Changes in in vitro GM-CSF-exposured monocyte subset composition and phagocytic activity in children with infectious mononucleosis
- 作者: Savchenko A.A.1, Martynova G.P.2, Ikkes L.A.2, Borisov A.G.1, Kudryavtsev I.V.3,4,5, Belenjuk V.D.1
-
隶属关系:
- Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Healthcare of the Russian Federation
- Institute of Experimental Medicine
- Pavlov First Saint Petersburg State Medical University
- Far Eastern Federal University
- 期: 卷 13, 编号 3 (2023)
- 页面: 446-456
- 栏目: ORIGINAL ARTICLES
- URL: https://journals.rcsi.science/2220-7619/article/view/133195
- DOI: https://doi.org/10.15789/2220-7619-CII-4666
- ID: 133195
如何引用文章
全文:
详细
The aim of the study was to investigate the features of changes in the monocytes subset composition and phagocytic activity in children with infectious mononucleosis (IM) exposed to granulocyte-macrophage colony-stimulating factor (GM-CSF) in vitro. We examined 84 children aged 3 to 11 years with Epstein–Barr virus (EBV) infection diagnosed by clinical signs, positive EBV DNA test in blood lymphocytes and ELISA data (EBV-VCAIgM (+), EBV-EA-DIgG (+)). The control group consisted of 40 apparently healthy age-matched children. Monocytes were obtained by the standard method on adhesion to plastic from mononuclear cells isolated from heparinized venous blood by density gradient centrifugation. The isolated monocytes were divided into two samples: control (without GM-CSF) and experimental (50 ng of GM-CSF per 1 ml of cell suspension). The monocyte subset composition and phagocytic activity in both samples were measured by flow cytometry after 1-hour incubation at 37°C in a CO2-incubator. It was found that in children with progressing IM, the blood monocyte subpopulation composition changes and their phagocytic activity is impaired. It was found that the subset composition and phagocytic activity of the blood monocytes changed in children during development of IM. Changes in the subset composition of monocytes in acute IM did not depend on the age group of children (3–6 and 7–11 years) and were characterized by increased number of pro-inflammatory (intermediate) monocytes and decreased level of anti-inflammatory (non-classical) monocytes. Features of altered monocyte phagocytic activity in children with IM depended on age. The phagocytic activity of all three monocyte subsets was reduced in children with IM 3–6 years old while children with IM 7–11 years old had reduced phagocytic activity only in intermediate and non-classical monocytes. The effect of GM-CSF in vitro on monocytes in patients with IM, regardless of the age of children, led to significantly increased level of anti-inflammatory monocytes while the phagocytic activity of cells changed less. An increase in the phagocytic number for classical monocytes after incubation with GM-CSF in vitro was noted in children with IM at the age of 3–6 years while the phagocytic index of this fraction of monocytes remained unchanged. The level of the phagocytic index increased only in classical monocytes of children with IM aged 7–11 years. The presented results determine the scientific and clinical value of studying the mechanisms of the effect of GM-CSF on cells of the immune system and prove that this cytokine can be used in a new immunotherapeutic strategy for the treatment of IM.
作者简介
Andrei Savchenko
Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North
Email: aasavchenko@yandex.ru
DSc (Medicine), Professor, Head of the Laboratory of Cellular-Molecular Physiology and Pathology
俄罗斯联邦, 660022, Krasnoyarsk region, Krasnoyarsk, Partizana Zheleznjaka str., 3GGalina Martynova
Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Healthcare of the Russian Federation
Email: aasavchenko@yandex.ru
DSc (Medicine), Professor, Head of the Department of Pediatric Infectious Diseases
俄罗斯联邦, 660022, Krasnoyarsk region, Krasnoyarsk, Partizana Zheleznjaka str., 1ALyubov Ikkes
Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Healthcare of the Russian Federation
Email: aasavchenko@yandex.ru
assistant of the department of childhood infectious diseases with a PE-course of FSBEI of Higher Education
俄罗斯联邦, 660022, Krasnoyarsk region, Krasnoyarsk, Partizana Zheleznjaka str., 1AAlexandr Borisov
Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North
Email: 2410454@mail.ru
PhD (Medicine), Leading Researcher, Laboratory of Cellular-Molecular Physiology and Pathology
俄罗斯联邦, 660022, Krasnoyarsk region, Krasnoyarsk, Partizana Zheleznjaka str., 3GIgor Kudryavtsev
Institute of Experimental Medicine; Pavlov First Saint Petersburg State Medical University; Far Eastern Federal University
编辑信件的主要联系方式.
Email: igorek1981@yandex.ru
PhD (Biology), Head of the Cell Immunology Laboratory, Department of Immunology, Assistant Professor Department of Immunology
俄罗斯联邦, 197376, St. Petersburg, Academician Pavlov str.,12; St. Petersburg; VladivostokVasilij Belenjuk
Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North
Email: dyh.88@mail.ru
Junior Researcher, Laboratory of Cellular-Molecular Physiology and Pathology
俄罗斯联邦, 660022, Krasnoyarsk region, Krasnoyarsk, Partizana Zheleznjaka str., 3G参考
- Козлов В.А., Тихонова Е.П., Савченко А.А., Кудрявцев И.В., Андронова Н.В., Анисимова Е.Н., Головкин А.С., Демина Д.В., Здзитовецкий Д.Э., Калинина Ю.С., Каспаров Э.В., Козлов И.Г., Корсунский И.А., Кудлай Д.А., Кузьмина Т.Ю., Миноранская НАУЧНЫЙ СОТРУДНИК, Продеус А.П., Старикова Э.А., Черданцев Д.В., Чесноков А.Б., Шестерня П.А., Борисов А.Г. Клиническая имунология. Практическое пособие для инфекционистов. Красноярск: Поликор, 2021. 563 с. [Kozlov V.A., Tikhonova E.P., Savchenko A.A., Kudryavtsev I.V., Andronova N.V., Anisimova E.N., Golovkin A.S., Demina D.V., Zdzitovetsky D.E., Kalinina Y.S., Kasparov E.V., Kozlov I.G., Korsunsky I.A., Kudlay D.A., Kuzmina T.Yu., Minoranskaya N.S., Prodeus A.P., Starikova E.A., Cherdantsev D.V., Chesnokov A.B., Gear P.A., Borisov A.G. Clinical immunology. A practical guide for infectious diseases. Krasnoyarsk: Polikor, 2021, 563 p. (In Russ.)]
- Кудрявцев И.В., Субботовская А.И. Опыт измерения параметров иммунного статуса с использованием шести-цветного цитофлуоримерического анализа // Медицинская иммунология. 2015. Т. 17, № 1. С. 19–26. [Kudryavtsev I.V., Subbotovskaya A.I. Application of six-color flow cytometric analysis for immune profile monitoring. Meditsinskaya immunologiya = Medical Immunology (Russia), 2015, vol. 17, no. 1, pp. 19–26. (In Russ.)] doi: 10.15789/1563-0625-2015-1-19-26
- Куликова М.М., Соломай Т.В., Семененко Т.А. Клинико-лабораторные особенности первичной острой и реактивации хронической Эпштейна–Барр вирусной инфекции у детей (систематический обзор и метаанализ) // Детские инфекции. 2022. Т. 21, № 1. С. 49–55. [Kulikova M.M., Solomay T.V., Semenenko T.A. Clinical and laboratory differences between primary acute and reactivation of chronic Epstein–Barr viral infection in children (systematic review and meta-analysis). Detskie infektsii = Children Infections, 2022, vol. 21, no. 1, pp. 49–55. (In Russ.)] doi: 10.22627/2072-8107-2022-21-1-49-55
- Савченко А.А., Гвоздев И.И., Борисов А.Г., Черданцев Д.В., Первова О.В., Кудрявцев И.В., Мошев А.В. Особенности фагоцитарной активности и состояния респираторного взрыва нейтрофилов крови у больных распространенным гнойным перитонитом в динамике послеоперационного периода // Инфекция и иммунитет. 2017. Т. 7, № 1. С. 51–60. [Savchenko A.A., Gvozdev I.I., Borisov A.G., Cherdancev D.V., Pervova O.V., Kudryavcev I.V., Moshev A.V. Phagocytic activity and blood neutrophils respiratory burst state features amongst widespread purulent peritonitis patients in the postoperative period dynamics. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2017, vol. 7, no. 1, pp. 51–60. (In Russ.)] doi: 10.15789/2220-7619-2017-1-51-60
- Савченко А.А., Борисов А.Г., Кудрявцев И.В., Мошев А.В. Зависимость фенотипа дендритных клеток от содержания провоспалительных моноцитов крови у больных раком почки // Медицинская иммунология. 2019. Т. 21, № 4. С. 689–702. [Savchenko A.A., Borisov A.G., Kudryavtsev I.V., Moshev A.V. Dependence of the phenotype of dendritic cells on the content of proinflammatory blood monocytes in patients with kidney cancer. Meditsinskaya immunologiya = Medical Immunology (Russia), 2019, vol. 21, no. 4, pp. 689–702. (In Russ.)] doi: 10.15789/1563-0625-2019-4-689-702
- Соломай Т.В., Симонова Е.Г., Семененко Т.А. Научное обоснование создания и перспективы развития системы эпидемиологического надзора за инфекцией, вызванной вирусом Эпштейна–Барр // Эпидемиология и вакцинопрофилактика. 2022. Т. 21, № 1. С. 21–31. [Solomay T.V., Simonova E.G., Semenenko T.A. Scientific Substantiation of the Creation and Prospects for the Development of an Epidemiological Surveillance System for Infection Caused by the Epstein–Barr Virus. Epidemiologiya i vaktsinoprofilaktika = Epidemiology and Vaccinal Prevention, 2022, vol. 21, no. 1, pp. 21–31. (In Russ.)] doi: 10.31631/2073-3046-2022-21-1-21-31
- Черенова Л.П., Мирекина Е.В., Лисина О.А., Иргазиева Г.К. Дифференциальная диагностика кори и инфекционного мононуклеоза // Инфекционные болезни: новости, мнения, обучение. 2022. Т. 11, № 1. С. 64–68. [Cherenova L.P., Merekina E.V., Lisina O.A., Irgazieva G.K. Differential diagnosis of measles and infectious mononucleosis. Infektsionnye bolezni: novosti, mneniya, obuchenie = Infectious Diseases: News, Opinions, Training, 2022, vol. 11, no. 1, pp. 64–68. (In Russ.)] doi: 10.33029/2305-3496-2022-11-1-64-68
- Шульженко А.Е., Щубелко Р.В., Зуйкова И.Н. Герпесвирусные инфекции: современный взгляд на проблему. М.: ГЭОТАР-Медиа, 2022. 344 с. [Shulzhenko A.E., Shchubelko R.V., Zuikova I.N. Herpesvirus infections: a modern view of the problem. Moscow: GEOTAR-Media, 2022. 344 p. (In Russ.)]
