Virus-like particle endocytosis pathways and presentation of captured antigens

Cover Page

Cite item

Full Text

Abstract

The proteins of many viruses can be assembled into strictly organized structures — virus-like particles bearing antigens of the original viruses and may also be artificially decorated with antigens of other pathogens. These particles contain no viral genome and lack infectivity but can be highly immunogenic and therefore being actively used for vaccine development. Undoubtedly, while designing vaccines, it is necessary to take into account information about the interaction of vaccine components with immune system particularly antigen-presenting cells. This is especially important for virus-like particles because, like other nanometer-sized particles, they can enter antigen-presenting cells using various endocytosis pathways. The latter exploit multiple receptors, generate endocytic vesicles of different sizes, and, most importantly, are associated with varying fates of captured material. Here we review the mechanisms of phagocytosis, macropinocytosis, clathrin-mediated endocytosis, rapid endophilin-mediated endocytosis, and several endocytic pathways associated with lipid rafts. The data are presented on the relationship between various endocytic pathways and sorting of absorbed cargo in early endosomes as well as enzymatic degradation of the late endosomes contents. We also describe the mechanisms of distribution of absorbed antigens within antigen-presenting cells to be loaded onto the class I and II major histocompatibility complex molecules. The data are presented on the endocytosis of various viruses during cell infection, as well as a comparative analysis of the endocytosis pathways for virus-like particles and related viruses. It has been noted that virus-like particles, along with the absorption pathway specific for parent virus, can rely on additional endocytic pathways to be also artificially “targeted” at the selected endocytic receptor and relevant absorption pathway. It allows to select or design particles with optimal endocytosis and antigen presentation to induce a protective immune response upon vaccination. It should be assumed that most prophylactic vaccines require particles that are well engulfed by antigen presenting cells and direct material to endolysosomal degradation, or particles whose uptake directs material to both late and static early endosomes, making antigens available for «direct» and cross presentations. Finally, we discuss virus-like particles for the delivery of drugs or genetically engineered constructs, as well as optimal endocytic pathways that should protect the payload of these particles from endolysosomal degradation.

About the authors

Vladimir Yu. Talayev

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Author for correspondence.
Email: talaev@inbox.ru

DSc (Medicine), Professor, Head of the Laboratory of Cellular Immunology

Russian Federation, Nizhny Novgorod

Irina Ye. Zaichenko

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Email: talaev@inbox.ru

PhD (Biology), Leading Researcher, Laboratory of Cellular Immunology

Russian Federation, Nizhny Novgorod

Olga N. Babaykina

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Email: talaev@inbox.ru

PhD (Medicine), Senior Researcher, Laboratory of Cellular Immunology

Russian Federation, Nizhny Novgorod

Maria V. Svetlova

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Email: talaev@inbox.ru

PhD (Biology), Senior Researcher, Laboratory of Cellular Immunology

Russian Federation, Nizhny Novgorod

Elena V. Voronina

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Email: talaev@inbox.ru

PhD (Biology), Senior Researcher, Laboratory of Cellular Immunology

Russian Federation, Nizhny Novgorod

References

  1. Казачинская Е.И., Арипов В.С., Иванова А.В., Шестопалов А.М. Лихорадка Ласса. Часть 2. Лабораторная диагностика, лечение, разработки лекарственных препаратов // Инфекция и иммунитет. 2022. Т. 12, № 4. C. 609–623. [Kazachinskaia E.I., Aripov V.S., Ivanova A.V., Shestopalov A.M. Lassa fever. Part 2. Laboratory diagnostics, treatment, development of medications. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2022, vol. 12, no. 4, pp. 609–623. (In Russ.)] doi: 10.15789/2220-7619-LFL-1815
  2. Новиков Д.В., Мелентьев Д.А. Энтеровирусные (Picornaviridae: Enterovirus) (неполио) вакцины // Вопросы вирусологии. 2022. Т. 67, № 3. C. 185–192. [Novikov D.V., Melentev D.A. Enteroviral (Picornaviridae: Enterovirus) (nonpolio) vaccines. Voprosy virusologii = Problems of Virology, 2022, vol. 67, no. 3, pp. 185–192. (In Russ.)] doi: 10.36233/0507-4088-111
  3. Acosta E.G., Castilla V., Damonte E.B. Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis. J. Gen. Virol., 2008, vol. 89, no. 2, pp. 474–484. doi: 10.1099/vir.0.83357-0
  4. Agrelli A., de Moura R.R., Crovella S., Brandão L.A.C. Zika virus entry mechanisms in human cells. Infect. Genet. Evol., 2019, vol. 69, pp. 22–29. doi: 10.1016/j.meegid.2019.01.018
  5. Akula S.M., Naranatt P.P., Walia N.S., Wang F.Z., Fegley B., Chandran B. Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) infection of human fibroblast cells occurs through endocytosis. J. Virol., 2003, vol. 77, no. 14, pp. 7978–7990. doi: 10.1128/jvi.77.14.7978-7990.2003
  6. Aleksandrowicz P., Marzi A., Biedenkopf N., Beimforde N., Becker S., Hoenen T., Feldmann H., Schnittler H.J. Ebola virus enters host cells by macropinocytosis and clathrin-mediated endocytosis. J. Infect. Dis., 2011, vol. 204, no. 3, pp. 957–967. doi: 10.1093/infdis/jir326
  7. Alkafaas S.S., Abdallah A.M., Ghosh S., Loutfy S.A., Elkafas S.S., Abdel Fattah N.F., Hessien M. Insight into the role of clathrin-mediated endocytosis inhibitors in SARS-CoV-2 infection. Rev. Med. Virol., 2022, vol. 33, no. 1: e2403. doi: 10.1002/rmv.2403
  8. Amstutz B., Gastaldelli M., Kälin S., Imelli N., Boucke K., Wandeler E., Mercer J., Hemmi S., Greber U.F., Subversion of CtBP1-controlled macropinocytosis by human adenovirus serotype 3. EMBO J., 2008, vol. 27, no. 7, pp. 956–969. doi: 10.1038/emboj.2008.38
  9. Bachmann M.F., Zinkernagel R.M. Neutralizing antiviral B cell responses. Annu. Rev. Immunol., 1997, vol. 15, pp. 235–270. doi: 10.1146/annurev.immunol.15.1.235
  10. Bachmann M.F., Jennings G.T. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol., 2010, vol. 10, pp. 787–796. doi: 10.1038/nri2868
  11. Baljon J.J., Wilson J.T. Bioinspired vaccines to enhance MHC class-I antigen cross-presentation. Curr. Opin. Immunol., 2022, vol. 77: 102215. doi: 10.1016/j.coi.2022.102215
  12. Bantel-Schaal U., Hub B., Kartenbeck J. Endocytosis of adeno-associated virus type 5 leads to accumulation of virus particles in the Golgi compartment. J. Virol., 2002, vol. 76, no. 5, pp. 2340–2349. doi: 10.1128/jvi.76.5.2340-2349.2002
  13. Bartlett J.S., Wilcher R., Samulski R.J. Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors. J. Virol., 2000, vol. 74, no. 6, pp. 2777–2785. doi: 10.1128/jvi.74.6.2777-2785.2000
  14. Becker M., Dominguez M., Greune L., Soria-Martinez L., Pfleiderer M.M., Schowalter R., Buck C.B., Blaum B.S., Schmidt M.A., Schelhaas M. Infectious entry of merkel cell polyomavirus. J. Virol., 2019, vol. 93, no. 6: e02004-18. doi: 10.1128/JVI.02004-18
  15. Besson S., Laurin D., Chauvière C., Thépaut M., Kleman J.P., Pezet M., Manches O., Fieschi F., Aspord C., Fender P. Adenovirus-inspired virus-like-particles displaying melanoma tumor antigen specifically target human DC subsets and trigger antigen-specific immune responses. Biomedicines, 2022, vol. 10, no. 11: 2881. doi: 10.3390/biomedicines10112881
  16. Blanchard E., Belouzard S., Goueslain L., Wakita T., Dubuisson J., Wychowski C., Rouillé Y. Hepatitis C virus entry depends on clathrin-mediated endocytosis. J. Virol., 2006, vol. 80, no. 14, pp. 6964–6972. doi: 10.1128/JVI.00024-06
  17. Bookstaver M.L., Hess K.L., Jewell C.M. Self-assembly of immune signals improves codelivery to antigen presenting cells and accelerates signal internalization, processing kinetics, and immune activation. Small, 2018, vol. 14, no. 38: e1802202. doi: 10.1002/smll.201802202
  18. Boucrot E., Ferreira A., Almeida-Souza L., Debard S., Vallis Y., Howard G., Bertot L., Sauvonnet N., McMahon H.T. Endophilin marks and controls a clathrin-independent endocytic pathway. Nature, 2015, vol. 517, pp. 460–465. doi: 10.1038/nature14067
  19. Bousarghin L., Hubert P., Franzen E., Jacobs N., Boniver J., Delvenne P. Human papillomavirus 16 virus-like particles use heparan sulfates to bind dendritic cells and colocalize with langerin in Langerhans cells. J. Gen. Virol., 2005, vol. 86, no. 5, pp. 1297–1305. doi: 10.1099/vir.0.80559-0
  20. Bousarghin L., Touzé A., Sizaret P.Y., Coursaget P. Human papillomavirus types 16, 31, and 58 use different endocytosis pathways to enter cells. J. Virol., 2003, vol. 77, no. 6, pp. 3846–3850. doi: 10.1128/jvi.77.6.3846-3850.2003
  21. Burgdorf S., Kurts C. Endocytosis mechanisms and the cell biology of antigen presentation. Curr. Opin. Immunol., 2008, vol. 20, no. 1, pp. 89–95. doi: 10.1016/j.coi.2007.12.002
  22. Buseyne F., Le Gall S., Boccaccio C., Abastado J.P., Lifson J.D., Arthur L.O., Riviere Y., Heard J.M., Schwartz O. MHC-I-restricted presentation of HIV-1 virion antigens without viral replication. Nat. Med., 2001, vol. 7, pp. 344–349. doi: 10.1038/85493
  23. Caulier B., Stofleth G., Hannani D., Guidetti M., Josserand V., Laurin D., Chroboczek J., Mossuz P., Plantaz D. Evaluation of the human type 3 adenoviral dodecahedron as a vector to target acute myeloid leukemia. Mol. Ther. Methods. Clin. Dev., 2020, vol. 20, pp. 181–190. doi: 10.1016/j.omtm.2020.11.009
  24. Champion J.A., Mitragotri S. Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA, 2006, vol. 103, no. 13, pp. 4930–4934. doi: 10.1073/pnas.0600997103
  25. Charpentier J.C., King P.D. Mechanisms and functions of endocytosis in T cells. Cell Commun Signal, 2021, vol. 19: 92. doi: 10.1186/s12964-021-00766-3
  26. Chen S.L., Liu Y.G., Zhou Y.T., Zhao P., Ren H., Xiao M., Zhu Y.Z., Qi Z.T. Endophilin-A2-mediated endocytic pathway is critical for enterovirus 71 entry into caco-2 cells. Emerg. Microbes Infect., 2019, vol. 8, no. 1, pp. 773–786. doi: 10.1080/22221751.2019.1618686
  27. Chung S.K., Kim J.Y., Kim I.B., Park S.I., Paek K.H., Nam J.H. Internalization and trafficking mechanisms of coxsackievirus B3 in HeLa cells. Virology, 2005, vol. 333, no. 1, pp. 31–40. doi: 10.1016/j.virol.2004.12.010
  28. Colbert J.D., Cruz F.M., Rock K.L. Cross-presentation of exogenous antigens on MHC I molecules. Curr. Opin. Immunol., 2020, vol. 64, pp. 1–8. doi: 10.1016/j.coi.2019.12.005
  29. Cooper A., Shaul Y. Clathrin-mediated endocytosis and lysosomal cleavage of hepatitis B virus capsid-like core particles. J. Biol. Chem., 2006, vol. 281, no. 24, pp. 16563–16569. doi: 10.1074/jbc.M601418200
  30. Coste B., Xiao B., Santos J.S., Syeda R., Grandl J., Spencer K.S., Kim S.E., Schmidt M., Mathur J., Dubin A.E., Montal M., Patapoutian A. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature, 2012, vol. 483, pp. 176–181. doi: 10.1038/nature10812
  31. Culter C.W., Jotwani R. Dendritic cells at the oral mucosal interface. J. Dent. Res., 2006, vol. 85, pp. 678-689. doi: 10.1177/ 154405910608500801
  32. Damm E.M., Pelkmans L., Kartenbeck J., Mezzacasa A., Kurzchalia T., Helenius A. Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J. Cell. Biol., 2005, vol. 168, no. 3, pp. 477–488. doi: 10.1083/jcb.200407113
  33. Danthi P., Guglielmi K.M., Kirchner E., Mainou B., Stehle T., Dermody T.S. From touchdown to transcription: the reovirus cell entry pathway. Curr. Top. Microbiol. Immunol., 2010, vol. 343, pp. 91–119. doi: 10.1007/82_2010_32
  34. Day P.M., Lowy D.R., Schiller J.T. Papillomaviruses infect cells via a clathrin-dependent pathway. Virology, 2003, vol. 307, no. 1, pp. 1–11. doi: 10.1016/s0042-6822(02)00143-5
  35. Delamarre L., Pack M., Chang H., Mellman I., Trombetta E.S. Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science, 2005, vol. 307, pp. 1630–1634. doi: 10.1126/science.1108003
  36. Ding W., Zhang L., Yan Z., Engelhardt J.F. Intracellular trafficking of adeno-associated viral vectors. Gene Ther., 2005, vol. 12, pp. 873–880. doi: 10.1038/sj.gt.3302527
  37. Duan D., Li Q., Kao A.W., Yue Y., Pessin J.E., Engelhardt J.F. Dynamin is required for recombinant adeno-associated virus type 2 infection. J. Virol., 1999, vol. 73, no. 12, pp. 10371–10376. doi: 10.1128/JVI.73.12.10371-10376.1999
  38. Elsen S., Doussière J., Villiers C.L., Faure M., Berthier R., Papaioannou A., Grandvaux N., Marche P.N., Vignais P.V. Cryptic O2–-generating NADPH oxidase in dendritic cells. J. Cell. Sci., 2004, vol. 117, no. 11, pp. 2215–2226. doi: 10.1242/jcs.01085
  39. Fender P., Schoehn G., Perron-Sierra F., Tucker G.C., Lortat-Jacob H. Adenovirus dodecahedron cell attachment and entry are mediated by heparan sulfate and integrins and vary along the cell cycle. Virology, 2008, vol. 371, no. 1, pp. 155–164. doi: 10.1016/ j.virol.2007.09.026
  40. Geng J., Shi Y., Zhang J., Yang B., Wang P., Yuan W., Zhao H., Li J., Qin F., Hong L., Xie C., Deng X., Sun Y., Wu C., Chen L., Zhou D. TLR4 signalling via Piezo1 engages and enhances the macrophage mediated host response during bacterial infection. Nat. Commun. 2021, vol. 12: 3519. doi: 10.1038/s41467-021-23683-y
  41. Gonçalves-Carneiro D., McKeating J.A., Bailey D. The measles virus receptor SLAMF1 can mediate particle endocytosis. J. Virol.,2017, vol. 91, no. 7: e02255-16. doi: 10.1128/JVI.02255-16
  42. Grosse S., Aron Y., Thévenot G., François D., Monsigny M., Fajac I. Potocytosis and cellular exit of complexes as cellular pathways for gene delivery by polycations. J. Gene Med., 2005, vol. 7, no. 10, pp. 1275–1286. doi: 10.1002/jgm.772
  43. Grunert H.P., Wolf K.U., Langner K.D., Sawitzky D., Habermehl K.O., Zeichhardt H. Internalization of human rhinovirus 14 into HeLa and ICAM-1-transfected BHK cells. Med. Microbiol. Immunol., 1997, vol. 186, no. 1, pp. 1–9. doi: 10.1007/s004300050039
  44. Guermonprez P., Valladeau J., Zitvogel L., Thery C., Amigorena S. Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol., 2002, vol. 20, pp. 621–667. doi: 10.1146/annurev.immunol.20.100301.064828
  45. Guo Y.Y., Gao Y., Hu Y.R., Zhao Y., Jiang D., Wang Y., Zhang Y., Gan H., Xie C., Liu Z., Zhong B., Zhang Z.D., Yao J. The transient receptor potential vanilloid 2 (TRPV2) channel facilitates virus infection through the Ca2+ -LRMDA axis in myeloid cells. Adv. Sci. (Weinh)., 2022, vol. 9, no. 34: e2202857. doi: 10.1002/advs.202202857
  46. Guo J., Hou L., Zhou J., Wang D., Cui Y., Feng X., Liu J. Porcine circovirus type 2 vaccines: commercial application and research advances. Viruses, 2022, vol. 14, no. 9: 2005. doi: 10.3390/v14092005
  47. Hall A., Ekiel I., Mason R.W., Kasprzykowski F., Grubb A., Amrahamson M. Structural basis for different inhibitory specificities of human cystatins C and D. Biochemistry, 1998, vol. 37, pp. 4071–4079. doi: 10.1021/bi971197j
  48. Harding C.V., Song R. Phagocytic processing of exogenous particulate antigens by macrophages for presentation by class I MHC molecules. J. Immunol., 1994, vol. 153, no. 11, pp. 4925–4933.
  49. Heikkilä O., Susi P., Tevaluoto T., Härmä H., Marjomäki V., Hyypiä T., Kiljunen S. Internalization of coxsackievirus A9 is mediated by {beta}2-microglobulin, dynamin, and Arf6 but not by caveolin-1 or clathrin. J. Virol., 2010, vol. 84, no. 7, pp. 3666–3681. doi: 10.1128/JVI.01340-09
  50. Herrscher C., Pastor F., Burlaud-Gaillard J., Dumans A., Seigneuret F., Moreau A., Patient R., Eymieux S., de Rocquigny H., Hourioux C., Roingeard P., Blanchard E. Hepatitis B virus entry into HepG2-NTCP cells requires clathrin-mediated endocytosis. Cell. Microbiol., 2020, vol. 22, no. 8: e13205. doi: 10.1111/cmi.13205
  51. Holla P., Ahmad I., Ahmed Z., Jameel S. Hepatitis E virus enters liver cells through a dynamin-2, clathrin and membrane cholesterol-dependent pathway. Traffic, 2015, vol. 16, no. 4, pp. 398–416. doi: 10.1111/tra.12260
  52. Huang H.C., Chen C.C., Chang W.C., Tao M.H., Huang C. Entry of hepatitis B virus into immortalized human primary hepatocytes by clathrin-dependent endocytosis. J. Virol., 2012, vol. 86, no. 17, pp. 9443–9453. doi: 10.1128/JVI.00873-12
  53. Jutras I., Desjardins M. Phagocytosis: at the crossroads of innate and adaptive immunity. Annu. Rev. Cell. Dev. Biol., 2005, vol. 21, pp. 511–527. doi: 10.1146/annurev.cellbio.20.010403.102755
  54. Kapur N., Thakral D., Durgapal H., Panda S.K. Hepatitis E virus enters liver cells through receptor-dependent clathrin-mediated endocytosis. J. Viral. Hepat., 2012, vol. 19, no. 6, pp. 436–448. doi: 10.1111/j.1365-2893.2011.01559.x
  55. Katsarou K., Lavdas A.A., Tsitoura P., Serti E., Markoulatos P., Mavromara P., Georgopoulou U. Endocytosis of hepatitis C virus non-enveloped capsid-like particles induces MAPK-ERK1/2 signaling events. Cell. Mol. Life Sci., 2010, vol. 67, no. 14, pp. 2491–2506. doi: 10.1007/s00018-010-0351-5
  56. Kovacsovics-Bankowski M., Clark K., Benacerraf B., Rock K.L. Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages. Proc. Natl Acad. Sci. USA, 1993, vol. 90, no. 11, pp. 4942–4926. doi: 10.1073/pnas.90.11.4942
  57. Lennon-Dumenil A.M., Bakker A.H., Maehr R., Fiebiger E., Overkleeft H.S., Rosemblatt M., Ploegh H.L., Lagaudrière-Gesbert C. Analysis of protease activity in live antigen-presenting cells shown regulation of the phagosomal proteolytic contents during dendritic cell activation. J. Exp. Med., 2002, vol. 196, pp. 529–540. doi: 10.1084/jem.20020327
  58. El-Sayed A., Harashima H. Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol. Ther., 2013, vol. 21, no. 6, pp. 1118–1130. doi: 10.1038/mt.2013.54
  59. Macovei A., Radulescu C., Lazar C., Petrescu S., Durantel D., Dwek R.A., Zitzmann N., Nichita N.B. Hepatitis B virus requires intact caveolin-1 function for productive infection in HepaRG cells. J. Virol., 2010, vol. 84, no. 1, pp. 243–253. doi: 10.1128/JVI.01207-09
  60. Makarkov A.I., Golizeh M., Ruiz-Lancheros E., Gopal A.A., Costas-Cancelas I.N., Chierzi S., Pillet S., Charland N., Landry N., Rouiller I., Wiseman P.W., Ndao M., Ward B.J. Plant-derived virus-like particle vaccines drive cross-presentation of influenza A hemagglutinin peptides by human monocyte-derived macrophages. NPJ Vaccines, 2019, vol. 4: 17. doi: 10.1038/s41541-019-0111-y
  61. Marchant D., Sall A., Si X., Abraham T., Wu W., Luo Z., Petersen T., Hegele R.G., McManus B.M. ERK MAP kinase-activated Arf6 trafficking directs coxsackievirus type B3 into an unproductive compartment during virus host-cell entry. J. Gen. Virol., 2009, vol. 90, no. 4, pp. 854–862. doi: 10.1099/vir.0.005868-0
  62. Marjomäki V., Pietiäinen V., Matilainen H., Upla P., Ivaska J., Nissinen L., Reunanen H., Huttunen P., Hyypiä T., Heino J. Internalization of echovirus 1 in caveolae. J. Virol., 2002, vol. 76, no. 4, pp. 1856–1865. doi: 10.1128/jvi.76.4.1856-1865.2002
  63. Marsac D., Loirat D., Petit C., Schwartz O., Michel M.L. Enhanced presentation of major histocompatibility complex class I-restricted human immunodeficiency virus type 1 (HIV-1) Gag-specific epitopes after DNA immunization with vectors coding for vesicular stomatitis virus glycoprotein-pseudotyped HIV-1 Gag particles. J. Virol., 2002, vol. 76, no. 15, pp. 7544–7553. doi: 10.1128/jvi.76.15.7544-7553.2002
  64. Matlin K.S., Reggio H., Helenius A., Simons K. Infectious entry pathway of influenza virus in a canine kidney cell line. J. Cell. Biol., 1981, vol. 91, no. 3, pp. 601–613. doi: 10.1083/jcb.91.3.601
  65. Matlin K.S., Reggio H., Helenius A., Simons K. Pathway of vesicular stomatitis virus entry leading to infection. J. Mol. Biol., 1982, vol. 156, no. 3, pp. 609–631. doi: 10.1016/0022-2836(82)90269-8
  66. Mayberry C.L., Soucy A.N., Lajoie C.R., DuShane J.K., Maginnis M.S. JC polyomavirus entry by clathrin-mediated endocytosis is driven by β-arrestin. J. Virol., 2019, vol. 93, no. 8: e01948-18. doi: 10.1128/JVI.01948-18
  67. Meertens L., Bertaux C., Dragic T. Hepatitis C virus entry requires a critical postinternalization step and delivery to early endosomes via clathrin-coated vesicles. J. Virol., 2006, vol. 80, no. 23, pp. 11571–11578. doi: 10.1128/JVI.01717-06
  68. Meier O., Boucke K., Hammer S.V., Keller S., Stidwill R.P., Hemmi S., Greber U.F. Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. J. Cell. Biol., 2002, vol. 158, no. 6, pp. 1119–1131. doi: 10.1083/jcb.200112067
  69. Meier O., Greber U.F. Adenovirus endocytosis. J. Gene. Med., 2004, vol. 6, no, 1, pp. 152–163. doi: 10.1002/jgm.553
  70. Mercer J., Helenius A. Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science, 2008, vol. 320, no. 5875, pp. 531–535. doi: 10.1126/science.1155164
  71. Mercer J., Schelhaas M., Helenius A. Virus entry by endocytosis. Annu. Rev. Biochem., 2010, vol. 79, pp. 803–833. doi: 10.1146/annurev-biochem-060208-104626
  72. Mittler E., Dieterle M.E., Kleinfelter L.M., Slough M.M., Chandran K., Jangra R.K. Hantavirus entry: Perspectives and recent advances. Adv. Virus. Res., 2019, vol. 104, pp. 185–224. doi: 10.1016/bs.aivir.2019.07.002
  73. Moffat J.M., Cheong W.S., Villadangos J.A., Mintern J.D., Netter H.J. Hepatitis B virus-like particles access major histocompatibility class I and II antigen presentation pathways in primary dendritic cells. Vaccine, 2013, vol. 31, no. 18, pp. 2310–2316. doi: 10.1016/j.vaccine.2013.02.042
  74. Mohsen M.O., Bachmann M.F. Virus-like particle vaccinology, from bench to bedside. Cell. Mol. Immunol., 2022, vol. 19, pp. 993–1011. doi: 10.1038/s41423-022-00897-8
  75. Nanbo A., Imai M., Watanabe S., Noda T., Takahashi K., Neumann G., Halfmann P., Kawaoka Y. Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner. PLoS Pathog., 2010, vol. 6, no. 9: e1001121. doi: 10.1371/journal.ppat.1001121
  76. Nichols B. Caveosomes and endocytosis of lipid rafts. J. Cell. Sci., 2003, vol. 116, no. 23, pp. 4707–4714. doi: 10.1242/jcs.00840
  77. Nishi K., Saigo K. Cellular internalization of green fluorescent protein fused with herpes simplex virus protein VP22 via a lipid raft-mediated endocytic pathway independent of caveolae and Rho family GTPases but dependent on dynamin and Arf6. J. Biol. Chem., 2007, vol. 282, no. 37, pp. 27503–27517. doi: 10.1074/jbc.M703810200
  78. Nonnenmacher M., Weber T. Adeno-associated virus 2 infection requires endocytosis through the CLIC/GEEC pathway. Cell. Host. Microbe, 2011, vol. 10, no. 6, pp. 563–576. doi: 10.1016/j.chom.2011.10.014
  79. Nooraei S., Bahrulolum H., Hoseini Z.S., Katalani C., Hajizade A., Easton A.J., Ahmadian G. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J. Nanobiotechnol., 2021, vol. 19, no. 1: 59. doi: 10.1186/s12951-021-00806-7
  80. Norbury C.C. Drinking a lot is good for dendritic cells. Immunology, 2006, vol. 117, pp. 443–451. doi: 10.1111/j.1365-2567.2006. 02335.x
  81. Owczarek K., Chykunova Y., Jassoy C., Maksym B., Rajfur Z., Pyrc K. Zika virus: mapping and reprogramming the entry. Cell. Commun. Signal., 2019, vol. 17, no. 1: 41. doi: 10.1186/s12964-019-0349-z
  82. Pelkmans L., Kartenbeck J., Helenius A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat. Cell. Biol., 2001, vol. 3, no. 5, pp. 473–483. doi: 10.1038/35074539
  83. Raghu H., Sharma-Walia N., Veettil M.V., Sadagopan S., Chandran B. Kaposi’s sarcoma-associated herpesvirus utilizes an actin polymerization-dependent macropinocytic pathway to enter human dermal microvascular endothelial and human umbilical vein endothelial cells. J. Virol., 2009, vol. 83, no. 10, pp. 4895–4911. doi: 10.1128/JVI.02498-08
  84. Reits E., Griekspoor A., Neijssen J., Groothuis T., Jalink K., van Veelen P., Janssen H., Calafat J., Drijfhout J.W., Neefjes J. Peptide diffusion, protection, and degradation in nuclear and cytoplasmic compartments before antigen presentation by MHC class I. Immunity, 2003, vol. 18, no. 1, pp. 97–108. doi: 10.1016/s1074-7613(02)00511-3
  85. Rejman J., Oberle V., Zuhorn I.S., Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J., 2004, vol. 377, no. 1, pp. 159–169. doi: 10.1042/BJ20031253
  86. Renard H.F., Boucrot E. Unconventional endocytic mechanisms. Curr. Opin. Cell. Biol., 2021, vol. 71, pp. 120–129. doi: 10.1016/ j.ceb.2021.03.001
  87. Richterová Z., Liebl D., Horák M., Palková Z., Stokrová J., Hozák P., Korb J., Forstová J. Caveolae are involved in the trafficking of mouse polyomavirus virions and artificial VP1 pseudocapsids toward cell nuclei. J. Virol., 2001, vol. 75, no. 22, pp. 10880–10891. doi: 10.1128/JVI.75.22.10880-10891.2001
  88. Roberts A.D., Davenport T.M., Dickey A.M., Ahn R., Sochacki K.A., Taraska J.W. Structurally distinct endocytic pathways for B cell receptors in B lymphocytes. Mol. Biol. Cell, 2020, vol. 31, no. 25, pp. 2826–2840. doi: 10.1091/mbc.E20-08-0532
  89. Roger E., Lagarce F., Garcion E., Benoit J.P. Lipid nanocarriers improve paclitaxel transport throughout human intestinal epithelial cells by using vesicle-mediated transcytosis. J. Control. Release, 2009, vol. 140, no. 2, pp. 174–181. doi: 10.1016/j.jconrel.2009.08.010
  90. Rust M.J., Lakadamyali M., Zhang F., Zhuang X. Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat. Struct. Mol. Biol., 2004, vol. 11, no. 6, pp. 567–573. doi: 10.1038/nsmb769
  91. Saeed M.F., Kolokoltsov A.A., Albrecht T., Davey R.A. Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes. PLoS Pathog., 2010, vol. 6, no. 9: e1001110. doi: 10.1371/journal.ppat.1001110
  92. Sánchez-San Martín C., López T., Arias C.F., López S. Characterization of rotavirus cell entry. J. Virol., 2004, vol. 78, no. 5, pp. 2310–2318. doi: 10.1128/jvi.78.5.2310-2318.2004
  93. Savina A., Amigorena S. Phagocytosis and antigen presentation in dendritic cells. Immunol. Rev., 2007, vol. 219, pp. 143–156. doi: 10.1111/j.1600-065X.2007.00552.x
  94. Shafaq-Zadah M., Dransart E., Johannes L. Clathrin-independent endocytosis, retrograde trafficking, and cell polarity. Curr. Opin. Cell Biol., 2020, vol. 65, pp. 112–121. doi: 10.1016/j.ceb.2020.05.009
  95. Shrimpton R.E., Butler M., Morel A.-S., Eren E., Hue S.S., Ritter M.A. CD205 (DEC-205): a recognition receptor for apoptotic and necrotic self. Mol. Immunol., 2009, vol. 46, no. 6, pp. 1229–1239. doi: 10.1016/j.molimm.2008.11.016
  96. Sousa de Almeida M., Susnik E., Drasler B., Taladriz-Blanco P., Petri-Fink A., Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem. Soc. Rev., 2021, vol. 50, no. 9, pp. 5397–5434. doi: 10.1039/d0cs01127d
  97. Tse D., Armstrong D.A., Oppenheim A., Kuksin D., Norkin L., Stan R.V. Plasmalemmal vesicle associated protein (PV1) modulates SV40 virus infectivity in CV-1 cells. Biochem. Biophys. Res. Commun., 2011, vol. 412, no. 2, pp. 220–225. doi: 10.1016/j.bbrc.2011.07.063
  98. Tsunetsugu-Yokota Y., Morikawa Y., Isogai M., Kawana-Tachikawa A., Odawara T., Nakamura T., Grassi F., Autran B., Iwamoto A. Yeast-derived human immunodeficiency virus type 1 p55(gag) virus-like particles activate dendritic cells (DCs) and induce perforin expression in Gag-specific CD8(+) T cells by cross-presentation of DCs. J. Virol., 2003, vol. 77, no. 19, pp. 10250–10259. doi: 10.1128/jvi.77.19.10250-10259.2003
  99. Wang Z., Tiruppathi C., Minshall R.D., Malik A.B. Size and dynamics of caveolae studied using nanoparticles in living endothelial cells. ACS Nano, 2009, vol. 3, no. 12, pp. 4110–4116. doi: 10.1021/nn9012274
  100. West M.A., Prescott A.R., Chan K.M., Zhou Z., Rose-John S., Scheller J., Watts C. TLR ligand-induced podosome disassembly in dendritic cells is ADAM17 dependent. J. Cell Biol., 2008, vol. 182, no. 5, pp. 993–1005. doi: 10.1083/jcb.200801022
  101. Wickham T.J., Mathias P., Cheresh D.A., Nemerow G.R. Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell, 1993, vol. 73, no. 2, pp. 309–319. doi: 10.1016/0092-8674(93)90231-e
  102. Wu Y., Wu W., Wong W.M., Ward E., Thrasher A.J., Goldblatt D., Osman M., Digard P., Canaday D.H., Gustafsson K. Human gamma delta T cells: a lymphoid lineage cell capable of professional phagocytosis. J. Immunol., 2009, vol. 183, no. 9, pp. 5622–5629. doi: 10.4049/jimmunol.0901772
  103. Yan M., Peng J., Jabbar I.A., Liu X., Filgueira L., Frazer I.H., Thomas R. Despite differences between dendritic cells and Langerhans cells in the mechanism of papillomavirus-like particle antigen uptake, both cells cross-prime T cells. Virology, 2004, vol. 324, no. 2, pp. 297–310. doi: 10.1016/j.virol.2004.03.045
  104. Ye D., Zimmermann T., Demina V., Sotnikov S., Ried C.L., Rahn H., Stapf M., Untucht C., Rohe M., Terstappen G.C., Wicke K., Mezler M., Manninga H., Meyer A.H. Trafficking of JC virus-like particles across the blood-brain barrier. Nanoscale Adv., 2021, vol. 3, no. 9, pp. 2488–2500. doi: 10.1039/d0na00879f
  105. Yrlid U., Svensson M., Johansson C., Wick M.J. Salmonella infection of bone marrow-derived macrophages and dendritic cells: influence on antigen presentation and initiating an immune response. FEMS Immunol. Med. Microbiol., 2000, vol. 27, no. 4, pp. 313–320. doi: 10.1111/j.1574-695X.2000.tb01445.x
  106. Zackova Suchanova J., Hejtmankova A., Neburkova J., Cigler P., Forstova J., Spanielova H. The protein corona does not influence receptor-mediated targeting of virus-like particles. Bioconjug. Chem., 2020, vol. 31, no. 5, pp. 1575–1585. doi: 10.1021/acs.bioconjchem.0c00240
  107. Zepeda-Cervantes J., Ramírez-Jarquín J.O., Vaca L. Interaction between virus-like particles (VLPs) and pattern recognition receptors (PRRs) from dendritic cells (DCs): toward better engineering of VLPs. Front. Immunol., 2020, vol. 11: 1100. doi: 10.3389/fimmu.2020.01100
  108. Zhu Y., Wang H., Xu Y., Hu Y., Chen H., Cui L., Zhang J., He W. Human γδ T cells augment antigen presentation in Listeria monocytogenes infection. Mol. Med., 2016, vol. 22, pp. 737–746. doi: 10.2119/molmed.2015.00214

Copyright (c) 2023 Talayev V.Y., Zaichenko I.Y., Babaykina O.N., Svetlova M.V., Voronina E.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies