast cancer in a murine model. Int. Microbiol., 2023: pp. 1–11. doi: 10.1007/s10123-023-00348-y
  54. Haller D., Clements J.D., Blum S., Bode C., Hammes W.P., Schiffrin E.J. Activation of human peripheral blood mononuclear cells by nonpathogenic bacteria in vitro: evidence of NK cells as primary targets. Infect. Immun., 2000, vol. 68, no. 2, pp. 752–759. doi: 10.1128/iai.68.2.752-759.2000
  55. Han C., Li H., Han L., Wang C., Yan Y., Qi W., Fan A., Wang Y., Xue F. Aerobic vaginitis in late pregnancy and outcomes of pregnancy. Eur. J. Clin. Microbiol. Infect. Dis., 2019, vol. 38, no. 2, pp. 233–239. doi: 10.1007/s10096-018-3416-2
  56. Hart O.M., Athie-Morales V., O’Connor G.M., Gardiner C.M. TLR7/8-mediated activation of human NK cells results in accessory cell-dependent IFN-γ production. J. Immunol., 2005, vol. 175, no. 3, pp. 1636–1642. doi: 10.4049/jimmunol.175.3.1636
  57. Hayakawa Y., Screpanti V., Yagita H., Grandien A., Ljunggren H.-G., Smyth M.J., Chambers B.J. NK cell TRAIL eliminates immature dendritic cells in vivo and limits dendritic cell vaccination efficacy. J. Immunol., 2004, vol. 172, no. 1, pp. 123–129. doi: 10.4049/jimmunol.172.1.123
  58. He S., Chu J., Wu L.-C., Mao H., Peng Y., Alvarez-Breckenridge C.A., Hughes T., Wei M., Zhang J., Yuan S., Sandhu S., Vasu S., Benson D.M., C. Hofmeister C., He X., Ghoshal K., Devine S.M., Caligiuri M.A., Yu J. MicroRNAs activate natural killer cells through Toll-like receptor signaling. Blood, 2013, vol. 121, no. 23, pp. 4663–4671. doi: 10.1182/blood-2012-07-441360
  59. He T., Tang C., Xu S., Moyana T., Xiang J. Interferon gamma stimulates cellular maturation of dendritic cell line DC2.4 leading to induction of efficient cytotoxic T cell responses and antitumor immunity. Cell. Mol. Immunol., 2007, vol. 4, no. 2, pp. 105–111.
  60. Hoffmann S.C., Cohnen A., Ludwig T., Watzl C. 2B4 engagement mediates rapid LFA-1 and actin-dependent NK cell adhesion to tumor cells as measured by single cell force spectroscopy. J. Immunol., 2011, vol. 186, no. 5, pp. 2757–2764. doi: 10.4049/jimmunol.1002867
  61. Hou F., Peng L., Jiang J., Chen T., Xu D., Huang Q., Ye C., Peng Y., Hu D.-L., Fang R. ATP facilitates ыtaphylococcal enterotoxin O шnduced neutrophil IL-1β secretion via NLRP3 inflammasome dependent pathways. Front. Immunol., 2021, vol. 12: 649235. doi: 10.3389/fimmu.2021.649235
  62. Huang Y., Rana A.P., Wenzler E., Ozer E.A., Krapp F., Bulitta J.B., Hauser A.R., Bulman Z.P. Aminoglycoside-resistance gene signatures are predictive of aminoglycoside MICs for carbapenem-resistant Klebsiella pneumoniae. J. Antimicrob. Chemother., 2022, vol. 77, no. 2, pp. 356–363. doi: 10.1093/jac/dkab381
  63. Huebner J., Fischetti V.A., Wang Y., Krueger W.A., Madoff L.C., Martirosian G., Boisot S., Goldmann D.A., Kasper D.L., Tzianabos A.O., Pier G.B. isolation and chemical characterization of a capsular polysaccharide antigen shared by clinical isolates of Enterococcus faecalis and vancomycin-resistant Enterococcus faecium. Infect. Immun., 1999, vol. 67, no. 3, pp. 1213–1219. doi: 10.1128/iai.67.3.1213-1219.1999
  64. Ivin M., Dumigan A., de Vasconcelos F.N., Ebner F., Borroni M., Kavirayani A., Przybyszewska K.N., Ingram R.J., Lienenklaus S., Kalinke U., Stoiber D., Bengoechea J.A., Kovarik P. Natural killer cell-intrinsic type I IFN signaling controls Klebsiella pneumoniae growth during lung infection. PLoS Pathog., 2017, vol. 13, no. 11: e1006696. doi: 10.1371/journal.ppat.1006696
  65. Jabbari Shiadeh S.M., Pormohammad A., Hashemi A., Lak P. Global prevalence of antibiotic resistance in blood-isolated Enterococcus faecalis and Enterococcus faecium: a systematic review and meta-analysis. Infect. Drug. Resist., 2019, vol. 12, pp. 2713–2725. doi: 10.2147/IDR.S206084
