Molecular and genetic characteristics of Nizhny Novgorod Regionepstein–Barr virus isolates in children with infectious mononucleosis and healthy virus carriers
- Authors: Popkova M.I.1, Utkin O.V.1, Bryzgalova D.A.1, Sakharnov N.A.1, Soboleva E.A.2, Kulova E.A.3
-
Affiliations:
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
- Nizhny Novgorod Regional Center for the Prevention and Control of AIDS and Infectious Diseases
- “Tonus Krokha i Semeynaya Stomatologiya” LLC
- Issue: Vol 13, No 2 (2023)
- Pages: 275-288
- Section: ORIGINAL ARTICLES
- URL: https://journals.rcsi.science/2220-7619/article/view/147823
- DOI: https://doi.org/10.15789/2220-7619-MAG-2056
- ID: 147823
Cite item
Full Text
Abstract
Numerous foreign studies evidence about a pronounced heterogeneity of the Epstein-Barr virus (EBV) populationcirculating throughout the world. Various EBV classifications have been proposed. The attention of Russian researchers has focused on the study of the structural and functional polymorphism of the EBV LMP-1 oncogene in the context of oncological diseases in adulthood. The aim of the work was to assess EBV molecular genetic diversity in children with EBV infection in the Nizhny Novgorod region. There were analyzed blood leukocyte and saliva specimens from children aged 1–17 years with EBV-infectious mononucleosis (n = 69) and sex- and age-matched healthy virus carriers of (n = 32). A total of 178 EBV isolates were studied. For differential detection of EBV-1/EBV-2, we used an optimized one-round PCR variant with electrophoretic detection of amplification products in agarose gel. Nucleotide sequences of the LMP-1gene C-terminal fragment were determined by Sanger sequencing. Bioinformatics data analysis was performed using MEGA X software. As a result, during EBV-infectious mononucleosis, only the EBV-1 type was detected in all children, among healthy virus carriers EBV-1 (93.8±4.3%) and EBV-2 (6.2±4.3%). Based on the EBV classification according to R.H. Edwards et al. the strain affiliation of EBV isolates was determined. A total of five variants of LMP-1 were identified, namely B95-8, China 1, Med–, NC and Alaskan, among which B95-8 dominated. The LMP-1 Med+, China 2, and China 3 variants were not found in any of the studied samples. It has been shown that the region of tandem repeats makes a significant contribution to the genetic diversity of the EBV population. A total of 100 amino acid substitutions were identified, of which the most common in the Nizhny Novgorod region EBV isolates are G212S, S366T, E328Q and S309N. A comparative analysis showed that strains, deletions, repeats, amino acid substitutions in EBV isolates from biological samples in children with infectious mononucleosis had common characteristics with a group of healthy virus carriers. In the active form of EBV infection, the appearance of structurally heterogeneous EBV sequences isolated from blood leukocytes and saliva from a single source was noted. Thus, for the first time, the molecular genetic diversity of EBV in children with various forms of EBV infection was assessed, which is the basis for the prospective development of clinical and epidemiological studies of EBV infection at a new methodological level.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Mariia I. Popkova
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Author for correspondence.
Email: popmarig@mail.ru
PhD (Medicine), Leading Researcher, Laboratory of Molecular Biology and Biotechnology
Russian Federation, Nizhniy NovgorodOleg V. Utkin
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Email: popmarig@mail.ru
PhD (Biology), Head of Laboratory of Molecular Biology and Biotechnology
Russian Federation, Nizhniy NovgorodDaria A. Bryzgalova
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Email: popmarig@mail.ru
Junior Researcher, Laboratory of Molecular Biology and Biotechnology
Russian Federation, Nizhniy NovgorodNikolai A. Sakharnov
Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Email: popmarig@mail.ru
PhD (Biology), Researcher, Laboratory of Molecular Biology and Biotechnology
Russian Federation, Nizhniy NovgorodEvgeniya A. Soboleva
Nizhny Novgorod Regional Center for the Prevention and Control of AIDS and Infectious Diseases
Email: popmarig@mail.ru
Infectologist
Russian Federation, Nizhny NovgorodEkaterina A. Kulova
“Tonus Krokha i Semeynaya Stomatologiya” LLC
Email: popmarig@mail.ru
PhD (Medicine), Infectologist, Allergologist and Immunologist
Russian Federation, Nizhniy NovgorodReferences
- Гончарова Е.В., Сенюта Н.Б., Смирнова К.В., Щербак Л.Н., Гурцевич В.Э. Вирус Эпштейна–Барр (ВЭБ) в России: инфицированность населения и анализ вариантов гена LMP1 у больных ВЭБ-ассоциированными патологиями и у здоровых лиц // Вопросы вирусологии. 2015. Т. 60, № 2. С. 11–17. [Goncharova E.V., Senyuta N.B., Smirnov K.V., Shcherbak L.N., Gurtsevich V.E. Epstein–Barr virus (EBV) in Russia, the infection of the population and the analysis of gene LMP1 variants at the patients with EBV-associated disease and at healthy patients. Voprosy virusologii = Problems of Virology, 2015, vol. 60, no. 2, pp. 11–17. (In Russ.)]
- Гурцевич В.Э., Лубенская А.К., Сенюта Н.Б., Душенькина Т.Е., Смирнова К.В. Вирус Эпштейна–Барр (Herpesviridae: Gammaherpesvirinae: Lymphocryptovirus: Human gammaherpesvirus 4) у калмыков и славян, проживающих на территории России: типы вируса, варианты онкогена LMP1 и злокачественные опухоли // Вопросы вирусологии. 2022. Т. 67, № 3. С. 246–257. [Gurtsevitch V.E., Lubenskaya A.K., Senyuta N.B., Dushenkina T.E., Smirnova K.V.Epstein–Barr virus (Herpesviridae: Gammaherpesvirinae: Lymphocryptovirus: Human gammaherpesvirus 4) in Kalmyks and Slavs living in Russia: virus types, LMP1 oncogene variants, and malignancies. Voprosy virusologii = Problems of Virology, 2022, vol. 67, no. 3, pp. 246–257. (In Russ.)] doi: 10.36233/0507-4088-120
- Гурцевич В.Э., Смирнова К.В., Ботезату И.В., Душенькина Т.Е., Лубенская А.К., Дубар Э., Сенюта Н.Б., Лихтенштейн А.В., Петров С.В. Полиморфизм онкогена LMP1 вируса Эпштейна–Барр в двух этнических группах россии, татар и славян, и его влияние на развитие некоторых злокачественных опухолей // Инфекция и иммунитет. 2020. Т. 10, № 2. С. 347–358. [Gurtsevitch V.E., Smirnova K.V., Botezatu I.V., Dushenkina T.E., Lubenskaya A.K., Dubar E., Senyuta N.B., Lichtenstein A.V., Petrov S.V. Epstein–Barr virus LMP1 oncogene polymorphism in tatar and slavic populations in Russian Federation impacting on some malignant tumours. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2020, vol. 10, no. 2, pp. 347–358. (In Russ.)] doi: 10.15789/2220-7619-EBV-1162
- Попкова М.И., Уткин О.В., Брызгалова Д.А., Сенатская А.О., Соболева Е.А., Сахарнов Н.А., Филатова Е.Н., Кулова Е.А. Методические подходы к дифференциальной детекции ВЭБ-1/ВЭБ-2 и ВГЧ-6A/ВГЧ-6B в слюне // Инфекция и иммунитет. 2022. Т. 12, № 3. C. 461–474. [Popkova M.I., Utkin O.V., Bryzgalova D.A., Senatskaia A.O., Soboleva E.A., Sakharnov N.A., Filatova E.N., Kulova E.A. Methodological approaches to differential detection of EBV1/EBV2 and HHV6A/HHV6B in saliva. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2022, vol. 12, no. 3, pp. 461–474. (In Russ.)] doi: 10.15789/2220-7619-MAT-1807
- Попкова М.И., Уткин О.В., Соболева Е.А., Сахарнов Н.А., Брызгалова Д.А., Сенатская А.О., Кулова Е.А. Методические основы дифференциальной детекции ВЭБ1/ВЭБ2 и ВГЧ6A/ВГЧ6B // Инфекция и иммунитет. 2021. Т. 11, № 6. C. 1057–1066. [Popkova M.I., Utkin O.V., Soboleva E.A., Sakharnov N.A., Bryzgalova D.A., Senatskaia A.O., Kulova E.A. Methodological basics for differential detection of EBV1/EBV2 and HHV6A/HHV6B. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2021, vol. 11, no. 6, pp. 1057–1066. (In Russ.)] doi: 10.15789/2220-7619-MBF-1661
- Сенюта Н.Б., Смирнова К.В., Дидук С.В., Гончарова Е.В., Щербак Л.Н., Гурцевич В.Э. Структурно-функциональная характеристика онкогена LMP1 у больных с опухолями, ассоциированными и не ассоциированными с вирусом Эпштейна—Барр // Молекулярная генетика, микробиология и вирусология. 2016. Т. 34, № 2. С. 71–75. [Senyuta N.B., Smirnova K.V., Diduk S.V., Goncharova E.V., Shcherbak L.N., Gurtsevitch V.E. Structural and functional characteristics of the LMP1 oncogene in patients with tumors аssociated and not associated with the Epstein–Barr virus. Molekulyarnaya genetika, mikrobiologiya i virusologiya = Molecular Genetics, Microbiology and Virology, 2016, vol. 31, no. 2, pp. 87–93. (In Russ.)] doi: 10.18821/0208-0613-2016-34-2-71-75
- Смирнова К.В., Дидук С.В., Гурцевич В.Э. Полиморфизм онкогена LMP1 вируса Эпштейна–Барр у представителей коренного малочисленного народа Дальнего Востока России // Эпидемиология и инфекционные болезни. 2017. Т. 22, № 5. С. 239–247. [Smirnova K.V., Diduk S.V., Gurtsevitch V.E. Polymorphism of Epstein–Barr virus LMP1 oncogene in nanaians, representatives of indigenous minority of the Russian Far East. Epidemiologiya i infektsionnye bolezni = Epidemiology and Infectious Deseases, 2017, vol. 22, no. 5, pp. 239–247. (In Russ.)] doi: 10.18821/1560-9529-2017-22-5-239-247
- Смирнова К.В., Дидук С.В., Сенюта Н.Б., Гурцевич В.Э. Молекулярно-биологические свойства гена lmp1 вируса Эпштейна–Барр: структура, функции и полиморфизм // Вопросы вирусологии. 2015. Т. 60, № 3. С. 5–13. [Smirnova K.V., Diduk S.V., Senyuta N.B., Gurtsevitch V.E. Molecular biological properties of the Epstein–Barr virus LMP1 gene: structure, function and polymorphism. Voprosy virusologii = Problems of Virology, 2015, vol. 60, no. 3, pp. 5–13. (In Russ.)]
- Смирнова К.В., Сенюта Н.Б., Ботезату И.В., Душенькина Т.Е., Лубенская А.К., Фроловская А.А., Петров С.В., Лихтенштейн А.В., Гурцевич В.Э. Вирус Эпштейна–Барр у этнических татар: инфицированность и сиквенсные варианты онкогена LMP1 // Успехи молекулярной онкологии. 2018. Т. 5, № 3. С. 65–74. [Smirnova K.V., Senyuta N.B., Botezatu I.V., Dushenkina T.E., Lubenskaya A.K., Frolovskaya A.A., Petrov S.V., Lichtenstein A.V., Gurtsevitch V.E. Epstein–Barr virus in the ethnic Tatars population: the infection and sequence variants of LMP1 oncogene. Uspekhi molekulyarnoi onkologii = Advances in Molecular Oncology, 2018, vol. 5, no. 3, pp. 65–74. (In Russ.)] doi: 10.17650/2313-805X-2018-5-3-65-74
- Смирнова К.В., Сенюта Н.Б., Лубенская А.К., Душенькина Т.Е., Гурцевич В.Э. Древние варианты вируса Эпштейна–Барр (Herpesviridae, Lymphocryptovirus, HHV-4): гипотезы и факты // Вопросы вирусологии. 2020. Т. 65, № 2. C. 77–86. [Smirnova K.V., Senyuta N.B., Lubenskaya A.K., Dushenkina T.E., Gurtsevich V.E. Ancient variants of the Epstein–Barr virus (Herpesviridae, Lymphocryptovirus, HHV-4): hypotheses and facts. Voprosy virusologii = Problems of Virology, 2020, vol. 65, no. 2, pp. 77–86. (In Russ.)] doi: 10.36233/0507-4088-2020-65-2-77-86
- Яковлева Л.С., Сенюта Н.Б., Гончарова Е.В., Щербак Л.Н., Смирнова К.В., Павлиш О.А., Гурцевич В.Э. Варианты онкогена LMP1 вируса Эпштейна–Барр в клеточных линиях различного происхождения // Молекулярная биология. 2015. Т. 49, № 5. С. 800–810. [Yakovleva L.S., Senyuta N.B., Goncharova E.V., Scherback L.N., Smirnova R.V., Pavlish O.A. Gurtsevitch V.E. Epstein–Barr Virus LMP1 oncogene variants in cell lines of different origin. Molekulyarnaya biologiya = Molecular Biology, 2015, vol. 49, no. 5, pp. 800–810. (In Russ.)] doi: 10.7868/S0026898415050213
- Ai J.H., Xie Z.D., Liu C.Y., Gao L.W., Yan J. [Characteristic of nuclear antigen 1 gene and latent membrane protein 1 gene of Epstein–Barr virus in primary EBV infection in children in Beijing area in 2005–2010]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi, 2012, vol. 26, no. 5, pp. 352–355. (In Chin.)
- Arturo-Terranova D., Giraldo-Ocampo S., Castillo A. Molecular characterization of Epstein–Barr virus variants detected in the oral cavity of adolescents in Cali, Colombia. Biomedica, 2020, vol. 40, no. 1, pp. 76–88. doi: 10.7705/biomedica.4917
- Baer R., Bankier A.T., Biggin M.D., Deininger P.L., Farrell P.J., Gibson T.G. DNA sequence and expression of the B95-8 Epstein–Barr virus genome. Nature (London), 1984, vol. 310, pp. 207–211. doi: 10.1038/310207a0
- Banko A.V., Lazarevic I.B., Folic M.M., Djukic V.B., Cirkovic A.M., Karalic D.Z., Cupic M.D., Jovanovic T.P. Characterization of the variability of Epstein–Barr virus genes in nasopharyngeal biopsies: potential predictors for carcinoma progression. PLoS One, 2016, vol. 11, no. 4: e0153498. doi: 10.1371/journal.pone.0153498
- Banko A.V., Lazarevic I.B., Stevanovic G., Cirkovic A., Karalic D., Cupic M., Banko B., Milovanovic J., Jovanovic T. Analysis of the variability of Epstein–Barr virus genes in infectious mononucleosis: investigation of the potential correlation with biochemical parameters of hepatic involvement. J. Med. Biochem., 2016, vol. 35, no. 3, pp. 337–346. doi: 10.1515/jomb-2015-0021
- Blazquez A.C., Berenstein A.J., Torres C., Izquierdo A., Lezama C., Moscatelli G., De Matteo E.N., Lorenzetti M.A., Preciado M.V. Comprehensive evolutionary analysis of complete Epstein–Barr virus genomes from argentina and other geographies. Virus, 2021, vol. 13, no. 6: 1172. doi: 10.3390/v13061172
- Bridges R., Correia S., Wegner F., Venturini C., Palser A., White R.E., Kellam P., Breuer J., Farrell P.J. Essential role of inverted repeat in Epstein–Barr virus IR-1 in B cell transformation; geographical variation of the viral genome. Philos. Trans. R. SoC. Lond. B Biol. Sci., 2019, vol. 374, no. 1773: 20180299. doi: 10.1098/rstb.2018.0299
- Bristol J.A., Djavadian R., Albright E.R., Coleman C.B., Ohashi M., Hayes M., Romero-Masters J.C., Barlow E.A., Farrell P.J., Rochford R., Kalejta R.F., Johannsen E.C., Kenney S.C. A cancer-associated Epstein–Barr virus BZLF1 promoter variant enhances lytic infection. PLoS Pathog., 2018, vol. 14, no. 7: e1007179. doi: 10.1371/journal.ppat.1007179
- Coleman C.B., Daud I.I., Ogolla S.O., Ritchie J.A., Smith N.A., Sumba P.O., Dent A.E., Rochford R. Epstein–Barr virus type 2 infects T cells in healthy kenyan children. J. Infect. Dis., 2017, vol. 216, no. 6, pp. 670–677. doi: 10.1093/infdis/jix363
- Coleman C.B., Lang J., Sweet L.A., Smith N.A., Freed B.M., Pan Z., Haverkos B., Pelanda R., Rochford R. Epstein–Barr virus type 2 infects T cells and induces B cell lymphomagenesis in humanized mice. J. Virol., 2018, vol. 92, no. 21: e00813-18. doi: 10.1128/JVI.00813-18
- Correia S., Palser A., Elgueta Karstegl C., Middeldorp J.M., Ramayanti O., Cohen J.I., Hildesheim A., Fellner M.D., Wiels J., White R.E., Kellam P., Farrell P.J. Natural variation of Epstein–Barr virus genes, proteins, and primary microRNA. J. Virol., 2017, vol. 91, no. 15: e00375-17. doi: 10.1128/JVI.00375-17
- Corvalán A.H., Ruedlinger J., de Mayo T., Polakovicova I., Gonzalez-Hormazabal P., Aguayo F. The phylogeographic diversity of EBV and admixed ancestry in the americas — another model of disrupted human-pathogen co-evolution. Cancers (Basel)., 2019, vol. 11, no. 2, pp. 217. doi: 10.3390/cancers11020217
- Edwards R.H., Seillier-Moiseiwitsch F., Raab-Traub N. Signature amino acid changes in latent membrane protein 1 distinguish Epstein–Barr virus strains. Virology, 1999, vol. 261, pp. 79–95. doi: 10.1006/viro.1999.9855
- Farrell P.J., White R.E. Do Epstein–Barr virus mutations and natural genome sequence variations contribute to disease? Biomolecules, 2022, vol. 12, no. 1: 17. doi: 10.3390/biom12010017
- Gantuz M., Lorenzetti M.A., Chabay P.A., Preciado M.V. A novel recombinant variant of latent membrane protein 1 from Epstein–Barr virus in Argentina denotes phylogeographical association. PLoS One, 2017, vol. 12, no. 3: e0174221. doi: 10.1371/journal.pone.0174221
- Hu L.-F., Zabarovsky E.R., Chen F., Cao S.-L., Ernberg I., Klein G. Winberg G. Isolation and sequencing of the Epstein–Barr virus BNLF-1 gene (LMP1) from a Chinese nasopharyngeal carcinoma. J. Gen. Virol., 1991, vol. 72, pt. 1, pp. 2399–2409. doi: 10.1099/0022-1317-72-10-2399
- Hui K.F., Chan T.F., Yang W., Shen J.J., Lam K.P., Kwok H. Sham P.C., Tsao S.W., Kwong D.L., Lung M.L., Chiang A.K.S. High risk Epstein–Barr virus variants characterized by distinct polymorphisms in the EBER locus are strongly associated with nasopharyngeal carcinoma. Int. J. Cancer, 2019, vol. 144, no. 12, pp. 3031–3042. doi: 10.1002/ijc.32049
- Ikuta K., Satoh Y., Hoshikawa Y., Sairenji T. Detection of Epstein–Barr virus in salivas and throat washings in healthy adults and children. Microbes Infect., 2000, vol. 2, no. 2, pp. 115–120. doi: 10.1016/s1286-4579(00)00277-x
- Kanda T., Yajima M., Ikuta K. Epstein–Barr virus strain variation and cancer. Cancer Sci., 2019, vol. 110, no. 4, pp. 1132–1139. doi: 10.1111/cas.13954
- Lay M.L., Lucas R.M., Toi C., Ratnamohan M., Ponsonby A.L., Dwyer D.E. Epstein–Barr virus genotypes and strains in central nervous system demyelinating disease and Epstein–Barr virus-related illnesses in Australia. Intervirology, 2012, vol. 55, no. 5, pp. 372–379. doi: 10.1159/000334693
- Mainou B.A., Raab-Traub N. LMP1 strain variants: biological and molecular properties. J. Virol., 2006, vol. 80, no. 13, pp. 6458–6468. doi: 10.1128/JVI.00135-06
- Monteiro T.A.F, Costa I.B., Costa I.B., Corrêa T.L.D.S., Coelho B.M.R., Silva A.E.S., Ramos F.L.P., Filho A.J.M., Monteiro J.L.F., Siqueira J.A.M., Gabbay Y.B., Sousa R.C.M. Genotypes of Epstein–Barr virus (EBV1/EBV2) in individuals with infectious mononucleosis in the metropolitan area of Belém, Brazil, between 2005 and 2016. Braz. J. Infect. Dis., 2020, vol. 24, no. 4, pp. 322–329. doi: 10.1016/j.bjid.2020.06.004
- Neves M., Marinho-Dias J., Ribeiro J., Sousa H. Epstein–Barr virus strains and variations: geographic or disease-specific variants? J. Med. Virol., 2017, vol. 89, no. 3, pp. 373–387. doi: 10.1002/jmv.24633
- Pai P.C., Tseng C.K., Chuang C.C., Wei K.C., Hao S.P., Hsueh C., Chang K.P., Tsang N.M. Polymorphism of C-terminal activation region 2 of Epstein–Barr virus latent membrane protein 1 in predicting distant failure and post-metastatic survival in patients with nasopharyngeal carcinoma. Head Neck, 2007, vol. 29, pp. 109–119. doi: 10.1002/hed.20483
- Palser A.L., Grayson N.E., White R.E., Corton C., Correia S., Ba Abdullah M.M., Watson S.J., Cotten M., Arrand J.R., Murray P.G., Allday M.J., Rickinson A.B., Young L.S., Farrell P.J., Kellam P. Genome diversity of Epstein–Barr virus from multiple tumor types and normal infection. J. Virol., 2015, vol. 89, no. 10, pp. 5222–5237. doi: 10.1128/JVI.03614-14
- Polz D., Podsiadło Ł., Stec A., Polz-Dacewicz M. Prevalence of EBV genotypes in Polish, Taiwanese and Arabic healthy students and association between genotypes and 30-bp deletion in the LMP-1 gene phylogenetic analysis. Pol. J. Microbiol., 2014, vol. 63, no. 1, pp. 105–109.
- Renzette N., Somasundaran M., Brewster F., Coderre J., Weiss E.R., McManus M., Greenough T., Tabak B., Garber M., Kowalik T.F., Luzuriaga K. Epstein–Barr virus latent membrane protein 1 genetic variability in peripheral blood B cells and oropharyngeal fluids. J. Virol., 2014, vol. 88, no. 7, pp. 3744–3755. doi: 10.1128/JVI.03378-13
- Rickinson A.B., Young L.S., Rowe M. Influence of the Epstein–Barr virus nuclear antigen EBNA 2 on the growth phenotype of virus-transformed B cells. J. Virol., 1987, vol. 61, no. 5, pp. 1310–1317. doi: 10.1128/JVI.61.5.1310-1317.1987
- Sitki-Green D., Covington M., Raab-Traub N. Compartmentalization and transmission of multiple Epstein–Barr virus strains in asymptomatic carriers. J. Virol., 2003, vol. 77, no. 3, pp. 1840–1847. doi: 10.1128/jvi.77.3.1840-1847.2003
- Smatti M.K., Yassine H.M., AbuOdeh R., AlMarawani A., Taleb S.A., Althani A.A., Nasrallah G.K. Prevalence and molecular profiling of Epstein Barr virus (EBV) among healthy blood donors from different nationalities in Qatar. PLoS One, 2017, vol. 12, no. 12: e0189033. doi: 10.1371/journal.pone.0189033
- Telford M., Hughes D.A., Juan D., Stoneking M., Navarro A., Santpere G. Expanding the geographic characterisation of Epstein–Barr virus variation through gene-based approaches. Microorganisms, 2020, vol. 8, no. 11: 1686. doi: 10.3390/microorganisms8111686
- Tierney R.J., Edwards R.H., Sitki-Green D., Croom-Carter D., Roy S., Yao Q.-Y., Raab-Traub N., Rickinson A.B. Multiple Epstein–Barr virus strains in patients with infectious mononucleosis: comparison of ex vivo samples with in vitro isolates by use of heteroduplex tracking assays. J. Infect. Dis., 2006, vol. 193, pp. 287–297. doi: 10.1086/498913
- Tzellos S., Farrell P.J. Epstein–Barr virus sequence variation-biology and disease. Pathogens, 2012, vol. 1, no. 2, pp. 156–174. doi: 10.3390/pathogens1020156
- Vaysberg M., Hatton O., Lambert S.L., Snow A.L., Wong B., Krams S.M., Martinez O.M. Tumor-derived variants of Epstein–Barr virus latent membrane protein 1 induce sustained Erk activation and c-Fos. J. Biol. Chem., 2008, vol. 283, no. 52, pp. 36573–36585. doi: 10.1074/jbc.M802968200
- Xue W.Q., Wang T.M., Huang J.W., Zhang J.B., He Y.Q., Wu Z.Y., Liao Y., Yuan L.L., Mu J., Jia W.H. A comprehensive analysis of genetic diversity of EBV reveals potential high-risk subtypes associated with nasopharyngeal carcinoma in China. Virus Evol., 2021, vol. 7, no. 1: veab010. doi: 10.1093/ve/veab010
Supplementary files