- Achuthan A.A., Lee K.M.C., Hamilton J.A. Targeting GM-CSF in inflammatory and autoimmune disorders. Semin. Immunol., 2021, vol. 54: 101523. doi: 10.1016/j.smim. 2021.101523
- Albanese M., Tagawa T., Hammerschmidt W. Strategies of Epstein-Barr virus to evade innate antiviral immunity of its human host. Front. Microbiol. 2022, vol. 13: 955603. doi: 10.3389/fmicb.2022. 955603
- Alkhani A., Levy C.S., Tsui M., Rosenberg K.A., Polovina K., Mattis A.N., Mack M., Van Dyken S., Wang B.M., Maher J.J., Nijagal A. Ly6cLo non-classical monocytes promote resolution of rhesus rotavirus-mediated perinatal hepatic inflammation. Sci. Rep., 2020, vol. 10, no. 1: 7165. doi: 10.1038/s41598-020-64158-2
- Barman P.K., Shin J.E., Lewis S.A., Kang S., Wu D., Wang Y., Yang X., Nagarkatti P.S., Nagarkatti M., Messaoudi I., Benayoun B.A., Goodridge H.S. Production of MHCII-expressing classical monocytes increases during aging in mice and humans. Aging Cell, 2022, vol. 21, no. 10, pp. 13701. doi: 10.1111/acel.13701
- Chilunda V., Martinez-Aguado P., Xia L.C., Cheney L., Murphy A., Veksler V., Ruiz V., Calderon T.M., Berman J.W. Transcriptional changes in CD16+ monocytes may contribute to the pathogenesis of COVID-19. Front. Immunol., 2021, vol. 24, no. 12, pp. 665773. doi: 10.3389/fimmu. 2021.665773
- Coillard A., Segura E. In vivo differentiation of human monocytes. Front. Immunol., 2019, vol. 13, no. 10, pp. 1907. doi: 10.3389/fimmu. 2019.01907
- Congy-Jolivet N., Cenac C., Dellacasagrande J., Puissant-Lubrano B., Apoil P.A., Guedj K., Abbas F., Laffont S., Sourdet S., Guyonnet S., Nourhashemi F., Guéry J.C., Blancher A. Monocytes are the main source of STING-mediated IFN- production. EBioMedicine, 2022, vol. 80: 104047. doi: 10.1016/j.ebiom. 2022.104047
- Falck-Jones S., Österberg B., Smed-Sörensen A. Respiratory and systemic monocytes, dendritic cells, and myeloid-derived suppressor cells in COVID-19: Implications for disease severity. J. Intern. Med., 2022, vol. 23, no. 10, pp. 1111. doi: 10.1186/s13075-017-1237-9
- Farina A., Rosato E., York M., Gewurz B.E., Trojanowska M., Farina G.A. Innate immune modulation induced by EBV lytic infection promotes endothelial cell inflammation and vascular injury in scleroderma. Front. Immunol., 2021, no. 12: 651013. doi: 10.3389/fimmu. 2021.651013
- Finak G., Langweiler M., Jaimes M., Malek M., Taghiyar J., Korin Y., Raddassi K., Devine L., Obermoser G., Pekalski M.L., Pontikos N., Diaz A., Heck S., Villanova F., Terrazzini N., Kern F., Qian Y., Stanton R., Wang K., Brandes A., Ramey J., Aghaeepour N., Mosmann T., Scheuermann R.H., Reed E., Palucka K., Pascual V., Blomberg B.B., Nestle F., Nussenblatt R.B., Brinkman R.R., Gottardo R., Maecker H., McCoy J.P. Standardizing Flow Cytometry Immunophenotyping Analysis from the Human Immuno Phenotyping Consortium. Sci. Rep., 2016, vol. 6: 20686. doi: 10.1038/srep20686
- Jahan H., Siddiqui N.N., Iqbal S., Basha F.Z., Shaikh S., Pizzi M., Choudhary M.I. Suppression of COX-2/PGE2 levels by carbazole-linked triazoles via modulating methylglyoxal-AGEs and glucose-AGEs — induced ROS/NF-|B signaling in monocytes. Cell. Signal, 2022, vol. 97: 110372. doi: 10.1016/j.cellsig. 2022.110372
- Kabanov D.S., Grachev S.V., Prokhorenko I.R. Monoclonal antibody to CD14, TLR4, or CD11b: impact of epitope and isotype specificity on ROS generation by human granulocytes and monocytes. Oxid. Med. Cell. Longev., 2020, vol. 2020: 5708692. doi: 10.1155/2020/5708692
- Kaur K., Bachus H., Lewis C., Papillion A.M., Rosenberg A.F., Ballesteros-Tato A., León B. GM-CSF production by non-classical monocytes controls antagonistic LPS-driven functions in allergic inflammation. Cell. Rep., 2021, vol. 37, no. 13: 110178. doi: 10.1016/j.celrep. 2021.110178
- Khan S., Siddique R., Hao X., Lin Y., Liu Y., Wang X., Hua L., Nabi G. The COVID-19 infection in children and its association with the immune system, prenatal stress, and neurological complications. Int. J. Biol. Sci, 2022, vol. 18, no. 2, pp. 707−716. doi: 10.7150/ijbs.66906
- Kwissa M., Nakaya H.I., Onlamoon N., Wrammert J., Villinger F., Perng G.C., Yoksan S., Pattanapanyasat K., Chokephaibulkit K., Ahmed R., Pulendran B. Dengue virus infection induces expansion of a CD14(+)CD16(+) monocyte population that stimulates plasmablast differentiation. Cell. Host. Microbe., 2014, vol. 16, no. 1, pp. 115–270. doi: 10.1016/j.chom. 2014.06.001
- Lazarus H.M., Pitts K., Wang T., Lee E., Buchbinder E., Dougan M., Armstrong D.G., Paine R. 3rd, Ragsdale C.E., Boyd T., Rock E.P., Gale R.P. Recombinant GM-CSF for diseases of GM-CSF insufficiency: correcting dysfunctional mononuclear phagocyte disorders. Front. Immunol., 2023, vol. 13, 1069444. doi: 10.3389/fimmu. 2022.1069444
- Li F., Piattini F., Pohlmeier L., Feng Q., Rehrauer H., Kopf M. Monocyte-derived alveolar macrophages autonomously determine severe outcome of respiratory viral infection. Sci. Immunol., 2022, vol. 7, no. 73: 5761. doi: 10.1126/sciimmunol.abj5761
- Lotfi N., Zhang G.X., Esmaeil N., Rostami A. Evaluation of the effect of GM-CSF blocking on the phenotype and function of human monocytes. Sci. Rep., 2020, vol. 10, no. 1: 1567. doi: 10.1038/s41598-020-58131-2
- Michel M., Malergue F., Ait Belkacem I., Bourgoin P., Morange P.E., Arnoux I., Miloud T., Million M., Tissot-Dupont H., Mege J.L., Vitte J., Busnel J.M. A rapid, easy, and scalable whole blood monocyte CD169 assay for outpatient screening during SARS-CoV-2 outbreak, and potentially other emerging disease outbreaks. SAGE Open Med., 2022, vol. 10, 20503121221115483. doi: 10.1177/20503121221115483
- Mohamedaly S., Levy C.S., Korsholm C., Alkhani A., Rosenberg K., Ashouri J.F., Nijagal A. hepatic Ly6CLo non-classical monocytes have increased Nr4a1 (Nur77) in murine biliary atresia. J. Clin. Med., 2022, vol. 11, no. 18, pp. 5290. doi: 10.3390/jcm11185290
- Moraes-Pinto M.I., Suano-Souza F., Aranda C.S. Immune system: development and acquisition of immunological competence. J. Pediatr. (Rio J.), 2021, vol. 97, suppl. 1, pp. S59–S66. doi: 10.1016/j.jped. 2020.10.006
- Narasimhan P.B., Marcovecchio P., Hamers A.AJ., Hedrick C.C. Nonclassical monocytes in health and disease. Annu. Rev. Immunol., 2019, vol. 37, pp. 439–456. doi: 10.1146/annurev-immunol-042617-053119
- Ożańska A., Szymczak D., Rybka J. Pattern of human monocyte subpopulations in health and disease. Scand. J. Immunol., 2020, vol. 92, no. 1: e12883. doi: 10.1111/sji.12883
- Páez-Guillán E.M., Campos-Franco J., Alende R., Garitaonaindía Y., González-Quintela A. Transient hypertriglyceridemia: a common finding during Epstein-Barr virus-induced infectious mononucleosis. Lipids Health Dis., 2021, vol. 20, no. 1: 177. doi: 10.1186/s12944-021-01603-9
- Rutkowska E., Kwiecień I., Kłos K., Rzepecki P., Chciałowski A. Intermediate monocytes with PD-L1 and CD62L expression as a possible player in active SARS-CoV-2 infection. Viruses, 2022, vol. 14, no 4: 819. doi: 10.3390/v14040819
- Saxton R.A., Glassman C.R., Garcia K.C. Emerging principles of cytokine pharmacology and therapeutics. Nat. Rev. Drug Discov., 2023, vol. 22, no. 1, pp. 21–37. doi: 10.1038/s41573-022-00557-6
- Schünemann L.M., Schuberth H.J. Non-classical monocytes contribute to innate immune training in cattle. Innate Immun., 2022, vol. 28, no. 6, pp. 199–210. doi: 10.1177/ 17534259221114219
- Sebastian A., Sanju S., Jain P., Priya V.V., Varma P.K., Mony U. Non-classical monocytes and its potential in diagnosing sepsis post cardiac surgery. Int. Immunopharmacol., 2021, vol. 99: 108037. doi: 10.1016/j.intimp. 2021.108037
- Shahzad F., Bashir N., Ali A., Jabeen S., Kashif M., Javaid K., Tahir R., Abbas A., Jahan S., Afzal N. Decreased classical monocytes and CD163 expression in TB patients: an indicator of drug resistance. Braz. J. Microbiol., 2021, vol. 52, no. 2, pp. 607–617. doi: 10.1007/s42770-021-00454-x
- Silva T., Gomes L., Jeewandara C., Ogg G.S., Malavige G.N. Dengue NS1 induces phospholipase A2 enzyme activity, prostaglandins, and inflammatory cytokines in monocytes. Antiviral. Res., 2022, vol. 202: 105312. doi: 10.1016/j.antiviral. 2022.105312
- Spiteri A.G., Ni D., Ling Z.L., Macia L., Campbell I.L., Hofer M.J., King N.J.C. PLX5622 reduces disease severity in lethal CNS infection by off-target inhibition of peripheral inflammatory monocyte production. Front. Immunol., 2022, vol. 13: 851556. doi: 10.3389/fimmu. 2022.851556
- Sullivan K., Isabel S., Khodai-Booran N., Paton T.A., Abdulnoor M., Dipchand A.I., Hébert D., Ng V.L., Allen U.D. Epstein–Barr virus latent gene EBNA-1 genetic diversity among transplant patients compared with patients with infectious mononucleosis. Clin. Transplant. 2019, vol. 33, no. 4: e13504. doi: 10.1111/ctr.13504
- Sutherland D.R., Ortiz F., Quest G., Illingworth A., Benko M., Nayyar R., Marinov I. High-sensitivity 5-, 6-, and 7-color PNH WBC assays for both Canto II and Navios platforms. Cytometry B Clin. Cytom., 2018, vol. 94, no. 1, pp. 1–15. doi: 10.1002/cyto.b.21626
- Wirthgen E., Hornschuh M., Wrobel I.M., Manteuffel C., Däbritz J. Mimicking of blood flow results in a distinct functional phenotype in human non-adherent classical monocytes. Biology (Basel), 2021, vol. 10, no. 8: 748. doi: 10.3390/ biology10080748
- Zhang L. A common mechanism links Epstein–Barr virus infections and autoimmune diseases. J. Med. Virol. 2023, vol. 95, no. 1: e28363. doi: 10.1002/jmv.28363.
补充文件
