Evaluation of virus-neutralizing antibody level after novel coronavirus infection COVID-19: development of an instant assay assessing protective antibodies using a pseudovirus-based reaction

Cover Page

Cite item

Full Text

Abstract

The continued emergence of SARS-CoV-2 variants with immune evasion properties of concern, such as Delta (B.1.617.2) and Omicron (B.1.1.529), calls into question the extent of the antibody-mediated immune response from the virus. The presence of virus-neutralizing antibodies against SARS-CoV-2 in the blood serum of recovered and immunized volunteers is the most accurate indicator of the level of protective activity. Methods for reliable, sensitive and rapid detection of anti-SARS-CoV-2 nAbs are needed for preclinical and clinical vaccine research. In addition, quantification of virus-neutralizing antibodies in recovered COVID-19 subjects may be useful in identifying potential donors for passive immunization and therapeutic use of class G immunoglobulins. Pseudoviruses are actively used as an alternative to infectious viral isolates of pathogenicity groups I–II in serological studies to determine the titers of neutralizing antibodies formed in vaccinated or infected volunteers. In addition, using several pseudotypes with different reporter genes, it is possible to simultaneously detect antibodies to different types of viruses in one biological sample. Currently, the pseudolentiviral system is widely used, in which pseudoviral particles are obtained by transfection of producer cells with vectors of a multiplasmid system of 4–5 plasmids: one for the vector genome, the second for Gag-Pol, the third for Rev, and one or two for protein(s) envelope, or for the co-expression of a labeled viral protein such as GAG-GFP or VPR-GFP, the main advantage of which is safety due to the minimal risk of generating a replication-competent virus. The article discusses the development of a technique that allows to determine the presence of virus-specific neutralizing antibodies to the SARS-CoV-2 antigen in the blood serum of volunteers who have had a new coronavirus infection COVID-19 and/or immunized with specific prophylaxis drugs, healthy volunteers in a neutralization reaction on a HEK 293-cell culture. T-hAce2 using pseudotyped viral constructs based on human immunodeficiency virus. The results of the development and validation of the method, as well as its subsequent prospects for use, are shown.

About the authors

Andrey A. Funtikov

JSC "GENERIUM"

Email: aafuntikov@generium.ru

PhD (Veterinary), Researcher

Russian Federation, 601125, Vladimir region, Petushinsky district, Volginsky settlement, Vladimirskaya street, building 14

N. A. Litvinova

JSC "GENERIUM"

Author for correspondence.
Email: litvinova@ibcgenerium.ru

PhD (Biology), Head of Department

Russian Federation, 601125, Vladimir region, Petushinsky district, Volginsky settlement, Vladimirskaya street, building 14

Evgenii V. Zuev

JSC “GENERIUM”

Email: evzuev@generium.ru

Senior Researcher

Russian Federation, 601125, Vladimir region, Petushinsky district, Volginsky settlement, Vladimirskaya street, building 14

Sergey V. Kulemzin

LLC “IMGEN+”

Email: skulemzin@mcb.nsc.ru

PhD (Biology), Researcher

Russian Federation, Novosibirsk

Rachim R. Shukurov

JSC “GENERIUM”

Email: Shukurov@ibcgenerium.ru

PhD (Biology), Director of the Department of the Pharmaceutical Analysis

Russian Federation, 601125, Vladimir region, Petushinsky district, Volginsky settlement, Vladimirskaya street, building 14

References

  1. Beeching N.J., Fletcher T.E., Fowler R. Coronavirus Disease (COVID-19). BMJ Best Practices. URL: http://www.hpruezi.nihr.ac.uk/publications/2020/bmj-best-practice-coronavirus-disease-covid-19 (23.01.2023)
  2. Campi-Azevedo A.C., Peruhype-Magalhāes V., Coelho-Dos-Reis J.G., Antonelli L.R., Costa-Pereira C., Speziali E., Reis L.R., Lemos J.A., Ribeiro J.G.L., Bastos Camacho L.A., de Sousa Maia M.L., Barbosa de Lima S.M., Simões M., de Menezes Martins R., Homma A., Cota Malaquias L.C., Tauil P.L., Costa Vasconcelos P.F., Martins Romano A.P., Domingues C.M., Teixeira-Carvalho A., Martins-Filho O.A.; Collaborative Group for Studies of Yellow Fever Vaccine. 17DD yellow fever revaccination and heightened long-term immunity in populations of disease-endemic areas, Brazil. Emerg. Infect. Dis.,2019, vol. 25, no. 8, pp. 1511–1521. doi: 10.3201/eid2508.181432
  3. Chi X., Yan R., Zhang J., Zhang G., Zhang Y., Hao M., Zhang Z., Fan P., Dong Y., Yang Y., Chen Z., Guo Y., Zhang J., Li Y., Song X., Chen Y., Xia L., Fu L., Hou L., Xu J., Yu C., Li J., Zhou Q., Chen W. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science,2020, vol. 369, no. 6504, pp. 650–655. doi: 10.1126/science.abc6952
  4. Cohen B.J., Audet S., Andrews N., Beeler J.; WHO working group on measles plaque reduction neutralization test. Plaque reduction neutralization test for measles antibodies: description of a standardised laboratory method for use in immunogenicity studies of aerosol vaccination. Vaccine,2007, vol. 26, no. 1, pp. 59–66. doi: 10.1016/j.vaccine.2007.10.046
  5. Cohen B.J., Doblas D., Andrews N. Comparison of plaque reduction neutralisation test (PRNT) and measles virus-specific IgG ELISA for assessing immunogenicity of measles vaccination. Vaccine,2008, vol. 26, no. 50, pp. 6392–6397. doi: 10.1016/j.vaccine.2008.08.074
  6. Duong D. Alpha, Beta, Delta, Gamma: What’s important to know about SARS-CoV-2 variants of concern? CMAJ,2021, vol. 193, no. 27, pp. E1059-E1060. doi: 10.1503/cmaj.1095949
  7. Eyal O., Olshevsky U., Lustig S., Paran N., Halevy M., Schneider P., Zomber G., Fuchs P. Development of a tissue-culture-based enzyme-immunoassay method for the quantitation of anti-vaccinia-neutralizing antibodies in human sera. J. Virol. Methods,2005, vol. 130, no. 1–2, pp. 15–21. doi: 10.1016/j.jviromet.2005.05.027
  8. Liu L., Wang P., Nair M.S., Yu J., Rapp M., Wang Q., Luo Y., Chan J.F., Sahi V., Figueroa A., Guo X.V., Cerutti G., Bimela J., Gorman J., Zhou T., Chen Z., Yuen K.Y., Kwong P.D., Sodroski J.G., Yin M.T., Sheng Z., Huang Y., Shapiro L., Ho D.D. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature,2020, vol. 584, no. 7821, pp. 450–456. doi: 10.1038/s41586-020-2571-7
  9. Nie J., Li Q., Wu J., Zhao C., Hao H., Liu H., Zhang L., Nie L., Qin H., Wang M., Lu Q., Li X., Sun Q., Liu J., Fan C., Huang W., Xu M., Wang Y. Quantification of SARS-CoV-2 neutralizing antibody by a pseudotyped virus-based assay. Nat. Protoc.,2020, vol. 15, no. 11, pp. 3699–3715. doi: 10.1038/s41596-020-0394-5
  10. Rogers T.F., Zhao F., Huang D., Beutler N., Burns A., He W.T., Limbo O., Smith C., Song G., Woehl J., Yang L., Abbott R.K., Callaghan S., Garcia E., Hurtado J., Parren M., Peng L., Ramirez S., Ricketts J., Ricciardi M.J., Rawlings S.A., Wu N.C., Yuan M., Smith D.M., Nemazee D., Teijaro J.R., Voss J.E., Wilson I.A., Andrabi R., Briney B., Landais E., Sok D., Jardine J.G., Burton D.R. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science,2020, vol. 369, no. 6506, pp. 956–963. doi: 10.1126/science.abc7520
  11. Tang X., Wu C., Li X., Song Y., Yao X., Wu X., Duan Y., Zhang H., Wang Y., Qian Z., Cui J., Lu J. On the origin and continuing evolution of SARS-CoV-2. Natl Sci. Rev.,2020, vol. 7, no. 6, pp. 1012–1023. doi: 10.1093/nsr/nwaa036
  12. Yun S., Ryu J.H., Jang J.H., Bae H., Yoo S.H., Choi A.R., Jo S.J., Lim J., Lee J., Ryu H., Cho S.Y., Lee D.G., Lee J., Kim S.C., Park Y.J., Lee H., Oh E.J. Comparison of SARS-CoV-2 antibody responses and seroconversion in COVID-19 patients using twelve commercial immunoassays. Ann. Lab. Med.,2021, vol. 41, no. 6, pp. 577–587. doi: 10.3343/alm.2021.41.6.577
  13. Zhao H., Zhu Q., Zhang C., Li J., Wei M., Qin Y., Chen G., Wang K., Yu J., Wu Z., Chen X., Wang G. Tocilizumab combined with favipiravir in the treatment of COVID-19: a multicenter trial in a small sample size. Biomed. Pharmacother.,2021, vol. 133: 110825. doi: 10.1016/j.biopha.2020.110825.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Funtikov A.A., Litvinova Н.A., Zuev E.V., Kulemzin S.V., Shukurov R.R.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».