Vitamin D signal cascade in macrophages against Mycobacterium tuberculosis

Cover Page

Cite item

Full Text

Abstract

Mycobacterium tuberculosis is the causative agent of human tuberculosis; enabling multilayered mechanisms to evade from immune response along with reactivation of the process with subsequent pathogen dissemination. Modification of immune responses through imbalanced intracellular signaling pathways and reprogramming of differential gene expression is one of such mechanisms. Modification targets for M. tuberculosis are the genes which products are involved in lipid metabolism and apoptosis, a key to eliminate intracellular pathogens. here, we review the current scientific data related to this problem: the results of studies published in domestic and foreign literature from the years 2003 to 2022 were systematized and summarized; data on the role of a number of molecular mechanisms regulating lipid metabolism, autophagy and apoptosis in human TB-infection; discuss contemporary ideas about the importance of the VDR signaling cascade controlled by the vitamin D-axis counteracting M. tuberculosis infection, its course and outcome. In addition, there are provided the data on the main M. tuberculosis genetic lines common in Russia and Siberia and the elements of the pathogen-related genetic structure that are important in the context of the topic. The effects of interplay and interactions of intracellular molecular cascades (VDR, NF-kB, MAPK, NFAT5, AMPK, GR) are considered and analyzed, as well as their role in the differential expression of genes that ensure M. tuberculosis inactivation and elimination. Presenting the data confirming that one of the main strategies of mycobacterium immune evasion — counteraction to autophagy and apoptosis — is implemented through altered VDR signaling pathway, including the epigenetic mechanisms occurring in the pathogen. Based on results of the analysis and summarized literature data (60 articles retrieved from eLIBRARY, PubMed), it is demonstrated that during the thousand-year history of co-evolution with human, M. tuberculosis acquired unique features of genetic organization and mastered the pathways of immune evasion using non-genomic and genomic mechanisms. Available publications confirm that one of the main strategies for M. tuberculosis survival in macrophages is to modify a balance between intracellular signaling cascades controlling the differential expression of genes that provide a proper immune response to infection, followed by pathogen elimination.

About the authors

Marуa B. Lavriashina

Kemerovo State Medical University, Ministry of Health of Russian Federation

Author for correspondence.
Email: lmb2001@mail.ru

DSc (Biology), Associate Professor, Head of the Department of Molecular and Cellular Biology

Russian Federation, Kemerovo

Darya O. Imekina

Kemerovo State Medical University, Ministry of Health of Russian Federation

Email: lmb2001@mail.ru

Assistant of the Department of Molecular and Cellular Biology

Russian Federation, Kemerovo

Boris A. Tkhorenko

Kemerovo State University

Email: lmb2001@mail.ru

Postgraduate Student, Department of Genetics and Fundamental Medicine

Russian Federation, Кеmerovo

Marina V. Ulyanova

Kemerovo State Medical University, Ministry of Health of Russian Federation

Email: lmb2001@mail.ru

PhD (Biology), Associate Professor Department of Molecular and Cellular Biology

Russian Federation, Kemerovo

Alina V. Meyer

Kemerovo State Medical University, Ministry of Health of Russian Federation

Email: lmb2001@mail.ru

PhD (Biology), Associate Professor Department of Molecular and Cellular Biology

Russian Federation, Kemerovo

Olga L. Tarasova

Kemerovo State Medical University, Ministry of Health of Russian Federation

Email: lmb2001@mail.ru

PhD (Medicine), Associate Professor, Associate Professor of the Department of Pathological Physiology

Russian Federation, Kemerovo

Anna S. Sizova

Kemerovo State Medical University, Ministry of Health of Russian Federation

Email: lmb2001@mail.ru

Student of the Dental Faculty

Russian Federation, Kemerovo

Ekaterina O. Bryukhacheva

Kemerovo State Medical University, Ministry of Health of Russian Federation

Email: lmb2001@mail.ru

Postgraduate Student, Department of Phthisiology

Russian Federation, Kemerovo

Tatyana V. Pyanzova

Kemerovo State Medical University, Ministry of Health of Russian Federation

Email: lmb2001@mail.ru

DSc (Medicine), Associate Professor, Head of the Department of Phthisiology

Russian Federation, Kemerovo

References

  1. Беспятых Ю.А., Виноградова Т.И., Маничева О.А., Заболотных Н.В., Догонадзе М.З., Витовская М.Л., Гуляев А.С., Журавлев В.Ю., Шитиков Е.А., Ильина Е.Н. Вирулентность Mycobacterium tuberculosis генотипа Beijing в условиях in vivo // Инфекция и иммунитет. 2019. № 1. С. 173–182. [Bespyatykh Yu.A., Vinogradova T.I., Manicheva O.A., Zabolotnykh N.V., Dogonadze M.Z., Vitovskaya M.L., Gulyaev A.S., Zhuravlev V.Yu., Shitikov E.A., Ilyina E.N. Virulence of Mycobacterium tuberculosis genotype. Virulence of Mycobacterium tuberculosis of the Beijing genotype in vivo. Infektsiya i immunitet = Russian Journal of Infection and immunity, 2019, no. 1, pp. 173–182. (In Russ.)] doi: 10.15789/2220-7619-2019-1-173-182
  2. Вязовая А.А., Мокроусов И.В., Журавлев В.Ю., Соловьева Н.С., Оттен Т.Ф., Маничева О.А., Вишневский Б.И., Нарвская О.В. Молекулярная характеристика мультирезистентных штаммов Mycobacterium tuberculosis, выделенных на Северо-Западе России // Молекулярная генетика, микробиология и вирусология. 2016. № 1. С. 30–33. [Vyazovaya A.A., Mokrousov I.V., Zhuravlev V.Yu., Solovyova N.S., Otten T.F., Manicheva O.A., Vishnevsky B.I., Narvskaya O.V. Molecular characterization of multidrug-resistant strains of Mycobacterium tuberculosis isolated in the North-West of Russia. Molekulyarnaya genetika, mikrobiologiya i virusologiya = Molecular Genetics, Microbiology and Virology. 2016, no. 1, pp. 30–33. (In Russ.)] doi: 10.18821/0208-0613-2016-34-1-30-33
  3. Вязовая А.А., Пасечник О.А., Герасимова А.А., Мокроусов И.В. Структура популяции генетического семейства Beijing Mycobacterium tuberculosis на территории Западной Сибири // Туберкулез и болезни легких. 2020. Т. 98, № 5. С. 32–36. [Vyazovaya A.A., Pasechnik O.A., Gerasimova A.A., Mokrousov I.V. The population structure of Beijing family of Mycobacterium tuberculosis in Western Siberia. Tuberkulez i bolezni legkikh = Tuberculosis and Lung Diseases, 2020, vol. 98, no. 5, pp. 32–36. (In Russ.)]. doi: 10.21292/2075-1230-2020-98-5-32-36
  4. Зенков Н.К., Чечушков А.В., Кожин П.М., Колпакова Т.А., Меньшикова Е.Б. Макрофаг и микобактерия: война без начала и конца // Успехи современной биологии. 2015. Т. 135, № 6. С. 554–574. [Zenkov N.K., Chechushkov A.V., Kozhin P.M., Kolpakova T.A., Menshchikova E.B. Macrophage and mycobacteria: war without beginning or end. Uspekhi sovremennoi biologii = Successes of Modern Biology, 2015, vol. 135, no. 6, pp. 554–574. (In Russ.)]
  5. Каминская Г.О., Абдуллаев Р.Ю. Туберкулез и обмен липидов // Туберкулез и болезни легких. 2016. Т. 94, № 6. С. 53–63. [Kaminskaya G.O., Abdullaev R.Yu. Tuberculosis and lipid metabolism. Tuberkulez i bolezni legkikh = Tuberculosis and lung diseases, 2016, vol. 94, no. 6, pp. 53–63. (In Russ.)] doi: 10.21292/2075-1230-2016-94-6-53-63
  6. Alimirah F., Peng X., Yuan L., Mehta R.R., von Knethen A., Choubey D., Mehta R.G. Crosstalk between the peroxisome proliferator-activated receptor γ (PPARγ) and the vitamin D receptor (VDR) in human breast cancer cells: PPARγ binds to VDR and inhibits 1α,25-dihydroxyvitamin D3 mediated transactivation. Exp Cell Res., 2012, vol. 318, no. 19, pp. 2490–2497. doi: 10.1016/ j.yexcr.2012.07.020
  7. Anand P.K., Kaul D. Vitamin D3-dependent pathway regulates TACO gene transcription. Biochem. Biophys. Res. Commun., 2003, vol. 310, no. 3, pp. 876–877. doi: 10.1016/j.bbrc.2003.09.087
  8. Bishop L.E., Ismailova A., Dimeloe S., Hewison M., White J.H. Vitamin D and immune regulation: antibacterial, antiviral, anti-inflammatory. JBMR Plus., 2020, vol. 5, no. 1. doi: 10.1002/jbm4.10405
  9. Brudey K., Driscoll J.R., Rigouts L., Prodinger W.M., Gori A., Al-Hajoj S.A., Allix C., Aristimuño L., Arora J., Baumanis V., Binder L., Cafrune P., Cataldi A., Cheong S., Diel R., Ellermeier C., Evans J.T., Fauville-Dufaux M., Ferdinand S., Garcia de Viedma D., Garzelli C., Gazzola L., Gomes H.M., Guttierez M.C., Hawkey P.M., van Helden P.D., Kadival G.V., Kreiswirth B.N., Kremer K., Kubin M., Kulkarni S.P., Liens B., Lillebaek T., Ho M.L., Martin C., Martin C., Mokrousov I., Narvskaïa O., Ngeow Y.F., Naumann L., Niemann S., Parwati I., Rahim Z., Rasolofo-Razanamparany V., Rasolonavalona T., Rossetti M.L., Rüsch-Gerdes S., Sajduda A., Samper S., Shemyakin I.G., Singh U.B., Somoskovi A., Skuce R.A., van Soolingen D., Streicher E.M., Suffys P.N., Tortoli E., Tracevska T., Vincent V., Victor T.C., Warren R.M., Yap S.F., Zaman K., Portaels F., Rastogi N., Sola C. Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol., 2006, vol. 6: 23. doi: 10.1186/1471-2180-6-23
  10. Chen Y.C., Hsiao C.C., Chen T.W., Wu C.C., Chao T.Y., Leung S.Y., Eng H.L., Lee C.P., Wang T.Y., Lin M.C. Whole genome DNA methylation analysis of active pulmonary tuberculosis disease identifies novel epigenotypes: PARP9/miR-505/RASGRP4/GNG12 gene methylation and clinical phenotypes. Int. J. Mol. Sci., 2020, vol. 21, no. 9. doi: 10.3390/ijms21093180
  11. Christakos S. Vitamin D gene regulation. In: Principles of bone biology. Eds: Bilezikian J., Raisz L.G., Martin T.J. New York: Elsevier-Academic, 2008, pp. 779–794. doi: 10.1016/B978-012098652-1.50134-7
  12. Chun R.F., Liu P.T., Modlin R.L., Adams J.S., Hewison M. Impact of vitamin D on immune function: lessons learned from genome-wide analysis. Front. Physiol., 2014, vol. 5: 151. doi: 10.3389/fphys.2014.00151
  13. Clark-Curtiss J.E., Haydel S.E. Molecular genetics of Mycobacterium tuberculosis pathogenesis. Annu. Rev. Microbiol., 2003., vol. 57., pp. 517–49. doi: 10.1146/annurev.micro.57.030502.090903
  14. Coussens A. 1alpha,25-dihydroxyvitamin D3 inhibits matrix metalloproteinases induced by Mycobacterium tuberculosis infection. Immunology, 2009, vol. 127, no. 4, pp. 539–48. doi: 10.1111/j.1365-2567.2008.03024.x
  15. Daniel T.M., Iversen P.A. Hippocrates and tuberculosis. Int. J. Tuberc. Lung Dis., 2015, vol. 19, no. 4, pp. 373–374. doi: 10.5588/ijtld.14.0736
  16. DiNardo A.R., Rajapakshe K., Nishiguchi T., Grimm S.L., Mtetwa G., Dlamini Q., Kahari J., Mahapatra S., Kay A., Maphalala G., Mace E.M., Makedonas G., Cirillo J.D., Netea M.G., van Crevel R., Coarfa C., Mandalakas A.M. DNA hypermethylation during tuberculosis dampens host immune responsiveness. J. Clin. Invest., 2020, vol. 130, no. 6, pp. 3113–3123. doi: 10.1172/JCI134622
  17. Donoghue H.D. Paleomicrobiology of human tuberculosis. Microbiol. Spectr., 2016, vol. 4, no. 4. doi: 10.1128/microbiolspec.PoH-0003-2014
  18. Du Y., Gao X., Yan J., Zhang H., Cao X., Feng B., He Y., He Y., Guo T., Xin H., Gao L. Relationship between DNA methylation profiles and active tuberculosis development from latent infection: a pilot study in nested case-control design. Microbiol. Spectr., 2022, vol. 10, no. 3. doi: 10.1128/spectrum.00586-22
  19. Dymova M.A., Kinsht V.N., Cherednichenko A.G., Khrapov E.A., Svistelnik A.V., Filipenko M.L. Highest prevalence of the Mycobacterium tuberculosis Beijing genotype isolates in patients newly diagnosed with tuberculosis in the Novosibirsk oblast, Russian Federation. J. Med. Microbiol., 2011, vol. 60, no. 7, pp. 1003–1009. doi: 10.1099/jmm.0.027995-0
  20. Fadel L., Reho B., Volko J., Bojcsuk D., Kolostyak Z., Nagy G., Müller G., Simandi Z., Hegedüs E., Szabo G., Toth K., Nagy L., Vamosi G. Agonist binding directs dynamic competition among nuclear receptors for heterodimerization with retinoid X receptor. J. Biol. Chem., 2020, vol. 295, no. 29, pp. 10045–10061. doi: 10.1074/jbc.RA119.011614
  21. Glass C.K., Olefsky J.M. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab., 2012, vol. 15, no. 5, pp. 635–645. doi: 10.1016/j.cmet.2012.04.001
  22. Haussler M.R., Whitfield G.K., Kaneko I., Haussler C.A., Hsieh D., Hsieh J.C., Jurutka P.W. Molecular mechanisms of vitamin D action. Calcified Tissue Int., 2013, vol. 92, no. 2, pp. 77–98. doi: 10.1007/s00223-012-9619-0
  23. Hii C.S., Ferrante A. The non-genomic actions of vitamin D. Nutrients, 2016, vol. 8, no. 3: 135. doi: 10.3390/nu8030135
  24. Hmama Z., Peña-Diaz S., Joseph S., Av-Gay Y. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunol. Rev., 2015, vol. 261, no. 1, pp. 220–232. doi: 10.1111/imr.12268
  25. Hwang D.H., Kim J.A., Lee J.Y. Mechanisms for the activation of Toll-like receptor 2/4 by saturated fatty acids and inhibition by docosahexaenoic acid. Еur. J. Pharmacol., 2016, vol. 785, pp. 24–35. doi: 10.1016/j.ejphar.2016.04.024
  26. Jiang C., Zhu J., Liu Y., Luan X., Jiang Y., Jiang G., Fan J. The methylation state of VDR gene in pulmonary tuberculosis patients. J. Thorac. Dis., 2017, vol. 9, no. 11, pp. 4353–4357. doi: 10.21037/jtd.2017.09.107
  27. Jo E.K., Yang C.S., Choi C.H., Harding C.V. Intracellular signalling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors. Cell Microbiol., 2007, vol. 9, no. 5, pp. 1087–1098. doi: 10.1111/j.1462-5822.2007.00914.x
  28. Johnston J.B., Kells P.M., Podust L.M., Ortiz de Montellano P.R. Biochemical and structural characterization of CYP124: a methyl-branched lipid omega-hydroxylase from Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA, 2009, vol. 106, no. 49, pp. 20687–20692. doi: 10.1073/pnas.0907398106
  29. Kaul D., Anand P.K., Verma I. Cholesterol-sensor initiates M. tuberculosis entry into human macrophages. Mol. Cell. Biochem., 2004, vol. 258, pp. 219–222. doi: 10.1023/b:mcbi.0000012851.42642.be
  30. Khoo A.L., Chai L.Y., Koenen H.J., Oosting M., Steinmeyer A., Zuegel U., Joosten I., Netea M.G., van der Ven A.J. Vitamin D(3) down-regulates proinflammatory cytokine response to Mycobacterium tuberculosis through pattern recognition receptors while inducing protective cathelicidin production. Cytokine, 2011, vol. 55, no. 2, pp. 294–300. doi: 10.1016/j.cyto.2011.04.016
  31. Kleinnijenhuis J., Oosting M., Joosten L.A., Netea M.G., Van Crevel R. Innate immune recognition of Mycobacterium tuberculosis. Clin. Dev. Immunol., 2011, vol. 2011. doi: 10.1155/2011/405310
  32. Lipin M.Y., Stepanshina V.N., Shemyakin I.G., Shinnick T.M. Association of specific mutations in katG, rpoB, rpsL and rrs genes with spoligotypes of multidrug-resistant Mycobacterium tuberculosis isolates in Russia. Clin. Microbiol. Infect., 2007, vol. 13, no. 6, pp. 620–626. doi: 10.1111/j.1469-0691.2007.01711.x.
  33. Mahajan S., Dkhar H.K., Chandra V., Dave S., Nanduri R., Janmeja A.K., Agrewala J.N., Gupta P. Mycobacterium tuberculosis modulates macrophage lipid-sensing nuclear receptors PPARγ and TR4 for survival. J. Immunol., 2012, vol. 188, no. 11, pp. 5593–603. doi: 10.4049/jimmunol.1103038
  34. Masood K.I., Rottenberg M.E., Salahuddin N., Irfan M., Rao N., Carow B., Islam M., Hussain R., Hasan Z. Expression of M. tuberculosis-induced suppressor of cytokine signaling (SOCS) 1, SOCS3, FoxP3 and secretion of IL-6 associates with differing clinical severity of tuberculosis. BMC Infect. Dis., 2013, vol. 13. doi: 10.1186/1471-2334-13-13
  35. Meyer V., Saccone D.S., Tugizimana F., Asani F.F., Jeffery T.J., Bornman L. Methylation of the vitamin D receptor (VDR) gene, together with genetic variation, race, and environment influence the signaling efficacy of the Toll-like receptor 2/1-VDR pathway. Front. Immunol., 2017, vol. 8, no. 1048. doi: 10.3389/fimmu.2017.01048
  36. Mihaylova M.M., Shaw R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell. Biol., 2011, vol. 13, no. 9, pp. 1016–1023. doi: 10.1038/ncb2329
  37. Mo S.W., Zhu C.Z., Liu X.Q., Wan H.Q., Li F.X., Deng G.F., Zhang Z.D., Chen X.C. Mechanism of Mycobacterium tuberculosis on interleukin-6 receptor 3’-untranslated region methylation in CD4+T cells. Zhonghua Jie He He Hu Xi Za Zhi, 2022, vol. 45, no. 4, pp. 379–386. doi: 10.3760/cma.j.cn112147-20211206-00859
  38. Naeem M.A., Ahmad W., Tyagi R., Akram Q., Younus M., Liu X. Stealth strategies of Mycobacterium tuberculosis for immune evasion. Curr. Issues Mol. Biol., 2021, vol. 41, pp. 597–616. doi: 10.21775/cimb.041.597
  39. Norman A.W. Minireview: vitamin D receptor: new assignments for an already busy receptor. Endocrinology, 2006, vol. 147, no. 12, pp. 5542–5548. doi: 10.1210/en.2006-0946
  40. Nowag A., Hartmann P. Immune response to Mycobacterium tuberculosis. Internist (Berl.), 2016, vol. 52, no. 2, pp. 107–116. doi: 10.1007/s00108-015-0016-4
  41. Ogarkov O., Mokrousov I., Sinkov V., Zhdanova S., Antipina S., Savilov E. ‘Lethal’ combination of Mycobacterium tuberculosis Beijing genotype and human CD209 –336G allele in Russian male population. Infect. Genet. Evol., 2012, vol. 12, no. 4, pp. 732–736. doi: 10.1016/j.meegid.2011.10.005
  42. Park Y.K., Shin S., Ryu S., Cho S.N., Koh W.J., Kwon O.J., Shim Y.S., Lew W.J., Bai G.H. Comparison of drug resistance genotypes between Beijing and non-Beijing family strains of Mycobacterium tuberculosis in Korea. J. Microbiol. Methods, 2005, vol. 63, no. 2, pp. 165–172. doi: 10.1016/j.mimet.2005.03.002
  43. Parks W.C., Wilson C.L., López-Boado Y.S. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat. Rev. Immunol., 2004, vol. 4, no. 8, pp. 617–629. doi: 10.1038/nri1418
  44. Ryan J.W., Anderson P.H., Morris H.A. Pleiotropic activities of vitamin D receptors — adequate activation for multiple health outcomes. Clin. Biochem. Rev., 2015, vol. 36, no. 2, pp. 53–61.
  45. Saini N.K., Baena A., Ng T.W., Venkataswamy M.M., Kennedy S.C., Kunnath-Velayudhan S., Carreño L.J., Xu J., Chan J., Larsen M.H., Jacobs W.R. Jr., Porcelli S.A. Suppression of autophagy and antigen presentation by Mycobacterium tuberculosis PE_PGRS47. Nat. Microbiol., 2016, vol. 1, no. 9. doi: 10.1038/nmicrobiol.2016.133
  46. Sampson S.L. Mycobacterial PE/PPE proteins at the host-pathogen interface. Clin. Dev. Immunol., 2011, vol. 2011. doi: 10.1155/ 2011/497203
  47. Sasindran S.J., Torrelles J.B. Mycobacterium Tuberculosis Infection and Inflammation: what is Beneficial for the Host and for the Bacterium? Front. Microbiol., 2011, vol. 2. doi: 10.3389/fmicb.2011.00002
  48. Seth-Vollenweider T., Joshi S., Dhawan P., Sif S., Christakos S. Novel mechanism of negative regulation of 1,25-dihydroxyvitamin D3-induced 25-hydroxyvitamin D3 24-hydroxylase (Cyp24a1) transcription: epigenetic modification involving cross-talk between protein-arginine methyltransferase 5 and the SWI/SNF complex. J. Biol. Chem., 2014, vol. 289, no. 49, pp. 33958–33970. doi: 10.1074/jbc.M114.583302
  49. Sharma G., Upadhyay S., Srilalitha M., Nandicoori V.K., Khosla S. The interaction of mycobacterial protein Rv2966c with host chromatin is mediated through non-CpG methylation and histone H3/H4 binding. Nucleic Acids Res., 2015, vol. 43, no. 8, pp. 3922–3937. doi: 10.1093/nar/gkv261
  50. Slominski A.T., Kim T.K., Li W., Yi A.K., Postlethwaite A., Tuckey R.C. The role of CYP11A1 in the production of vitamin D metabolites and their role in the regulation of epidermal functions. J. Steroid Biochem. Mol. Biol., 2014, vol. 144, pp. 28–39. doi: 10.1016/j.jsbmb.2013.10.012
  51. Slominski A.T., Kim T.K., Qayyum S., Song Y., Janjetovic Z., Oak A., Slominski R.M., Raman C., Stefan J., Mier-Aguilar C.A., Atigadda V., Crossman D.K., Golub A., Bilokin Y., Tang E., Chen J.Y., Tuckey R.C., Jetten A.M., Song Y. Vitamin D and lumisterol derivatives can act on liver X receptors (LXRs). Sci. Rep., 2021, vol. 1, no. 1. doi: 10.1038/s41598-021-87061-w
  52. Strong E.J., Ng T.W., Porcelli S.A., Lee S. Mycobacterium tuberculosis PE_PGRS20 and PE_PGRS47 Proteins Inhibit Autophagy by Interaction with Rab1A. mSphere, 2021, vol. 6, no. 4. doi: 10.1128/mSphere.00549-21
  53. Thomas S.T., VanderVen B.C., Sherman D.R., Russell D.G., Sampson N.S. Pathway profiling in Mycobacterium tuberculosis: elucidation of cholesterol-derived catabolite and enzymes that catalyze its metabolism. J. Biol. Chem., 2011, vol. 286, no. 51, pp. 43668–43678. doi: 10.1074/jbc.M111.313643
  54. Thurston T.L., Ryzhakov G., Bloor S., von Muhlinen N., Randow F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol., 2009, vol. 11, no. 10, pp. 1215–1221. doi: 10.1038/ni.1800
  55. Vasilevskaya A.V., Yantsevich A.V., Sergeev G.V., Lemish A.P., Usanov S.A., Gilep A.A. Identification of Mycobacterium tuberculosis enzyme involved in vitamin D and 7-dehydrocholesterol metabolism. J. Steroid Biochem. Mol. Biol., 2017, vol. 169, pp. 202–209. doi: 10.1016/j.jsbmb.2016.05.021
  56. Watson R.O., Bell S.L., MacDuff D.A., Kimmey J.M., Diner E.J., Olivas J., Vance R.E., Stallings C.L., Virgin H.W., Cox J.S. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe, 2015, vol. 17, no. 6, pp. 811–819. doi: 10.1016/j.chom.2015.05.004
  57. Wilson A.S., Power B.E., Molloy P.L. DNA hypomethylation and human diseases. Biochim. Biophys. Acta, 2007, vol. 1775, no. 1, pp. 138–62. doi: 10.1016/j.bbcan.2006.08.007
  58. Wöbke T.K., Sorg B.L., Steinhilber D. Vitamin D in inflammatory diseases. Front. Physiol., 2014, vol. 5: 244. doi: 10.3389/fphys.2014.00244
  59. Wu Y., Lin X., Song F., Xue D., Wang Y. Vitamin D3 promotes autophagy in THP-1 cells infected with Mycobacterium tuberculosis. Exp. Ther. Med., 2022, vol. 23, no. 3: 240. doi: 10.3892/etm.2022.11165
  60. Yuk J.M., Shin D.M., Lee H.M., Yang C.S., Jin H.S., Kim K.K., Lee Z.W., Lee S.H., Kim J.M., Jo E.K. Vitamin D induces autophagy in human monocytes/macrophage via cathelicldin. Cell Host Microbe, 2009, vol. 6, no. 3, pp. 231–243. doi: 10.1016/ j.chom.2009.08.004
  61. Zink A.R., Sola C., Reischl U., Grabner W., Rastogi N., Wolf H., Nerlich A.G. Characterization of Mycobacterium tuberculosis complex DNAs from Egyptian mummies by spoligotyping. J. Clin. Microbiol., 2003, vol. 41, no. 1, pp. 359–367. doi: 10.1128/JCM.41.1.359-367.2003

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Lavriashina M.B., Imekina D.O., Tkhorenko B.A., Ulyanova M.V., Meyer A.V., Tarasova O.L., Sizova A.S., Bryukhacheva E.O., Pyanzova T.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».