  66. Jiang W., Li X., Wen M., Liu X., Wang K., Wang Q., Li Y., Zhou M., Liu M., Hu B., Zeng H. Increased percentage of PD-L1+ natural killer cells predicts poor prognosis in sepsis patients: a prospective observational cohort study. Crit. Care, 2020, vol. 24, no. 1: 617. doi: 10.1186/s13054-020-03329-z
  67. Jiao L., Gao X., Joyee A.G., Zhao L., Qiu H., Yang M., Fan Y., Wang S., Yang X. NK cells promote type 1 T cell immunity through modulating the function of dendritic cells during intracellular bacterial infection. J. Immunol., 2011, vol. 187, no. 1, pp. 401–411. doi: 10.4049/jimmunol.1002519
  68. Joji R., Al Rashed N., Saeed N., Bindayna K. Detection of overexpression of efflux pump expression in fluoroquinolone-resistant Pseudomonas aeruginosa isolates. Int. J. Appl. Basic. Med. Res., 2020, vol. 10, no. 1, pp. 37-42. doi: 10.4103/ijabmr.IJABMR_90_19
  69. Kamoshida G., Akaji T., Takemoto N., Suzuki Y., Sato Y., Kai D., Hibino T., Yamaguchi D., Kikuchi-Ueda T., Nishida S., Unno Y., Tansho-Nagakawa S., Ubagai T., Miyoshi-Akiyama T., Oda M., Ono Y. Lipopolysaccharide-deficient Acinetobacter baumannii due to colistin resistance is killed by neutrophil-produced lysozyme. Front. Microbiol., 2020, vol. 11, no. doi: 10.3389/fmicb.2020.00573
  70. Kanter J., Gordon S.M., Mani S., Sokalska A., Park J.Y., Senapati S., Huh D.D., Mainigi M. Hormonal stimulation reduces numbers and impairs function of human uterine natural killer cells during implantation. Hum Reprod., 2023, vol. 38, no. 6, pp. 1047–1059. doi: 10.1093/humrep/dead069
  71. Khalifa S.M., Abd El-Aziz A.M., Hassan R., Abdelmegeed E.S. β-lactam resistance associated with β-lactamase production and porin alteration in clinical isolates of E. coli and K. pneumoniae. PLoS One, 2021, vol. 16, no.5: e0251594. doi: 10.1371/journal.pone.0251594
  72. Kathirvel S., Mani M., Gopala Krishnan G.K., Sethumadhavan A., Vijayalakshmi T., Ponnan S.M., Hanna L.E., Mathaiyan M. Molecular characterization of Enterococcus faecalis isolates from urinary tract infection and interaction between Enterococcus faecalis encountered Dendritic and Natural Killer cells. Microb. Pathog., 2020, vol. 140: 103944. doi: 10.1016/j.micpath.2019.103944
  73. Kaya E., Grassi L., Benedetti A., Maisetta G., Pileggi C., Di Luca M., Batoni G., Esin S. In vitro interaction of Pseudomonas aeruginosa biofilms with human peripheral blood mononuclear cells. Front. Cell. Infect. Microbiol., 2020, vol. 10: 187. doi: 10.3389/fcimb.2020.00187
  74. Khalili Y., Yekani M., Goli H.R., Memar M.Y. Characterization of carbapenem-resistant but cephalosporin-susceptible Pseudomonas aeruginosa. Acta Microbiol Immunol Hung., 2019, vol. 66, no. 4, pp. 529–540. doi: 10.1556/030.66.2019.036
  75. Khanmohammadi S., Rezaei N. CAR-NK cells: a promising cellular immunotherapy in lymphoma. Expert Opin. Biol. Ther., 2022, vol. 23, no. 1, pp. 37–47. doi: 10.1080/14712598.2022.2154601
  76. Kim B., Wang Y.-C., Hespen C.W., Espinosa J., Salje J., Rangan K.J., Oren D.A., Kang J.Y., Pedicord V.A., Hang H.C. Enterococcus faecium secreted antigen A generates muropeptides to enhance host immunity and limit bacterial pathogenesis. eLife, 2019, vol. 8: e45343. doi: 10.7554/eLife.45343
  77. Klimpel G.R., Niesel D.W., Klimpel K.D. Natural cytotoxic effector cell activity against Shigella flexneri-infected HeLa cells. J. Immunol., 1986, vol. 136, no. 3, pp. 1081–1086.
  78. Kopcow H.D., Allan D.S., Chen X., Rybalov B., Andzelm M.M., Ge B., Strominger J.L. Human decidual NK cells form immature activating synapses and are not cytotoxic. Proc. Natl Acad. Sci. USA, 2005, vol. 102, no. 43, pp. 15563–15568.
  79. Korenevsky A.V., Shcherbitskaia A.D., Berezkina M.E., Markova K.L., Alexandrova E.P., Balabas O.A., Selkov S.A., Sokolov D.I. MALDI-TOF mass spectrometric protein profiling of microvesicles produced by the NK-92 natural killer cell line. Medical Immunology (Russia), 2020, vol. 22, no. 4, pp. 633–646. doi: 10.15789/1563-0625-MMS-1976
  80. Kuon R.J., Togawa R., Vomstein K., Weber M., Goeggl T., Strowitzki T., Markert U.R., Zimmermann S., Daniel V., Dalpke A.H., Toth B. Higher prevalence of colonization with Gardnerella vaginalis and gram-negative anaerobes in patients with recurrent miscarriage and elevated peripheral natural killer cells. J. Reproduct. Immunol., 2017, vol. 120, pp. 15–19. doi: 10.1016/j.jri.2017.03.001
  81. Kussmann M., Karer M., Obermueller M., Schmidt K., Barousch W., Moser D., Nehr M., Ramharter M., Poeppl W., Makristathis A., Winkler S., Thalhammer F., Burgmann H., Lagler H. Emergence of a dalbavancin induced glycopeptide/lipoglycopeptide non-susceptible Staphylococcus aureus during treatment of a cardiac device-related endocarditis. Emerg. Microbes. Infect., 2018, vol. 7, no. 1: 202. doi: 10.1038/s41426-018-0205-z
  82. Lash G.E., Otun H.A., Innes B.A., Kirkley M., De Oliveira L., Searle R.F., Robson S.C., Bulmer J.N. Interferon-gamma inhibits extravillous trophoblast cell invasion by a mechanism that involves both changes in apoptosis and protease levels. FASEB J., 2006, vol. 20, no. 14, pp. 2512–2518. doi: 10.1096/fj.06-6616com
  83. Leavis H.L., Bonten M.J., Willems R.J. Identification of high-risk enterococcal clonal complexes: global dispersion and antibiotic resistance. Curr. Opin. Microbiol., 2006, vol. 9, no. 5, pp. 454–460. doi: 10.1016/j.mib.2006.07.001
  84. Lee B.C., Kim M.S., Pae M., Yamamoto Y., Eberlé D., Shimada T., Kamei N., Park H.S., Sasorith S., Woo J.R., You J., Mosher W., Brady H.J., Shoelson S.E., Lee J. Adipose natural killer cells regulate adipose tissue macrophages to promote insulin resistance in obesity. Cell Metabolism, 2016, vol. 23, no. 4, pp. 685–698. doi: 10.1016/j.cmet.2016.03.002
  85. Lee V.T., Feehan D.D., Jamil K., Polyak M.J., Ogbomo H., Hasell M., Li S.S., Xiang R.F., Parkins M., Trapani J.A., Harrison J.J., Mody C.H. Natural killer cells kill extracellular Pseudomonas aeruginosa using contact-dependent release of granzymes B and H. PLoS Pathog., 2022, vol. 18, no. 2: e1010325. doi: 10.1371/journal.ppat.1010325
  86. Li P., Sheng Q., Huang L.C., Turner J.H. Epithelial innate immune response to Pseudomonas aeruginosa-derived flagellin in chronic rhinosinusitis. Int Forum Allergy Rhinol., 2023. doi: 10.1002/alr.23164
  87. Librach C.L., Feigenbaum S.L., Bass K.E., Cui T.Y., Verastas N., Sadovsky Y., Quigley J.P., French D.L., Fisher S.J. Interleukin-1 beta regulates human cytotrophoblast metalloproteinase activity and invasion in vitro. J. Biol. Chem., 1994, vol. 269, no. 25, pp. 17125–17131.
  88. Liesenborghs L., Meyers S., Lox M., Criel M., Claes J., Peetermans M., Trenson S., Vande Velde G., Vanden Berghe P., Baatsen P., Missiakas D., Schneewind O., Peetermans W.E., Hoylaerts M.F., Vanassche T., Verhamme P. Staphylococcus aureus endocarditis: distinct mechanisms of bacterial adhesion to damaged and inflamed heart valves. Eur. Heart J., 2019, vol. 40, no. 39, pp. 3248–3259. doi: 10.1093/eurheartj/ehz175
  89. Liu F.-T., Yang S., Yang Z., Zhou P., Peng T., Yin J., Ye Z., Shan H., Yu Y., Li R., Auchtung J.M. An altered microbiota in the lower and upper female reproductive tract of women with recurrent spontaneous abortion. Microbiol. Spectr., 2022, vol. 10, no. 3: e0046222 10.1128/spectrum.00462-22
  90. Liu Z.-Y., Yang H.-L., Wei C.-Y., Cai G.-H., Ye J.-D., Zhang C.-X., Sun Y.-Z. Commensal Bacillus siamensis LF4 induces antimicrobial peptides expression via TLRs and NLRs signaling pathways in intestinal epithelial cells of Lateolabrax maculatus. Fish Shellfish Immunol., 2023, vol. 134: 108634. doi: 10.1016/j.fsi.2023.108634
  91. Lotzová E., Herberman R. Immunobiology of natural killer cells. Boca Raton, 2019. doi: 10.1201/9780429288364
  92. Louis E., Galloway-Peña J., Roh J.H., Latorre M., Qin X., Murray B.E. Genomic and SNP analyses demonstrate a distant separation of the hospital and community-associated clades of Enterococcus faecium. PLoS One, 2012, vol. 7, no. 1: e30187. doi: 10.1371/journal.pone.0030187
  93. Lowy F.D. Antimicrobial resistance: the example of Staphylococcus aureus. J. Clin. Invest., 2003, vol. 111, no. 9, pp. 1265–1273. doi: 10.1172/JCI18535
  94. Luger T.A., Krutmann J., Kirnbauer R., Urbanski A., Schwarz T., Klappacher G., Kock A., Micksche M., Malejczyk J., Schauer E., et al. IFN-beta 2/IL-6 augments the activity of human natural killer cells. J. Immunol., 1989, vol. 143, no. 4, pp. 1206–1209.
  95. Mace E.M., Dongre P., Hsu H.T., Sinha P., James A.M., Mann S.S., Forbes L.R., Watkin L.B., Orange J.S. Cell biological steps and checkpoints in accessing NK cell cytotoxicity. Immunol. Cell. Biol., 2014, vol. 92, no. 3, pp. 245–255. doi: 10.1038/icb.2013.96
  96. Mammina C., Bonura C., di Carlo P., Calà C., Aleo A., Monastero R., Palma D.M. Daptomycin non-susceptible, vancomycin intermediate methicillin-resistant Staphylococcus aureus ST398 from a chronic leg ulcer, Italy. Scand. J. Infect. Dis., 2010, vol. 42, no. 11–12, pp. 955–957. doi: 10.3109/00365548.2010.524662
  97. Manaster I., Mizrahi S., Goldman-Wohl D., Sela H.Y., Stern-Ginossar N., Lankry D., Gruda R., Hurwitz A., Bdolah Y., Haimov-Kochman R., Yagel S., Mandelboim O. Endometrial NK cells are special immature cells that await pregnancy. J. Immunol., 2008, vol. 181, no. 3, pp. 1869–1876. doi: 10.4049/jimmunol.181.3.1869
  98. Markovska R., Stoeva T., Dimitrova D., Boyanova L., Stankova P., Mihova K., Mitov I. Quinolone resistance mechanisms among third-generation cephalosporin resistant isolates of Enterobacter spp. in a Bulgarian university hospital. Infect. Drug Resist., 2019, vol. 12, pp. 1445–1455. doi: 10.2147/idr.S204199
  99. Mateos M., Hernández-García M., del Campo R., Martínez-García L., Gijón D., Morosini M.I., Ruiz-Garbajosa P., Cantón R. Emergence and persistence over time of carbapenemase-producing Enterobacter isolates in a Spanish University Hospital in Madrid, Spain (2005–2018). Microb. Drug Resist., 2021, vol. 27, no. 7, pp. 895–903. doi: 10.1089/mdr.2020.0265
  100. Matheeussen V., Xavier B.B., Mermans I., De Weerdt A., Lammens C., Goossens H., Jansens H., Malhotra-Kumar S. Emergence of colistin resistance during treatment of recurrent pneumonia caused by carbapenemase producing Klebsiella pneumoniae. Diagn. Microbiol. Infect. Dis., 2019, vol. 94, no. 4, pp. 407–409. doi: 10.1016/j.diagmicrobio.2019.02.014
  101. McConnell M.J., Actis L., Pachon J. Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol. Rev., 2013, vol. 37, no. 2, pp. 130–155. doi: 10.1111/j.1574-6976.2012.00344.x
  102. Meunier E., Broz P. Evolutionary convergence and divergence in NLR function and structure. Trends Immunol., 2017, vol. 38, no. 10, pp. 744–757. doi: 10.1016/j.it.2017.04.005
  103. Michałkiewicz J., Stachowski J., Barth C., Patzer J., Dzierżanowska D., Madaliński K. Effect of Pseudomonas aeruginosa exotoxin A on IFN-γ synthesis: expression of costimulatory molecules on monocytes and activity of NK cells. Immunol. Lett., 1999, vol. 69, no. 3, pp. 359–366. doi: 10.1016/s0165-2478(99)00121-2
  104. Mikhailova V., Grebenkina P., Khokhlova E., Davydova A., Salloum Z., Tyshchuk E., Zagainova V., Markova K., Kogan I., Selkov S., Sokolov D. Pro- and anti-inflammatory cytokines in the context of NK cell-trophoblast interactions. Int. J. Mol. Sci., 2022, vol. 23, no. 4: 2387. doi: 10.3390/ijms23042387
  105. Mikhailova V., Khokhlova E., Grebenkina P., Salloum Z., Nikolaenkov I., Markova K., Davidova A., Selkov S., Sokolov D. NK-92 cells change their phenotype and function when cocultured with IL-15, IL-18 and trophoblast cells. Immunobiology, 2021, vol. 226, no. 5: 152125. doi: 10.1016/j.imbio.2021.152125
  106. Mirandola P., Ponti C., Gobbi G., Sponzilli I., Vaccarezza M., Cocco L., Zauli G., Secchiero P., Manzoli F.A., Vitale M. Activated human NK and CD8+ T cells express both TNF-related apoptosis-inducing ligand (TRAIL) and TRAIL receptors but are resistant to TRAIL-mediated cytotoxicity. Blood, 2004, vol. 104, no. 8, pp. 2418–2424. doi: 10.1182/blood-2004-04-1294
  107. Mohd Sazlly Lim S., Zainal Abidin A., Liew S.M., Roberts J.A., Sime F.B. The global prevalence of multidrug-resistance among Acinetobacter baumannii causing hospital-acquired and ventilator-associated pneumonia and its associated mortality: a systematic review and meta-analysis. J. Infect., 2019, vol. 79, no. 6, pp. 593–600. doi: 10.1016/j.jinf.2019.09.012
  108. Molgora M., Cortez V.S., Colonna M. Killing the invaders: NK cell impact in tumors and anti-tumor therapy. Cancers (Basel), 2021, vol. 13, no. 4. doi: 10.3390/cancers13040595
  109. Montaldo E., Del Zotto G., Della Chiesa M., Mingari M.C., Moretta A., De Maria A., Moretta L. Human NK cell receptors/markers: a tool to analyze NK cell development, subsets and function. Cytometry A, 2013, vol. 83, no. 8, pp. 702–713. doi: 10.1002/cyto.a.22302
  110. Mourenza Á., Gil J.A., Mateos L.M., Letek M. Novel treatments and preventative strategies against food-poisoning caused by Staphylococcal species. Pathogens, 2021, vol. 10, no. 2: 91. doi: 10.3390/pathogens10020091
  111. Mulani M.S., Kamble E.E., Kumkar S.N., Tawre M.S., Pardesi K.R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front. Microbiol., 2019, vol. 10: 539. doi: 10.3389/fmicb.2019.00539
  112. Naveed M., Jabeen K., Naz R., Mughal M.S., Rabaan A.A., Bakhrebah M.A., Alhoshani F.M., Aljeldah M., Shammari B.R.A., Alissa M., Sabour A.A., Alaeq R.A., Alshiekheid M.A., Garout M., Almogbel M.S., Halwani M.A., Turkistani S.A., Ahmed N. Regulation of host immune response against Enterobacter cloacae proteins via computational mRNA vaccine design through transcriptional modification. Microorganisms, 2022, vol. 10, no. 8: 1621. doi: 10.3390/microorganisms10081621
  113. Nelson D.B., Hanlon A.L., Wu G., Liu C., Fredricks D.N. First trimester levels of BV-associated bacteria and risk of miscarriage among women early in pregnancy. Matern. Child Health J., 2015, vol. 19, no. 12, pp. 2682–2687. doi: 10.1007/s10995-015-1790-2
  114. Opoku-Temeng C., Kobayashi S.D., DeLeo F.R. Klebsiella pneumoniae capsule polysaccharide as a target for therapeutics and vaccines. Comput. Struct. Biotechnol. J., 2019, vol. 17, pp. 1360–1366. doi: 10.1016/j.csbj.2019.09.011
  115. Orfali R.L., Yoshikawa F.S.Y., Oliveira L.M.D.S., Pereira N.Z., de Lima J.F., Ramos Y.Á.L., Duarte A.J.D.S., Sato M.N., Aoki V. Staphylococcal enterotoxins modulate the effector CD4+ T cell response by reshaping the gene expression profile in adults with atopic dermatitis. Sci. Rep., 2019, vol. 9, no. 1: 13082. doi: 10.1038/s41598-019-49421-5
  116. Otun H.A., Lash G.E., Innes B.A., Bulmer J.N., Naruse K., Hannon T., Searle R.F., Robson S.C. Effect of tumour necrosis factor-α in combination with interferon-γ on first trimester extravillous trophoblast invasion. J. Reproduct. Immunol., 2011, vol. 88, no. 1, pp. 1–11. doi: 10.1016/j.jri.2010.10.003
  117. Parodi M., Favoreel H., Candiano G., Gaggero S., Sivori S., Mingari M.C., Moretta L., Vitale M., Cantoni C. NKp44-NKp44 ligand interactions in the regulation of natural killer cells and other innate lymphoid cells in humans. Front. Immunol., 2019, vol. 10: 719. doi: 10.3389/fimmu.2019.00719
  118. Paul S., Lal G. the molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front. Immunol., 2017, vol. 8: 1124. doi: 10.3389/fimmu.2017.01124
  119. Pechere J.C., Kohler T. Patterns and modes of beta-lactam resistance in Pseudomonas aeruginosa. Clin. Microbiol. Infect., 1999, vol. 5, suppl. 1, pp. S15–S18. doi: 10.1111/j.1469-0691.1999.tb00719.x
  120. Pedersen B.K., Kharazmi A. Inhibition of human natural killer cell activity by Pseudomonas aeruginosa alkaline protease and elastase. Infect. Immun., 1987, vol. 55, no. 4, pp. 986–989. doi: 10.1128/iai.55.4.986-989.1987
  121. Peng H., Wisse E., Tian Z. Liver natural killer cells: subsets and roles in liver immunity. Cell. Mol. Immunol., 2015, vol. 13, no. 3, pp. 328–336. doi: 10.1038/cmi.2015.96
  122. Peri F., Piazza M., Calabrese V., Damore G., Cighetti R. Exploring the LPS/TLR4 signal pathway with small molecules. Biochem. Soc. Trans., 2010, vol. 38, no. 5, pp. 1390–1395. doi: 10.1042/bst0381390
  123. Pfaller M.A., Cormican M., Flamm R.K., Mendes R.E., Jones R.N. Temporal and geographic variation in antimicrobial susceptibility and resistance patterns of Enterococci: results from the SENTRY antimicrobial surveillance program, 1997–2016. Open Forum Infect. Dis., 2019, vol. 6, suppl. 1, pp. S54–S62. doi: 10.1093/ofid/ofy344
  124. Prince A., Lacey K.A., Mulcahy M.E., Towell A.M., Geoghegan J.A., McLoughlin R.M. Clumping factor B is an important virulence factor during Staphylococcus aureus skin infection and a promising vaccine target. PLoS Pathog., 2019, vol. 15, no. 4: e1007713. doi: 10.1371/journal.ppat.1007713
  125. Prutsch N., Fock V., Haslinger P., Haider S., Fiala C., Pollheimer J., Knofler M. The role of interleukin-1beta in human trophoblast motility. Placenta, 2012, vol. 33, no. 9, pp. 696–703. doi: 10.1016/j.placenta.2012.05.008
  126. Quatrini L., Della Chiesa M., Sivori S., Mingari M.C., Pende D., Moretta L. Human NK cells, their receptors and function. Eur. J. Immunol., 2021, vol. 51, no. 7, pp. 1566–1579. doi: 10.1002/eji.202049028
  127. Rice L.B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J. Infect. Dis., 2008, vol. 197, no. 8, pp. 1079–1081. doi: 10.1086/533452
  128. Roussev R.G., Dons’koi B.V., Stamatkin C., Ramu S., Chernyshov V.P., Coulam C.B., Barnea E.R. Preimplantation factor inhibits circulating natural killer cell cytotoxicity and reduces CD69 expression: implications for recurrent pregnancy loss therapy. Reprod. Biomed. Online, 2013, vol. 26, no. 1, pp. 79–87. doi: 10.1016/j.rbmo.2012.09.017
  129. Salim F., Gunawan H., Suwarsa O., Sutedja E. Increased expression of Toll-Like Receptor (TLR) 2 and TLR6 on peripheral blood monocytes by induction of Staphylococcal enterotoxin B during exacerbation of atopic dermatitis patients. Clin. Cosmet. Investig. Dermatol., 2023, vol. 16, pp. 301–307. doi: 10.2147/ccid.S401815
  130. Salmanov A.G., Ishchak O.M., Shostak Y.M., Kozachenko V.V., Rud V.O., Golyanovskiy O.V., Shkorbotun V.O. Bacterial infection causes of pregnancy loss and premature birth in the women in Ukraine. Wiadomości Lekarskie, 2021, vol. 74, no. 6, pp. 1355–1359. doi: 10.36740/WLek202106113
  131. Schlievert P.M., Davis C.C. Device-associated menstrual toxic shock syndrome. Clin. Microbiol. Rev., 2020, vol. 33, no. 3: e00032-19. doi: 10.1128/cmr.00032-19
  132. Schönian G., Fernández-Figueroa E.A., Imaz-Rosshandler I., Castillo-Fernández J.E., Miranda-Ortíz H., Fernández-López J.C., Becker I., Rangel-Escareño C. Down-regulation of TLR and JAK/STAT pathway genes is associated with diffuse cutaneous leishmaniasis: a gene expression analysis in NK cells from patients infected with Leishmania mexicana. PLoS Negl. Trop. Dis., 2016, vol. 10, no. 3: e0004570. doi: 10.1371/journal.pntd.0004570
  133. Screpanti V., Wallin R.P.A., Grandien A., Ljunggren H.-G. Impact of FASL-induced apoptosis in the elimination of tumor cells by NK cells. Mol. Immunol., 2005, vol. 42, no. 4, pp. 495–499. doi: 10.1016/j.molimm.2004.07.033
  134. Shekhar S., Peng Y., Gao X., Joyee A.G., Wang S., Bai H., Zhao L., Yang J., Yang X. NK cells modulate the lung dendritic cell-mediated Th1/Th17 immunity during intracellular bacterial infection. Eur. J. Immunol., 2015, vol. 45, no. 10, pp. 2810–2820. doi: 10.1002/eji.201445390
  135. Singh S., Almuhanna Y., Alshahrani M.Y., Lowman D.W., Rice P.J., Gell C., Ma Z., Graves B., Jackson D., Lee K., Juarez R., Koranteng J., Muntaka S., Daniel A.M., da Silva A.C., Hussain F., Yilmaz G., Mastrotto F., Irie Y., Williams P., Williams D.L., Cámara M., Martinez-Pomares L. Carbohydrates from Pseudomonas aeruginosa biofilms interact with immune C-type lectins and interfere with their receptor function. NPJ Biofilms Microbiomes, 2021, vol. 7, no. 1: 87. doi: 10.1038/s41522-021-00257-w
  136. Sivori S., Vacca P., Del Zotto G., Munari E., Mingari M.C., Moretta L. Human NK cells: surface receptors, inhibitory checkpoints, and translational applications. Cell. Mol. Immunol., 2019, vol. 16, no. 5, pp. 430–441. doi: 10.1038/s41423-019-0206-4
  137. Slater C.L., Winogrodzki J., Fraile-Ribot P.A., Oliver A., Khajehpour M., Mark B.L. Adding insult to injury: mechanistic basis for how AmpC mutations allow Pseudomonas aeruginosa to accelerate cephalosporin hydrolysis and evade avibactam. Antimicrob. Agents. Chemother., 2020, vol. 64, no. 9: e00894-20. doi: 10.1128/aac.00894-20
  138. Small C.L., McCormick S., Gill N., Kugathasan K., Santosuosso M., Donaldson N., Heinrichs D.E., Ashkar A., Xing Z. NK cells play a critical protective role in host defense against acute extracellular Staphylococcus aureus bacterial infection in the lung. J. Immunol., 2008, vol. 180, no. 8, pp. 5558–5568. doi: 10.4049/jimmunol.180.8.5558
  139. Smoke S.M., Brophy A., Reveron S., Iovleva A., Kline E.G., Marano M., Miller L.P., Shields R.K. Evolution and transmission of Cefiderocol-resistant Acinetobacter baumannii during an outbreak in the burn intensive care unit. Clin. Infect. Dis., 2023, vol. 76, no. 3, pp. e1261–e1265. doi: 10.1093/cid/ciac647
  140. Sparo M., Delpech G., Batisttelli S., Basualdo J.Á. Immunomodulatory properties of cell wall extract from Enterococcus faecalis CECT7121. Braz. J. Infect. Dis., 2014, vol. 18, no. 5, pp. 551–555. doi: 10.1016/j.bjid.2014.05.005
  141. Stewart A.G., Paterson D.L., Young B., Lye D.C., Davis J.S., Schneider K., Yilmaz M., Dinleyici R., Runnegar N., Henderson A., Archuleta S., Kalimuddin S., Forde B.M., Chatfield M.D., Bauer M.J., Lipman J., Harris-Brown T., Harris P.N.A., Chia P.Y., Cross G., Somani J., Yan G. Meropenem versus piperacillin-tazobactam for definitive treatment of bloodstream infections caused by AmpC β-lactamase-producing Enterobacter spp., Citrobacter freundii, Morganella morganii, Providencia spp., or Serratia marcescens: a pilot multicenter randomized controlled trial (MERINO-2). Open Forum Infect. Dis., 2021, vol. 8, no. 8: ofab387. doi: 10.1093/ofid/ofab387
  142. Strateva T., Yordanov D. Pseudomonas aeruginosa — a phenomenon of bacterial resistance. J. Med. Microbiol., 2009, vol. 58, pt 9, pp. 1133–1148. doi: 10.1099/jmm.0.009142-0
  143. Sun J., Yang M., Ban Y., Gao W., Song B., Wang Y., Zhang Y., Shao Q., Kong B., Qu X. Tim-3 Is Upregulated in NK cells during early pregnancy and Inhibits NK cytotoxicity toward trophoblast in galectin-9 dependent pathway. PLoS One, 2016, vol. 11, no. 1: e0147186. doi: 10.1371/journal.pone.0147186
  144. Tacconelli E., Carrara E., Savoldi A., Harbarth S., Mendelson M., Monnet D.L., Pulcini C., Kahlmeter G., Kluytmans J., Carmeli Y., Ouellette M., Outterson K., Patel J., Cavaleri M., Cox E.M., Houchens C.R., Grayson M.L., Hansen P., Singh N., Theuretzbacher U., Magrini N., WHO Pathogens Priority List Working Group. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet. Infect. Dis., 2018, vol. 18, no. 3, pp. 318–327. doi: 10.1016/S1473-3099(17)30753-3
  145. Tallant T., Deb A., Kar N., Lupica J., de Veer M.J., DiDonato J.A. Flagellin acting via TLR5 is the major activator of key signaling pathways leading to NF-kappa B and proinflammatory gene program activation in intestinal epithelial cells. BMC Microbiol., 2004, vol. 4: 33. doi: 10.1186/1471-2180-4-33
  146. Tamma P.D., Aitken S.L., Bonomo R.A., Mathers A.J., van Duin D., Clancy C.J. Infectious Diseases Society of America Guidance on the Treatment of AmpC β-lactamase-producing enterobacterales, carbapenem-resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia infections. Clin. Infect. Dis., 2022, vol. 74, no. 12, pp. 2089–2114. doi: 10.1093/cid/ciab1013
  147. Tan H.X., Yang S.L., Li M.Q., Wang H.Y. Autophagy suppression of trophoblast cells induces pregnancy loss by activating decidual NK cytotoxicity and inhibiting trophoblast invasion. Cell. Commun. Signal., 2020, vol. 18, no. 1: 73. doi: 10.1186/s12964-020-00579-w
  148. Tarazona R., Lopez-Sejas N., Guerrero B., Hassouneh F., Valhondo I., Pera A., Sanchez-Correa B., Pastor N., Duran E., Alonso C., Solana R. Current progress in NK cell biology and NK cell-based cancer immunotherapy. Cancer. Immunol. Immunother., 2020, vol. 69, no. 5, pp. 879–899. doi: 10.1007/s00262-020-02532-9
  149. Tsuchiya T., Nakao N., Yamamoto S., Hirai Y., Miyamoto K., Tsujibo H. NK1.1(+) cells regulate neutrophil migration in mice with Acinetobacter baumannii pneumonia. Microbiol. Immunol., 2012, vol. 56, no. 2, pp. 107–116. doi: 10.1111/j.1348-0421.2011.00402.x
  150. Valore E.V., Park C.H., Quayle A.J., Wiles K.R., McCray P.B. Jr., Ganz T. Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J. Clin. Invest., 1998, vol. 101, no. 8, pp. 1633–1642. doi: 10.1172/JCI1861
  151. Van Elssen C.H., Vanderlocht J., Frings P.W., Senden-Gijsbers B.L., Schnijderberg M.C., van Gelder M., Meek B., Libon C., Ferlazzo G., Germeraad W.T., Bos G.M. Klebsiella pneumoniae-triggered DC recruit human NK cells in a CCR5-dependent manner leading to increased CCL19-responsiveness and activation of NK cells. Eur. J. Immunol., 2010, vol. 40, no. 11, pp. 3138–3149. doi: 10.1002/eji.201040496
  152. Vankayalapati R., Garg A., Porgador A., Griffith D.E., Klucar P., Safi H., Girard W.M., Cosman D., Spies T., Barnes P.F. Role of NK cell-activating receptors and their ligands in the lysis of mononuclear phagocytes infected with an intracellular bacterium. J. Immunol., 2005, vol. 175, no. 7, pp. 4611–4617. doi: 10.4049/jimmunol.175.7.4611
  153. Vankayalapati R., Wizel B., Weis S.E., Safi H., Lakey D.L., Mandelboim O., Samten B., Porgador A., Barnes P.F. The NKp46 receptor contributes to NK cell lysis of mononuclear phagocytes infected with an intracellular bacterium. J. Immunol., 2002, vol. 168, no. 7, pp. 3451–3457. doi: 10.4049/jimmunol.168.7.3451
  154. Veneziani I., Alicata C., Pelosi A., Landolina N., Ricci B., D’Oria V., Fagotti A., Scambia G., Moretta L., Maggi E. Toll-like receptor 8 agonists improve NK-cell function primarily targeting CD56(bright)CD16(–) subset. J. Immunother. Cancer, 2022, vol. 10, no. 1: e003385. doi: 10.1136/jitc-2021-003385
  155. Victor A.R., Weigel C., Scoville S.D., Chan W.K., Chatman K., Nemer M.M., Mao C., Young K.A., Zhang J., Yu J., Freud A.G., Oakes C.C., Caligiuri M.A. Epigenetic and Posttranscriptional Regulation of CD16 Expression during Human NK Cell Development. J. Immunol., 2018, vol. 200, no. 2, pp. 565–572. doi: 10.4049/jimmunol.1701128
  156. Viel S., Marcais A., Guimaraes F.S., Loftus R., Rabilloud J., Grau M., Degouve S., Djebali S., Sanlaville A., Charrier E., Bienvenu J., Marie J.C., Caux C., Marvel J., Town L., Huntington N.D., Bartholin L., Finlay D., Smyth M.J., Walzer T. TGF-beta inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci. Signal., 2016, vol. 9, no. 415: 19. doi: 10.1126/scisignal.aad1884
  157. Wang R., Jaw J.J., Stutzman N.C., Zou Z., Sun P.D. Natural killer cell-produced IFN-gamma and TNF-alpha induce target cell cytolysis through up-regulation of ICAM-1. J. Leukoc. Biol., 2012, vol. 91, no. 2, pp. 299–309. doi: 10.1189/jlb.0611308
  158. Wesselkamper S.C., Eppert B.L., Motz G.T., Lau G.W., Hassett D.J., Borchers M.T. NKG2D is critical for NK cell activation in host defense against Pseudomonas aeruginosa respiratory infection. J. Immunol., 2008, vol. 181, no. 8, pp. 5481–5489. doi: 10.4049/jimmunol.181.8.5481
  159. Wolf N.K., Kissiov D.U., Raulet D.H. Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nat. Rev. Immunol., 2022, vol. 23, no. 2, pp. 90–105. doi: 10.1038/s41577-022-00732-1
  160. Wu G., Zhu Q., Zeng J., Gu X., Miao Y., Xu W., Lv T., Song Y. Extracellular mitochondrial DNA promote NLRP3 inflammasome activation and induce acute lung injury through TLR9 and NF-κB. J. Thorac. Dis., 2019, vol. 11, no. 11, pp. 4816–4828. doi: 10.21037/jtd.2019.10.26
  161. Wu W., Wei L., Feng Y., Xie Y., Zong Z. Precise Species Identification by Whole-Genome Sequencing of Enterobacter Bloodstream Infection, China. Emerg. Infect. Dis., 2021, vol. 27, no. 1, pp. 161–169. doi: 10.3201/eid2701.190154
  162. Wu X., Jin L.P., Yuan M.M., Zhu Y., Wang M.Y., Li D.J. Human first-trimester trophoblast cells recruit CD56brightCD16– NK cells into decidua by way of expressing and secreting of CXCL12/stromal cell-derived factor 1. J. Immunol., 2005, vol. 175, no. 1, pp. 61–68. doi: 10.4049/jimmunol.175.1.61
  163. Xie X., Ma L., Zhou Y., Shen W., Xu D., Dou J., Shen B., Zhou C. Polysaccharide enhanced NK cell cytotoxicity against pancreatic cancer via TLR4/MAPKs/NF-κB pathway in vitro/vivo. Carbohydr. Polym., 2019, vol. 225: 115223. doi: 10.1016/j.carbpol.2019.115223
  164. Xu X., Weiss I.D., Zhang H.H., Singh S.P., Wynn T.A., Wilson M.S., Farber J.M. Conventional NK cells can produce IL-22 and promote host defense in Klebsiella pneumoniae pneumonia. J. Immunol., 2014, vol. 192, no. 4, pp. 1778–1786.
  165. Yang X., Yang Y., Yuan Y., Liu L., Meng T. The roles of uterine natural killer (NK) cells and KIR/HLA-C combination in the development of preeclampsia: a systematic review. Biomed. Res. Int., 2020, vol. 2020: 4808072. doi: 10.1155/2020/4808072
  166. Yang Y., Yin C., Pandey A., Abbott D., Sassetti C., Kelliher M.A. NOD2 pathway activation by MDP or Mycobacterium tuberculosis infection involves the stable polyubiquitination of Rip2. J. Biol. Chem., 2007, vol. 282, no. 50, pp. 36223–36229. doi: 10.1074/jbc.M703079200
  167. Yu J., Caligiuri M.A. Viral- and tumor-reactive natural killer cells. Semin. Immunol., 2023, vol. 67: 101749. doi: 10.1016/ j.smim.2023.101749
  168. Yu J., Wei M., Becknell B., Trotta R., Liu S., Boyd Z., Jaung M.S., Blaser B.W., Sun J., Benson D.M., Mao H., Yokohama A., Bhatt D., Shen L., Davuluri R., Weinstein M., Marcucci G., Caligiuri M.A. Pro- and antiinflammatory cytokine signaling: reciprocal antagonism regulates interferon-gamma production by human natural killer cells. Immunity, 2006, vol. 24, no. 5, pp. 575–590. doi: 10.1016/j.immuni.2006.03.016
  169. Zaghi E., Calvi M., Marcenaro E., Mavilio D., Di Vito C. Targeting NKG2A to elucidate natural killer cell ontogenesis and to develop novel immune-therapeutic strategies in cancer therapy. J. Leukoc. Biol., 2019, vol. 105, no. 6, pp. 1243–1251. doi: 10.1002/jlb.Mr0718-300r
  170. Zhang Y., Huang C., Lian R., Xu J., Fu Y., Zeng Y., Tu W. The low cytotoxic activity of peripheral blood NK cells may relate to unexplained recurrent miscarriage. Am. J. Reprod. Immunol., 2021, vol. 85, no. 6: e13388. doi: 10.1111/aji.13388
  171. Zheng Y., Valdez P.A., Danilenko D.M., Hu Y., Sa S.M., Gong Q., Abbas A.R., Modrusan Z., Ghilardi N., de Sauvage F.J., Ouyang W. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med., 2008, vol. 14, no. 3, pp. 282–289. doi: 10.1038/nm1720
  172. Zou M.Z., Liu W.L., Gao F., Bai X.F., Chen H.S., Zeng X., Zhang X.Z. Artificial natural killer cells for specific tumor inhibition and renegade macrophage re-education. Adv. Mater., 2019, vol. 31, no. 43: e1904495. doi: 10.1002/adma.201904495

Copyright (c) 2023 Grebenkina P.V., Selkov S.A., Kraeva L.А., Sokolov D.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies