Development of reassortant influenza vaccines: classical reassortment or reverse genetics?

Cover Page

Cite item

Full Text

Abstract

An important feature of influenza vaccines, which distinguishes them from other immunobiological preparations, is that they have no fixed composition. Due to the constant influenza virus antigenic variability, production facilities require timely supply with relevant vaccine strains undoable due to the lack of proper method for the convenient, rapid and uninterrupted development of vaccine strains. Among the licensed influenza vaccines, classical inactivated and live influenza vaccines hold a special place. They are based on reassortant vaccine strains obtained by crossing currently circulating influenza virus with the so-called donor strain (cold-adapted attenuation donor for live influenza vaccines or high yield donor for inactivated vaccines). Vaccine strains for licensed live attenuated influenza vaccines are reassortants with the so-called 6:2 genome formula — two genes encoding hemagglutinin and neuraminidase (HA and NA) belong to the current epidemic virus, and six genes encoding internal proteins (PB2, PB1, PA, NP, M and NS) — to cold-adapted master donor virus. There is a very limited number of donors of attenuation. In Russia, there are cold-adapted viruses A/Leningrad/134/17/57 (H2N2) and B/USSR/60/69; in the USA (MedImmune) there are viruses A/Ann Arbor/6/60ca (H2N2) and B/Ann Arbor/1/66ca. MedImmune produces vaccine strains using reverse genetics technique. For other countries, this approach for obtaining vaccines is limited due to the need to purchase a license from the patent holders. In Russia, genetic manipulations with strains for the seasonal live influenza vaccine are not yet allowed; reassortants for the Russian live influenza vaccine are created only by classical reassortment in embryonated chicken eggs. Vaccine candidates for the inactivated influenza vaccine are prepared by the classical reassortment method, the requirements for them are more flexible and allow to use diverse genes combinations from “wild type” virus and master donor virus. High-yielding viruses such as A/PR/8/34 (H1N1), A/Texas/1/77 (H3N2), B/Lee/40 and some others are used as donors of internal genes. Unfortunately, the classical reassortment method does not always allow to promptly obtain a reassortant virus with a 6:2 genome formula. This is hindered by a number of reasons, ranging from the unique properties of a certain epidemic virus ending up with the constellation of genes. The reverse genetics method based on plasmids is an alternative approach to create reassortant vaccine strains allowing to reliably and quickly obtain reassortant viruses of a set 6:2 genome formula. However, this method also has certain weaknesses. This review discusses the advantages and disadvantages of development of conventional influenza vaccine candidates by reverse genetics and classical reassortment in developing chick embryos.

About the authors

Irina V. Kiseleva

Institute of Experimental Medicine

Author for correspondence.
Email: irina.v.kiseleva@mail.ru

DSc (Biology), Professor, Head of the Laboratory of General Virology; Professor, Department of Fundamental Problems of Medicine and Medical technologies

