Molecular and genetic characteristics of Nizhny Novgorod Regionepstein–Barr virus isolates in children with infectious mononucleosis and healthy virus carriers

Cover Page

Cite item

Full Text

Abstract

Numerous foreign studies evidence about a pronounced heterogeneity of the Epstein-Barr virus (EBV) populationcirculating throughout the world. Various EBV classifications have been proposed. The attention of Russian researchers has focused on the study of the structural and functional polymorphism of the EBV LMP-1 oncogene in the context of oncological diseases in adulthood. The aim of the work was to assess EBV molecular genetic diversity in children with EBV infection in the Nizhny Novgorod region. There were analyzed blood leukocyte and saliva specimens from children aged 1–17 years with EBV-infectious mononucleosis (n = 69) and sex- and age-matched healthy virus carriers of (n = 32). A total of 178 EBV isolates were studied. For differential detection of EBV-1/EBV-2, we used an optimized one-round PCR variant with electrophoretic detection of amplification products in agarose gel. Nucleotide sequences of the LMP-1gene C-terminal fragment were determined by Sanger sequencing. Bioinformatics data analysis was performed using MEGA X software. As a result, during EBV-infectious mononucleosis, only the EBV-1 type was detected in all children, among healthy virus carriers EBV-1 (93.8±4.3%) and EBV-2 (6.2±4.3%). Based on the EBV classification according to R.H. Edwards et al. the strain affiliation of EBV isolates was determined. A total of five variants of LMP-1 were identified, namely B95-8, China 1, Med–, NC and Alaskan, among which B95-8 dominated. The LMP-1 Med+, China 2, and China 3 variants were not found in any of the studied samples. It has been shown that the region of tandem repeats makes a significant contribution to the genetic diversity of the EBV population. A total of 100 amino acid substitutions were identified, of which the most common in the Nizhny Novgorod region EBV isolates are G212S, S366T, E328Q and S309N. A comparative analysis showed that strains, deletions, repeats, amino acid substitutions in EBV isolates from biological samples in children with infectious mononucleosis had common characteristics with a group of healthy virus carriers. In the active form of EBV infection, the appearance of structurally heterogeneous EBV sequences isolated from blood leukocytes and saliva from a single source was noted. Thus, for the first time, the molecular genetic diversity of EBV in children with various forms of EBV infection was assessed, which is the basis for the prospective development of clinical and epidemiological studies of EBV infection at a new methodological level.

About the authors

Mariia I. Popkova

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Author for correspondence.
Email: popmarig@mail.ru

PhD (Medicine), Leading Researcher, Laboratory of Molecular Biology and Biotechnology

Russian Federation, Nizhniy Novgorod

Oleg V. Utkin

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Email: popmarig@mail.ru

PhD (Biology), Head of Laboratory of Molecular Biology and Biotechnology

Russian Federation, Nizhniy Novgorod

Daria A. Bryzgalova

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Email: popmarig@mail.ru

Junior Researcher, Laboratory of Molecular Biology and Biotechnology

Russian Federation, Nizhniy Novgorod

Nikolai A. Sakharnov

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Email: popmarig@mail.ru

PhD (Biology), Researcher, Laboratory of Molecular Biology and Biotechnology

Russian Federation, Nizhniy Novgorod

Evgeniya A. Soboleva

Nizhny Novgorod Regional Center for the Prevention and Control of AIDS and Infectious Diseases

Email: popmarig@mail.ru

Infectologist

Russian Federation, Nizhny Novgorod

Ekaterina A. Kulova

“Tonus Krokha i Semeynaya Stomatologiya” LLC

Email: popmarig@mail.ru

PhD (Medicine), Infectologist, Allergologist and Immunologist

Russian Federation, Nizhniy Novgorod

References

  1. Гончарова Е.В., Сенюта Н.Б., Смирнова К.В., Щербак Л.Н., Гурцевич В.Э. Вирус Эпштейна–Барр (ВЭБ) в России: инфицированность населения и анализ вариантов гена LMP1 у больных ВЭБ-ассоциированными патологиями и у здоровых лиц // Вопросы вирусологии. 2015. Т. 60, № 2. С. 11–17. [Goncharova E.V., Senyuta N.B., Smirnov K.V., Shcherbak L.N., Gurtsevich V.E. Epstein–Barr virus (EBV) in Russia, the infection of the population and the analysis of gene LMP1 variants at the patients with EBV-associated disease and at healthy patients. Voprosy virusologii = Problems of Virology, 2015, vol. 60, no. 2, pp. 11–17. (In Russ.)]
  2. Гурцевич В.Э., Лубенская А.К., Сенюта Н.Б., Душенькина Т.Е., Смирнова К.В. Вирус Эпштейна–Барр (Herpesviridae: Gammaherpesvirinae: Lymphocryptovirus: Human gammaherpesvirus 4) у калмыков и славян, проживающих на территории России: типы вируса, варианты онкогена LMP1 и злокачественные опухоли // Вопросы вирусологии. 2022. Т. 67, № 3. С. 246–257. [Gurtsevitch V.E., Lubenskaya A.K., Senyuta N.B., Dushenkina T.E., Smirnova K.V.Epstein–Barr virus (Herpesviridae: Gammaherpesvirinae: Lymphocryptovirus: Human gammaherpesvirus 4) in Kalmyks and Slavs living in Russia: virus types, LMP1 oncogene variants, and malignancies. Voprosy virusologii = Problems of Virology, 2022, vol. 67, no. 3, pp. 246–257. (In Russ.)] doi: 10.36233/0507-4088-120
  3. Гурцевич В.Э., Смирнова К.В., Ботезату И.В., Душенькина Т.Е., Лубенская А.К., Дубар Э., Сенюта Н.Б., Лихтенштейн А.В., Петров С.В. Полиморфизм онкогена LMP1 вируса Эпштейна–Барр в двух этнических группах россии, татар и славян, и его влияние на развитие некоторых злокачественных опухолей // Инфекция и иммунитет. 2020. Т. 10, № 2. С. 347–358. [Gurtsevitch V.E., Smirnova K.V., Botezatu I.V., Dushenkina T.E., Lubenskaya A.K., Dubar E., Senyuta N.B., Lichtenstein A.V., Petrov S.V. Epstein–Barr virus LMP1 oncogene polymorphism in tatar and slavic populations in Russian Federation impacting on some malignant tumours. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2020, vol. 10, no. 2, pp. 347–358. (In Russ.)] doi: 10.15789/2220-7619-EBV-1162
  4. Попкова М.И., Уткин О.В., Брызгалова Д.А., Сенатская А.О., Соболева Е.А., Сахарнов Н.А., Филатова Е.Н., Кулова Е.А. Методические подходы к дифференциальной детекции ВЭБ-1/ВЭБ-2 и ВГЧ-6A/ВГЧ-6B в слюне // Инфекция и иммунитет. 2022. Т. 12, № 3. C. 461–474. [Popkova M.I., Utkin O.V., Bryzgalova D.A., Senatskaia A.O., Soboleva E.A., Sakharnov N.A., Filatova E.N., Kulova E.A. Methodological approaches to differential detection of EBV1/EBV2 and HHV6A/HHV6B in saliva. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2022, vol. 12, no. 3, pp. 461–474. (In Russ.)] doi: 10.15789/2220-7619-MAT-1807
  5. Попкова М.И., Уткин О.В., Соболева Е.А., Сахарнов Н.А., Брызгалова Д.А., Сенатская А.О., Кулова Е.А. Методические основы дифференциальной детекции ВЭБ1/ВЭБ2 и ВГЧ6A/ВГЧ6B // Инфекция и иммунитет. 2021. Т. 11, № 6. C. 1057–1066. [Popkova M.I., Utkin O.V., Soboleva E.A., Sakharnov N.A., Bryzgalova D.A., Senatskaia A.O., Kulova E.A. Methodological basics for differential detection of EBV1/EBV2 and HHV6A/HHV6B. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2021, vol. 11, no. 6, pp. 1057–1066. (In Russ.)] doi: 10.15789/2220-7619-MBF-1661
  6. Сенюта Н.Б., Смирнова К.В., Дидук С.В., Гончарова Е.В., Щербак Л.Н., Гурцевич В.Э. Структурно-функциональная характеристика онкогена LMP1 у больных с опухолями, ассоциированными и не ассоциированными с вирусом Эпштейна—Барр // Молекулярная генетика, микробиология и вирусология. 2016. Т. 34, № 2. С. 71–75. [Senyuta N.B., Smirnova K.V., Diduk S.V., Goncharova E.V., Shcherbak L.N., Gurtsevitch V.E. Structural and functional characteristics of the LMP1 oncogene in patients with tumors аssociated and not associated with the Epstein–Barr virus. Molekulyarnaya genetika, mikrobiologiya i virusologiya = Molecular Genetics, Microbiology and Virology, 2016, vol. 31, no. 2, pp. 87–93. (In Russ.)] doi: 10.18821/0208-0613-2016-34-2-71-75
  7. Смирнова К.В., Дидук С.В., Гурцевич В.Э. Полиморфизм онкогена LMP1 вируса Эпштейна–Барр у представителей коренного малочисленного народа Дальнего Востока России // Эпидемиология и инфекционные болезни. 2017. Т. 22, № 5. С. 239–247. [Smirnova K.V., Diduk S.V., Gurtsevitch V.E. Polymorphism of Epstein–Barr virus LMP1 oncogene in nanaians, representatives of indigenous minority of the Russian Far East. Epidemiologiya i infektsionnye bolezni = Epidemiology and Infectious Deseases, 2017, vol. 22, no. 5, pp. 239–247. (In Russ.)] doi: 10.18821/1560-9529-2017-22-5-239-247
  8. Смирнова К.В., Дидук С.В., Сенюта Н.Б., Гурцевич В.Э. Молекулярно-биологические свойства гена lmp1 вируса Эпштейна–Барр: структура, функции и полиморфизм // Вопросы вирусологии. 2015. Т. 60, № 3. С. 5–13. [Smirnova K.V., Diduk S.V., Senyuta N.B., Gurtsevitch V.E. Molecular biological properties of the Epstein–Barr virus LMP1 gene: structure, function and polymorphism. Voprosy virusologii = Problems of Virology, 2015, vol. 60, no. 3, pp. 5–13. (In Russ.)]
  9. Смирнова К.В., Сенюта Н.Б., Ботезату И.В., Душенькина Т.Е., Лубенская А.К., Фроловская А.А., Петров С.В., Лихтенштейн А.В., Гурцевич В.Э. Вирус Эпштейна–Барр у этнических татар: инфицированность и сиквенсные варианты онкогена LMP1 // Успехи молекулярной онкологии. 2018. Т. 5, № 3. С. 65–74. [Smirnova K.V., Senyuta N.B., Botezatu I.V., Dushenkina T.E., Lubenskaya A.K., Frolovskaya A.A., Petrov S.V., Lichtenstein A.V., Gurtsevitch V.E. Epstein–Barr virus in the ethnic Tatars population: the infection and sequence variants of LMP1 oncogene. Uspekhi molekulyarnoi onkologii = Advances in Molecular Oncology, 2018, vol. 5, no. 3, pp. 65–74. (In Russ.)] doi: 10.17650/2313-805X-2018-5-3-65-74
  10. Смирнова К.В., Сенюта Н.Б., Лубенская А.К., Душенькина Т.Е., Гурцевич В.Э. Древние варианты вируса Эпштейна–Барр (Herpesviridae, Lymphocryptovirus, HHV-4): гипотезы и факты // Вопросы вирусологии. 2020. Т. 65, № 2. C. 77–86. [Smirnova K.V., Senyuta N.B., Lubenskaya A.K., Dushenkina T.E., Gurtsevich V.E. Ancient variants of the Epstein–Barr virus (Herpesviridae, Lymphocryptovirus, HHV-4): hypotheses and facts. Voprosy virusologii = Problems of Virology, 2020, vol. 65, no. 2, pp. 77–86. (In Russ.)] doi: 10.36233/0507-4088-2020-65-2-77-86
  11. Яковлева Л.С., Сенюта Н.Б., Гончарова Е.В., Щербак Л.Н., Смирнова К.В., Павлиш О.А., Гурцевич В.Э. Варианты онкогена LMP1 вируса Эпштейна–Барр в клеточных линиях различного происхождения // Молекулярная биология. 2015. Т. 49, № 5. С. 800–810. [Yakovleva L.S., Senyuta N.B., Goncharova E.V., Scherback L.N., Smirnova R.V., Pavlish O.A. Gurtsevitch V.E. Epstein–Barr Virus LMP1 oncogene variants in cell lines of different origin. Molekulyarnaya biologiya = Molecular Biology, 2015, vol. 49, no. 5, pp. 800–810. (In Russ.)] doi: 10.7868/S0026898415050213
  12. Ai J.H., Xie Z.D., Liu C.Y., Gao L.W., Yan J. [Characteristic of nuclear antigen 1 gene and latent membrane protein 1 gene of Epstein–Barr virus in primary EBV infection in children in Beijing area in 2005–2010]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi, 2012, vol. 26, no. 5, pp. 352–355. (In Chin.)
  13. Arturo-Terranova D., Giraldo-Ocampo S., Castillo A. Molecular characterization of Epstein–Barr virus variants detected in the oral cavity of adolescents in Cali, Colombia. Biomedica, 2020, vol. 40, no. 1, pp. 76–88. doi: 10.7705/biomedica.4917
  14. Baer R., Bankier A.T., Biggin M.D., Deininger P.L., Farrell P.J., Gibson T.G. DNA sequence and expression of the B95-8 Epstein–Barr virus genome. Nature (London), 1984, vol. 310, pp. 207–211. doi: 10.1038/310207a0
  15. Banko A.V., Lazarevic I.B., Folic M.M., Djukic V.B., Cirkovic A.M., Karalic D.Z., Cupic M.D., Jovanovic T.P. Characterization of the variability of Epstein–Barr virus genes in nasopharyngeal biopsies: potential predictors for carcinoma progression. PLoS One, 2016, vol. 11, no. 4: e0153498. doi: 10.1371/journal.pone.0153498
  16. Banko A.V., Lazarevic I.B., Stevanovic G., Cirkovic A., Karalic D., Cupic M., Banko B., Milovanovic J., Jovanovic T. Analysis of the variability of Epstein–Barr virus genes in infectious mononucleosis: investigation of the potential correlation with biochemical parameters of hepatic involvement. J. Med. Biochem., 2016, vol. 35, no. 3, pp. 337–346. doi: 10.1515/jomb-2015-0021
  17. Blazquez A.C., Berenstein A.J., Torres C., Izquierdo A., Lezama C., Moscatelli G., De Matteo E.N., Lorenzetti M.A., Preciado M.V. Comprehensive evolutionary analysis of complete Epstein–Barr virus genomes from argentina and other geographies. Virus, 2021, vol. 13, no. 6: 1172. doi: 10.3390/v13061172
  18. Bridges R., Correia S., Wegner F., Venturini C., Palser A., White R.E., Kellam P., Breuer J., Farrell P.J. Essential role of inverted repeat in Epstein–Barr virus IR-1 in B cell transformation; geographical variation of the viral genome. Philos. Trans. R. SoC. Lond. B Biol. Sci., 2019, vol. 374, no. 1773: 20180299. doi: 10.1098/rstb.2018.0299
  19. Bristol J.A., Djavadian R., Albright E.R., Coleman C.B., Ohashi M., Hayes M., Romero-Masters J.C., Barlow E.A., Farrell P.J., Rochford R., Kalejta R.F., Johannsen E.C., Kenney S.C. A cancer-associated Epstein–Barr virus BZLF1 promoter variant enhances lytic infection. PLoS Pathog., 2018, vol. 14, no. 7: e1007179. doi: 10.1371/journal.ppat.1007179
  20. Coleman C.B., Daud I.I., Ogolla S.O., Ritchie J.A., Smith N.A., Sumba P.O., Dent A.E., Rochford R. Epstein–Barr virus type 2 infects T cells in healthy kenyan children. J. Infect. Dis., 2017, vol. 216, no. 6, pp. 670–677. doi: 10.1093/infdis/jix363
  21. Coleman C.B., Lang J., Sweet L.A., Smith N.A., Freed B.M., Pan Z., Haverkos B., Pelanda R., Rochford R. Epstein–Barr virus type 2 infects T cells and induces B cell lymphomagenesis in humanized mice. J. Virol., 2018, vol. 92, no. 21: e00813-18. doi: 10.1128/JVI.00813-18
  22. Correia S., Palser A., Elgueta Karstegl C., Middeldorp J.M., Ramayanti O., Cohen J.I., Hildesheim A., Fellner M.D., Wiels J., White R.E., Kellam P., Farrell P.J. Natural variation of Epstein–Barr virus genes, proteins, and primary microRNA. J. Virol., 2017, vol. 91, no. 15: e00375-17. doi: 10.1128/JVI.00375-17
  23. Corvalán A.H., Ruedlinger J., de Mayo T., Polakovicova I., Gonzalez-Hormazabal P., Aguayo F. The phylogeographic diversity of EBV and admixed ancestry in the americas — another model of disrupted human-pathogen co-evolution. Cancers (Basel)., 2019, vol. 11, no. 2, pp. 217. doi: 10.3390/cancers11020217
  24. Edwards R.H., Seillier-Moiseiwitsch F., Raab-Traub N. Signature amino acid changes in latent membrane protein 1 distinguish Epstein–Barr virus strains. Virology, 1999, vol. 261, pp. 79–95. doi: 10.1006/viro.1999.9855
  25. Farrell P.J., White R.E. Do Epstein–Barr virus mutations and natural genome sequence variations contribute to disease? Biomolecules, 2022, vol. 12, no. 1: 17. doi: 10.3390/biom12010017
  26. Gantuz M., Lorenzetti M.A., Chabay P.A., Preciado M.V. A novel recombinant variant of latent membrane protein 1 from Epstein–Barr virus in Argentina denotes phylogeographical association. PLoS One, 2017, vol. 12, no. 3: e0174221. doi: 10.1371/journal.pone.0174221
  27. Hu L.-F., Zabarovsky E.R., Chen F., Cao S.-L., Ernberg I., Klein G. Winberg G. Isolation and sequencing of the Epstein–Barr virus BNLF-1 gene (LMP1) from a Chinese nasopharyngeal carcinoma. J. Gen. Virol., 1991, vol. 72, pt. 1, pp. 2399–2409. doi: 10.1099/0022-1317-72-10-2399
  28. Hui K.F., Chan T.F., Yang W., Shen J.J., Lam K.P., Kwok H. Sham P.C., Tsao S.W., Kwong D.L., Lung M.L., Chiang A.K.S. High risk Epstein–Barr virus variants characterized by distinct polymorphisms in the EBER locus are strongly associated with nasopharyngeal carcinoma. Int. J. Cancer, 2019, vol. 144, no. 12, pp. 3031–3042. doi: 10.1002/ijc.32049
  29. Ikuta K., Satoh Y., Hoshikawa Y., Sairenji T. Detection of Epstein–Barr virus in salivas and throat washings in healthy adults and children. Microbes Infect., 2000, vol. 2, no. 2, pp. 115–120. doi: 10.1016/s1286-4579(00)00277-x
  30. Kanda T., Yajima M., Ikuta K. Epstein–Barr virus strain variation and cancer. Cancer Sci., 2019, vol. 110, no. 4, pp. 1132–1139. doi: 10.1111/cas.13954
  31. Lay M.L., Lucas R.M., Toi C., Ratnamohan M., Ponsonby A.L., Dwyer D.E. Epstein–Barr virus genotypes and strains in central nervous system demyelinating disease and Epstein–Barr virus-related illnesses in Australia. Intervirology, 2012, vol. 55, no. 5, pp. 372–379. doi: 10.1159/000334693
  32. Mainou B.A., Raab-Traub N. LMP1 strain variants: biological and molecular properties. J. Virol., 2006, vol. 80, no. 13, pp. 6458–6468. doi: 10.1128/JVI.00135-06
  33. Monteiro T.A.F, Costa I.B., Costa I.B., Corrêa T.L.D.S., Coelho B.M.R., Silva A.E.S., Ramos F.L.P., Filho A.J.M., Monteiro J.L.F., Siqueira J.A.M., Gabbay Y.B., Sousa R.C.M. Genotypes of Epstein–Barr virus (EBV1/EBV2) in individuals with infectious mononucleosis in the metropolitan area of Belém, Brazil, between 2005 and 2016. Braz. J. Infect. Dis., 2020, vol. 24, no. 4, pp. 322–329. doi: 10.1016/j.bjid.2020.06.004
  34. Neves M., Marinho-Dias J., Ribeiro J., Sousa H. Epstein–Barr virus strains and variations: geographic or disease-specific variants? J. Med. Virol., 2017, vol. 89, no. 3, pp. 373–387. doi: 10.1002/jmv.24633
  35. Pai P.C., Tseng C.K., Chuang C.C., Wei K.C., Hao S.P., Hsueh C., Chang K.P., Tsang N.M. Polymorphism of C-terminal activation region 2 of Epstein–Barr virus latent membrane protein 1 in predicting distant failure and post-metastatic survival in patients with nasopharyngeal carcinoma. Head Neck, 2007, vol. 29, pp. 109–119. doi: 10.1002/hed.20483
  36. Palser A.L., Grayson N.E., White R.E., Corton C., Correia S., Ba Abdullah M.M., Watson S.J., Cotten M., Arrand J.R., Murray P.G., Allday M.J., Rickinson A.B., Young L.S., Farrell P.J., Kellam P. Genome diversity of Epstein–Barr virus from multiple tumor types and normal infection. J. Virol., 2015, vol. 89, no. 10, pp. 5222–5237. doi: 10.1128/JVI.03614-14
  37. Polz D., Podsiadło Ł., Stec A., Polz-Dacewicz M. Prevalence of EBV genotypes in Polish, Taiwanese and Arabic healthy students and association between genotypes and 30-bp deletion in the LMP-1 gene phylogenetic analysis. Pol. J. Microbiol., 2014, vol. 63, no. 1, pp. 105–109.
  38. Renzette N., Somasundaran M., Brewster F., Coderre J., Weiss E.R., McManus M., Greenough T., Tabak B., Garber M., Kowalik T.F., Luzuriaga K. Epstein–Barr virus latent membrane protein 1 genetic variability in peripheral blood B cells and oropharyngeal fluids. J. Virol., 2014, vol. 88, no. 7, pp. 3744–3755. doi: 10.1128/JVI.03378-13
  39. Rickinson A.B., Young L.S., Rowe M. Influence of the Epstein–Barr virus nuclear antigen EBNA 2 on the growth phenotype of virus-transformed B cells. J. Virol., 1987, vol. 61, no. 5, pp. 1310–1317. doi: 10.1128/JVI.61.5.1310-1317.1987
  40. Sitki-Green D., Covington M., Raab-Traub N. Compartmentalization and transmission of multiple Epstein–Barr virus strains in asymptomatic carriers. J. Virol., 2003, vol. 77, no. 3, pp. 1840–1847. doi: 10.1128/jvi.77.3.1840-1847.2003
  41. Smatti M.K., Yassine H.M., AbuOdeh R., AlMarawani A., Taleb S.A., Althani A.A., Nasrallah G.K. Prevalence and molecular profiling of Epstein Barr virus (EBV) among healthy blood donors from different nationalities in Qatar. PLoS One, 2017, vol. 12, no. 12: e0189033. doi: 10.1371/journal.pone.0189033
  42. Telford M., Hughes D.A., Juan D., Stoneking M., Navarro A., Santpere G. Expanding the geographic characterisation of Epstein–Barr virus variation through gene-based approaches. Microorganisms, 2020, vol. 8, no. 11: 1686. doi: 10.3390/microorganisms8111686
  43. Tierney R.J., Edwards R.H., Sitki-Green D., Croom-Carter D., Roy S., Yao Q.-Y., Raab-Traub N., Rickinson A.B. Multiple Epstein–Barr virus strains in patients with infectious mononucleosis: comparison of ex vivo samples with in vitro isolates by use of heteroduplex tracking assays. J. Infect. Dis., 2006, vol. 193, pp. 287–297. doi: 10.1086/498913
  44. Tzellos S., Farrell P.J. Epstein–Barr virus sequence variation-biology and disease. Pathogens, 2012, vol. 1, no. 2, pp. 156–174. doi: 10.3390/pathogens1020156
  45. Vaysberg M., Hatton O., Lambert S.L., Snow A.L., Wong B., Krams S.M., Martinez O.M. Tumor-derived variants of Epstein–Barr virus latent membrane protein 1 induce sustained Erk activation and c-Fos. J. Biol. Chem., 2008, vol. 283, no. 52, pp. 36573–36585. doi: 10.1074/jbc.M802968200
  46. Xue W.Q., Wang T.M., Huang J.W., Zhang J.B., He Y.Q., Wu Z.Y., Liao Y., Yuan L.L., Mu J., Jia W.H. A comprehensive analysis of genetic diversity of EBV reveals potential high-risk subtypes associated with nasopharyngeal carcinoma in China. Virus Evol., 2021, vol. 7, no. 1: veab010. doi: 10.1093/ve/veab010

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Phylogenetic tree constructed based on comparison of the amino acid sequences of the LMP-1 C-terminal fragment from 165 EBV isolates in the Nizhny Novgorod region and 8 reference sequences obtained from the GenBank/NCBI database (Maximum Likelihood method)

Download (325KB)

Copyright (c) 2023 Popkova M.I., Utkin O.V., Bryzgalova D.A., Sakharnov N.A., Soboleva E.A., Kulova E.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».