Russian Federation, St. Petersburg

Larisa G. Rudenko

Institute of Experimental Medicine

Email: irina.v.kiseleva@mail.ru

DSc (Мedicine), Professor, Head of the A.A. Smorodintsev Department of Virology

Russian Federation, St. Petersburg

References

  1. Жданов В.М., Александрова Г.И., Гендон Ю.З. Живая гриппозная рекомбинантная вакцина в СССР: Разработка, изучение и практическое использование // Журнал микробиологии, эпидемиологии и иммунобиологии. 1986. № 7. С. 3–14. [Zhdanov V.M., Alexandrova G.I., Ghendon Y.Z. Live influenza recombinant vaccine in the USSR: Development, study and practical use. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 1986, no. 7, pp. 3–14. (In Russ.)]
  2. Киселева И.В., Баженова Е.А., Ларионова Н.В., Федорова Е.А., Дубровина И.А., Исакова-Сивак И.Н., Руденко Л.Г. Особенности реассортации современных штаммов вируса гриппа с донорами аттенуации живой гриппозной вакцины // Вопросы вирусологии. 2013. Т. 58, № 5. С. 26–31. [Kiseleva I.V., Bazhenova E.A., Larionova N.V., Fedorova E.A., Dubrovina I.A., Isakova-Sivak I.N., Rudenko L.G. Peculiarity of reassortment of current wild type influenza viruses with master donor viruses for live influenza vaccine. Voprosy virusologii = Problems of Virology, 2013, vol. 58, no. 5, pp. 26–31. (In Russ.)]
  3. Ларионова Н.В., Киселева И.В., Баженова Е.А., Григорьева Е.П., Руденко Л.Г. Влияние биологических свойств сезонных вирусов гриппа на эффективность подготовки штаммов живой гриппозной вакцины // Журнал микробиологии, эпидемиологии и иммунобиологии. 2019. № 5. С. 24–34. [Larionova N.V., Kiseleva I.V., Bazhenova E.A., Grigorieva E.P., Rudenko L.G. The influence of seasonal influenza viruses biological features on the effectiveness of development strains for live influenza vaccine. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2019, no. 5, pp. 24–34. (In Russ.)] doi: 10.36233/0372-9311-2019-5-24-34
  4. Ларионова Н.В., Киселева И.В., Руденко Л.Г. Эволюция вирусов гриппа по признаку чувствительности к температуре репродукции // Журнал микробиологии, эпидемиологии и иммунобиологии. 2019. № 6. С. 47–55. [Larionova N.V., Kiseleva I.V., Rudenko L.G. Evolution of influenza viruses based on sensitivity to temperature of replication. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2019, no. 6, pp. 47–55. (In Russ.)] doi: 10.36233/0372-9311-2019-6-47-55
  5. Ларионова Н.В., Киселева И.В., Исакова И.Н., Литвинова О.М., Руденко Л.Г. Фенотипические особенности эпидемических штаммов вируса гриппа В разных лет выделения // Вопросы вирусологии. 2006. № 5. С. 38–41. [Larionova N., Kiseleva I., Isakova I., Litvinova O., Rudenko L. Naturally occuring temperature-sensitive strains of influenza B virus. Voprosy virusologii = Problems of Virology, 2006, vol. 51, no. 5, pp. 38–41. (In Russ.)]
  6. Ambrose C.S., Luke C., Coelingh K. Current status of live attenuated influenza vaccine in the United States for seasonal and pandemic influenza. Influenza Other Respir. Viruses, 2008, vol. 2, no. 6, pp. 193–202. doi: 10.1111/j.1750-2659.2008.00056.x
  7. Baez M., Palese P., Kilbourne E.D. Gene composition of high-yielding influenza vaccine strains obtained by recombination. J. Infect. Dis., 1980, vol. 141, no. 3, pp. 362–365. doi: 10.1093/infdis/141.3.362
  8. Bazhenova E., Kiseleva I., Isakova-Sivak I., Kotomina T. Two alternative approaches to generate live attenuated influenza vaccine candidates against potentially pandemic avian influenza H7N9 virus. Biomed. J. Sci. Tech. Res., 2018, vol. 3, no. 4, pp. 3363–3365. doi: 10.26717/BJSTR.2018.03.000925
  9. Blanco-Lobo P., Nogales A., Rodríguez L., Martínez-Sobrido L. Novel approaches for the development of live attenuated influenza vaccines. Viruses, 2019, vol. 11, no. 2: 190. doi: 10.3390/v11020190
  10. Carter N.J., Curran M.P. Live attenuated influenza vaccine (Flumist®; FluenztmTM): A review of its use in the prevention of seasonal influenza in children and adults. Drugs, 2011, vol. 71, no. 12, pp. 1591–1622. doi: 10.2165/11206860-000000000-00000
  11. Costello D.A., Whittaker G.R., Daniel S. Variations in pH sensitivity, acid stability, and fusogenicity of three influenza virus H3 subtypes. J. Virol., 2015, vol. 89, no. 1, pp. 350–360. doi: 10.1128/jvi.01927-14
  12. Desheva J.A., Lu X.H., Rekstin A.R., Rudenko L.G., Swayne D.E., Cox N.J., Katz J.M., Klimov A.I. Characterization of an influenza A/H5N2 reassortant as a candidate for live-attenuated and inactivated vaccines against highly pathogenic H5N1 viruses with pandemic potential. Vaccine, 2006, vol. 24, no. 47–48, pp. 6859–6866. doi: 10.1016/j.vaccine.2006.06.023
  13. Fodor E., Devenish L., Engelhardt O.G., Palese P., Brownlee G.G., García-Sastre A. Rescue of influenza a virus from recombinant DNA. J. Virol., 1999, vol. 73, no. 11, pp. 9679–9682. doi: 10.1128/jvi.73.11.9679-9682.1999
  14. Fulvini A.A., Ramanunninair M., Le J., Pokorny B.A., Arroyo J.M., Silverman J., Devis R., Bucher D. Gene constellation of influenza A virus reassortants with high growth phenotype prepared as seed candidates for vaccine production. PLoS One, 2011, vol. 6, no. 6: e20823. doi: 10.1371/journal.pone.0020823
  15. Gilbertson B., Zheng T., Gerber M., Printz-Schweigert A., Ong C., Marquet R., Isel C., Rockman S., Brown L. Influenza NA and PB1 gene segments interact during the formation of viral progeny: localization of the binding region within the PB1 gene. Viruses, 2016, vol. 8, no. 8: 238. doi: 10.3390/v8080238
  16. Hoffmann E., Krauss S., Perez D., Webby R., Webster R.G. Eight-plasmid system for rapid generation of influenza virus vaccines. Vaccine, 2002, vol. 20, no. 25–26, pp. 3165–3170. doi: 10.1016/s0264-410x(02)00268-2
  17. Hussain S., Turnbull M.L., Pinto R.M., McCauley J.W., Engelhardt O.G., Digard P. Segment 2 from Influenza A(H1N1) 2009 pandemic viruses confers temperature-sensitive haemagglutinin yield on candidate vaccine virus growth in eggs that can be epistatically complemented by PB2 701D. J. Gen. Virol., 2019, vol. 100, no. 7, pp. 1079–1092. doi: 10.1099/jgv.0.001279
  18. Ito T., Suzuki Y., Mitnaul L., Vines A., Kida H., Kawaoka Y. Receptor specificity of influenza A viruses correlates with the agglutination of erythrocytes from different animal species. Virology, 1997, vol. 227, no. 2, pp. 493–499. doi: 10.1006/viro.1996.8323
  19. Jin H., Subbarao K. Live attenuated influenza vaccine. Curr. Top. Microbiol. Immunol., 2015, vol. 386, pp. 181–204. doi: 10.1007/82_2014_410
  20. Johansson B.E., Bucher D.J., Pokorny B.A., Mikhail A., Kilbourne E.D. Identification of PR8 M1 protein in influenza virus high-yield reassortants by M1-specific monoclonal antibodies. Virology, 1989, vol. 171, no. 2, pp. 634–636. doi: 10.1016/0042-6822(89)90638-7
  21. Kiseleva I., Larionova N., Fedorova E., Bazhenova E., Dubrovina I., Isakova-Sivak I., Rudenko L. Contribution of neuraminidase of influenza viruses to the sensitivity to sera inhibitors and reassortment efficiency. Open Microbiol. J., 2014, vol. 8, pp. 59–70. doi: 10.2174/1874285801408010059
  22. Kiseleva I.V., Larionova N.V., Fedorova E.A., Isakova-Sivak I.N., Rudenko L.G. New methodological approaches in the development of Russian live attenuated vaccine for pandemic influenza. Translational Biomedicine, 2015, vol. 6, no. 2: 13, pp. 1–9. doi: 10.21767/2172-0479.100013
  23. Kiseleva I.V., Voeten J.T.M., Teley L.C.P., Larionova N.V., Drieszen-van der Cruijsen S.K.M., Basten S.M.C., Heldens J.G.M., van den Bosch H., Rudenko L.G. PB2 and PA genes control the expression of the temperature-sensitive phenotype of cold-adapted B/USSR/60/69 influenza master donor virus. J. Gen. Virol., 2010, vol. 91, pt 4, pp. 931–937. doi: 10.1099/vir.0.017996-0
  24. Krizanová O., Rathová V. Serum inhibitors of myxoviruses. Curr. Top. Microbiol. Immunol., 1969, vol. 4, pp. 125–151. doi: 10.1007/978-3-642-46160-6_6
  25. Kumar A., Meldgaard T.S., Bertholet S. Novel platforms for the development of a universal influenza vaccine. Front. Immunol., 2018, vol. 9: pp. 600. doi: 10.3389/fimmu.2018.00600
  26. Larionova N., Kiseleva I., Dubrovina I., Bazhenova E., Rudenko L. Peculiarities of reassortment of a cold-adapted influenza a master donor virus with influenza A viruses containing hemagglutinin and neuraminidase of avian H5N1 origin. Influenza Other Respir. Viruses, 2011, vol. 5, suppl. 1, pp. 346–349.
  27. Larionova N., Kiseleva I., Isakova-Sivak I., Rekstin A., Dubrovina I., Bazhenova E., Ross T.M., Swayne D., Gubareva L., Tsvetnitsky V., Fedorova E., Doroshenko E., Rudenko L. Live attenuated influenza vaccines against highly pathogenic H5N1 avian influenza: development and preclinical characterization. J. Vaccines Vaccin., 2013, vol. 4, no. 8, pp. 1–11. doi: 10.4172/2157-7560.1000208
  28. Le J., Orff E.J., Fulvini A.A., Huang L., Onodera S., Pokorny B.A., Malewicz A., Primakov P., Bucher D.J. Development of high yield reassortants for influenza type B viruses and analysis of their gene compositions. Vaccine, 2015, vol. 33, no. 7, pp. 879–884. doi: 10.1016/j.vaccine.2014.12.027
  29. Looi Q.H., Foo J.B., Lim M.T., Le C.F., Show P.L. How far have we reached in development of effective influenza vaccine? Int. Rev. Immunol., 2018, vol. 37, no. 5, pp. 266–276. doi: 10.1080/08830185.2018.1500570
  30. Maassab H.F., Bryant M.L. The development of live attenuated cold-adapted influenza virus vaccine for humans. Rev. Med. Virol., 1999, vol. 9, no. 4, pp. 237–244. doi: 10.1002/(sici)1099-1654(199910/12)9:4<237::aid-rmv252>3.0.co;2-g
  31. Matrosovich M., Gao P., Kawaoka Y. Molecular mechanisms of serum resistance of human influenza H3N2 virus and their involvement in virus adaptation in a new host. J. Virol., 1998, vol. 72, no. 8, pp. 6373–6380. doi: 10.1128/jvi.72.8.6373-6380.1998
  32. Mohn K.G., Smith I., Sjursen H., Cox R.J. Immune responses after live attenuated influenza vaccination. Hum. Vaccin. Immunother., 2018, vol. 14, no. 3, pp. 571–578. doi: 10.1080/21645515.2017.1377376
  33. Nakowitsch S., Wolschek M., Morokutti A., Ruthsatz T., Krenn B.M., Ferko B., Ferstl N., Triendl A., Muster T., Egorov A., Romanova J. Mutations affecting the stability of the haemagglutinin molecule impair the immunogenicity of live attenuated H3N2 intranasal influenza vaccine candidates lacking NS1. Vaccine, 2011, vol. 29, no. 19, pp. 3517–3524. doi: 10.1016/j.vaccine.2011.02.100
  34. Neumann G., Watanabe T., Ito H., Watanabe S., Goto H., Gao P., Hughes M., Perez D.R., Donis R., Hoffmann E., Hobom G., Kawaoka Y. Generation of influenza A viruses entirely from cloned cDNAs. Proc. Natl Acad. Sci. USA, 1999, vol. 96, no. 16, pp. 9345–9350. doi: 10.1073/pnas.96.16.9345
  35. NIBSC. Candidate influenza vaccine viruses. 2022. Accessed 21 January 2023. URL: https://www.nibsc.org/science_and_research/virology/influenza_resource_/full_reagent_update.aspx
  36. NIBSC. Influenza reagents. 2022. Accessed 21 January 2023. URL: https://nibsc.org/products/brm_product_catalogue/influenza_reagents.aspx
  37. Rogers G.N., D’Souza B.L. Receptor binding properties of human and animal H1 influenza virus isolates. Virology, 1989, vol. 173, no. 1, pp. 317–322. doi: 10.1016/0042-6822(89)90249-3
  38. Rogers G.N., Pritchett T.J., Lane J.L., Paulson J.C. Differential sensitivity of human, avian, and equine influenza A viruses to a glycoprotein inhibitor of infection: Selection of receptor specific variants. Virology, 1983, vol. 131, no. 2, pp. 394–408. doi: 10.1016/0042-6822(83)90507-x
  39. Rota P.A., Wallis T.R., Harmon M.W., Rota J.S., Kendal A.P., Nerome K. Cocirculation of two distinct evolutionary lineages of influenza type B virus since 1983. Virology, 1990, vol. 175, no. 1, pp. 59–68. doi: 10.1016/0042-6822(90)90186-u
  40. Rudenko L., Desheva J., Korovkin S., Mironov A., Rekstin A., Grigorieva E., Donina S., Gambaryan A., Katlinsky A. Safety and immunogenicity of live attenuated influenza reassortant H5 vaccine (phase I-II clinical trials). Influenza Other Respir. Viruses, 2008, vol. 2, no. 6, pp. 203–209. doi: 10.1111/j.1750-2659.2008.00064.x
  41. Rudenko L., Kiseleva I., Stukova M., Erofeeva M., Naykhin A., Donina S., Larionova N., Pisareva M., Krivitskaya V., Flores J. Clinical testing of pre-pandemic live attenuated A/H5N2 influenza candidate vaccine in adult volunteers: results from a placebo-controlled, randomized double-blind phase I study. Vaccine, 2015, vol. 33, no. 39, pp. 5110–5117. doi: 10.1016/j.vaccine.2015.08.019
  42. Rudneva I.A., Timofeeva T.A., Shilov A.A., Kochergin-Nikitsky K.S., Varich N.L., Ilyushina N.A., Gambaryan A.S., Krylov P.S., Kaverin N.V. Effect of gene constellation and postreassortment amino acid change on the phenotypic features of H5 influenza virus reassortants. Arch. Virol., 2007, vol. 152, no. 6, pp. 1139–1145. doi: 10.1007/s00705-006-0931-8
  43. Ryan-Poirier K.A., Kawaoka Y. Distinct glycoprotein inhibitors of influenza A virus in different animal sera. J. Virol., 1991, vol. 65, no. 1, pp. 389–395. doi: 10.1128/jvi.65.1.389-395.1991
  44. Saiki R.K., Scharf S., Faloona F., Mullis K.B., Horn G.T., Erlich H.A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 1985, vol. 230, no. 4732, pp. 1350–1354. doi: 10.1126/science.2999980
  45. Shcherbik S., Pearce N., Carney P., Bazhenova E., Larionova N., Kiseleva I., Rudenko L., Kumar A., Goldsmith C.S., Dugan V., Stevens J., Wentworth D.E., Bousse T. Evaluation of A(H1N1)Pdm09 LAIV vaccine candidates stability and replication efficiency in primary human nasal epithelial cells. Vaccine X., 2019, vol. 2: 100031. doi: 10.1016/j.jvacx.2019.100031
  46. Shcherbik S., Pearce N., Kiseleva I., Larionova N., Rudenko L., Xu X., Wentworth D.E., Bousse T. Implementation of new approaches for generating conventional reassortants for live attenuated influenza vaccine based on Russian master donor viruses. J. Virol. Methods, 2016, vol. 227, pp. 33–39. doi: 10.1016/j.jviromet.2015.10.009
  47. Shcherbik S.V., Pearce N.C., Levine M.L., Klimov A.I., Villanueva J.M., Bousse T.L. Rapid strategy for screening by pyrosequencing of influenza virus reassortants-candidates for live attenuated vaccines. PLoS One, 2014, vol. 9, no. 3: e92580. doi: 10.1371/journal.pone.0092580
  48. Singanayagam A., Zambon M., Barclay W.S. Influenza virus with increased pH of hemagglutinin activation has improved replication in cell culture but at the cost of infectivity in human airway epithelium. J. Virol., 2019, vol. 93, no. 17: e00058–19. doi: 10.1128/jvi.00058-19
  49. Subbarao K., Webster R.G., Kawaoka Y., Murphy B.R. Are there alternative avian influenza viruses for generation of stable attenuated avian-human influenza A reassortant viruses? Virus Res, 1995, vol. 39, no. 2–3, pp. 105–118. doi: 10.1016/0168-1702(95)00082-8
  50. Taubenberger J.K., Reid A.H., Krafft A.E., Bijwaard K.E., Fanning T.G. Initial genetic characterization of the 1918 Spanish influenza virus. Science, 1997, vol. 275, no. 5307, pp. 1793–1796. doi: 10.1126/science.275.5307.1793
  51. Trombetta C.M., Ulivieri C., Cox R.J., Remarque E.J., Centi C., Perini D., Piccini G., Rossi S., Marchi S., Montomoli E. Impact of erythrocyte species on assays for influenza serology. J. Prev. Med. Hyg., 2018, vol. 59, no. 1, pp. E1-E7. doi: 10.15167/2421-4248/jpmh2018.59.1.870
  52. Tumpey T.M., Basler C.F., Aguilar P.V., Zeng H., Solórzano A., Swayne D.E., Cox N.J., Katz J.M., Taubenberger J.K., Palese P., García-Sastre A. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science, 2005, vol. 310, no. 5745, pp. 77–80. doi: 10.1126/science.1119392
  53. Wareing M.D., Marsh G.A., Tannock G.A. Preparation and characterisation of attenuated cold-adapted influenza a reassortants derived from the A/Leningrad/134/17/57 donor strain. Vaccine, 2002, vol. 20, no. 16, pp. 2082–2090. doi: 10.1016/s0264-410x(02)00056-7
  54. WHO. Availability of two new candidate reassortant vaccine viruses for pandemic (H1N1) 2009 virus vaccine development. 14 September 2009. URL: https://www.who.int/teams/global-influenza-programme/vaccines/who-recommendations/candidate-vaccine-viruses/docs/default-source/influenza/cvvs/archive-2009/200908-1 (Accessed 21 January 2023)
  55. WHO. Manual for the laboratory diagnosis and virological surveillance of influenza. 2011. URL: https://apps.who.int/iris/bitstream/handle/10665/44518/9789241548090_eng.pdf?sequence=1 (Accessed 4 December 2020)
  56. WHO. Recommendations for the production and control of influenza vaccine (inactivated). Annex 3. TRS No 977. 2013. URL: https://cdn.who.int/media/docs/default-source/biologicals/vaccine-quality/recommendations-for-the-production-and-control-of-influenza-vaccine-(inactivated)b0ed4c58-8154-496d-bf91-624734826500.pdf?sfvrsn=cfcd1432_1&download=true (Accessed 21 January 2023)
  57. WHO. Recommendations to assure the quality, safety and efficacy of influenza vaccines (human, live attenuated) for intranasal administration. Annex 4, TRS No 977. 2013. URL: https://cdn.who.int/media/docs/default-source/biologicals/vaccine-standardization/influenza/trs_977_annex_4.pdf?sfvrsn=92690fd7_3&download=true (Accessed 21 January 2023)
  58. WHO. Vaccines against Influenza: WHO position paper. 2022. URL: https://apps.who.int/iris/bitstream/handle/10665/354264/WER9719-eng-fre.pdf (Accessed 21 January 2023)
  59. Wolkerstorfer A., Katinger D., Romanova J. Factors affecting the immunogenicity of the live attenuated influenza vaccine produced in continuous cell line. Microbiology Independent Research Journal, 2016, no. 3, pp. 13–24. doi: 10.18527/2500-2236-2016-3-1-13-24
  60. Wong S.S., Webby R.J. Traditional and new influenza vaccines. Clin. Microbiol. Rev., 2013, vol. 26, no. 3, pp. 476–492. doi: 10.1128/cmr.00097-12

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Genome composition (%) of reassortant influenza virus strains derived by classical reassortment of cold-adapted master donor viruses with A(H1N1), A(H2N2), A(H3N2), B/Victoria lineage, and B/Yamagata lineage wild type influenza viruses: (A) 20 resistant or (B) 20 sensitive to nonspecific thermostable gamma-inhibitors (based on [2, 21])Note. 6:2 genome composition — HA and NA are inherited from the wild type parent, and 6 internal genes are inherited from master donor virus; 5:3 genome composition — HA, NA and one of the internal genes are inherited from the wild type parent virus strain, the other five internal genes are inherited from master donor virus; 7:1 genome composition — HA is inherited from wild type parent, all internal genes and NA are inherited from master donor virus.

Download (47KB)

Copyright (c) 2023 Kiseleva I.V., Rudenko L.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies