Autoimmune streptococcal glomerulonephritis: the problem of nephritogenicity of Streptococcus pyogenes

Cover Page

Cite item

Full Text

Abstract

Acute post-streptococcal glomerulonephritis usually occurs as a complication after a streptococcal infection due to untimely or inadequate antibiotic therapy. The etiology of post-streptococcal glomerulonephritis has been studied rather comprehensively. Today, both clinicians and microbiologists do not deny the dominant role of Streptococcus pyogenes (streptococcus attributed to serological group A, GAS). Usually, emergence of acute post-streptococcal glomerulonephritis (APSGN) is associated with the so-called GAS-related "nephritogenicity" often judged by appearance and accumulation of antibodies to the antigens and extracellular products of streptococcal cells in patient blood. This interpretation is quite loose and most likely evidence about a link to the bacterial strain, rather than its nephritogenicity. Many studies refer and still attribute a leading role of "nephritogenic" factors to various streptococcal antigens and related biologically active products. Streptococcal nephritogenic factors include cross-reacting antigens, streptokinase, cysteine proteinase, endostreptosin – a GAS cell membrane protein as well as plasmin-tropic enzyme glyceraldehyde-3-phosphate dehydrogenase. Nephritogenicity of all such streptococcal products is suspected to result from the fact that they are found in renal biopsies like specific patient blood serum antibodies. Regarding a term of nephritogenicity, it has been evidenced that it cannot be attributed to any specific streptococcal cell product. This review attempted to analyze a number of bacterial products as starting factors triggering this process. APSGN can be reproduced experimentally in rabbits by intravenous administration of a heat-killed Streptococcus pyogenes culture. In our experiments, strains of serotypes 1, 4, 12, 15, 22 were used. They produced M-proteins and had the ability to bind human and rabbit immunoglobulin G by interacting with the Fc part of the IgG molecule. In numerous series of experiments, evidence was obtained regarding the initiating role of GAS IgGFc-receptor proteins in developing APSGN. Recent studies confirmed the role of streptococcal IgGFc-binding proteins in the initiation of glomerulonephritis after animals were inoculated with temperature-killed IgGFc-positive GAS. This approach excluded a large group of bacterial extracellular agents from the list of APSGN-initiating candidates. An unconventional view on the pathogenesis of GAS-infection-coupled complications may allow approaching their prevention or new treatment strategies.

About the authors

Larisa A. Burova

Institute of Experimental Medicine

Author for correspondence.
Email: lburova@yandex.ru
ORCID iD: 0000-0001-7687-2348
Scopus Author ID: 7003982261

MD, Dr. Sci. (Med.), Leading Research Associate, Department of Molecular Microbiology

Russian Federation, 197376, St. Petersburg, Academic Pavlov str., 12

Alexander N. Suvorov

Institute of Experimental Medicine

Email: alexander_suvorov1@hotmail.com
ORCID iD: 0000-0003-2312-5589
Scopus Author ID: 7101829979

MD, Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences, Head Department of Molecular Microbiology

Russian Federation, 197376, St. Petersburg, Academic Pavlov str., 12

Peter V. Pigarevsky

Institute of Experimental Medicine

Email: pigarevsky@mail.ru
ORCID iD: 0000-0002-5906-6771
Scopus Author ID: 55404484800

Dr. Sci. (Biology), Head Department of General Morphology

Russian Federation, 197376, St. Petersburg, Academic Pavlov str., 12

Artem A. Totolian

Institute of Experimental Medicine

Email: totolyan@hotmail.com
ORCID iD: 0000-0002-3310-9294
Scopus Author ID: 7004990713

MD, Dr. Sci. (Med.), Professor, Academician RAS, Chief Research Associate, Department of Molecular Microbiology

Russian Federation, 197376, St. Petersburg, Academic Pavlov str., 12

References

  1. Бурова Л.А., Суворов А.Н., Тотолян Артем А. Белки семейства М протеинов — главные факторы патогенности Streptococcus pyogenes // Медицинский академический журнал. 2022. Т. 22, № 2. С. 37–52. [Burova L.A., Suvorov A.N., Totolian Artem A. M proteins are the major pathogenicity factors of Streptococcus pyogenes. Meditsinskii akademicheskii zhurnal = Medical Academic Journal (Russia), 2022, vol. 22, no. 2, pp. 37–52. (In Russ.)] doi: 10.17816/MAJ106990
  2. Бурова Л.А., Суворов А.Н., Тотолян Артем А. Streptococcus pyogenes: феномен неиммунного связывания иммуноглобулинов человека и его роль в патологии // Медицинская иммунология. 2022. Т. 24, № 2. С. 217–234. [Burova L.A., Suvorov A.N., Totolian Artem A. Streptococcus pyogenes: phenomenon of nonimmune binding of human immunoglobulins and its role in pathology. Meditsinskaya immunologiya = Medical Immunology (Russia), 2022, vol. 24, no. 2, pp. 217–234. (In Russ.)] doi: 10.15789/1563-0625-SPP-245
  3. Бурова Л.А., Гаврилова Е.А., Пигаревский П.В., Тотолян Артем А. Роль стрептокиназы в моделировании постстрептококкового гломерулонефрита // Инфекция и иммунитет. 2021. Т. 11, № 5. С. 853–864. [Burova L.A., Gavrilova E.A., Pigarevsky P.V., Totolian Artem A. Role of streptokinase in experimental streptococcal glomerulonephritis. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2021, vol. 11, no. 5, pp. 853–864. (In Russ.)] doi: 10.15789/2220-7619-ARO-1594
  4. Бурова Л.А., Пигаревский П.В., Снегова В.А., Тотолян А.А. Влияние Fc-фрагментов нормального иммуноглобулина G на развитие гломерулонефрита, индуцированного штаммами Streptococcus pyogenes // Инфекция и иммунитет. 2020. Т. 10, № 1. С. 55–63. [Burova L.A., Pigarevsky P.V., Snegova V.A., Totolian A.A. Influence of Fc fragments of normal immunoglobulin G on the development of glomerulonephritis induced by Streptococcus pyogenes strains. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2020. vol. 10, no. 1, pp. 55–63. (In Russ.)] doi: 10.15789/2220-7619-IOI-1226
  5. Бурова Л.А., Пигаревский П.В., Снегова В.А., Кулешевич Е.В., Жарков Д.А., Schalen C., Тотолян А.А. Нефритогенная активность Streptococcus pyogenes генотипов emm1 и emm12, различающихся по источнику выделения // Инфекция и иммунитет. 2015. Т. 5, № 3. С. 233–242. [Burova L.A., Pigarevsky P.V., Snegova V.A., Kuleshevich E.V., Zharkov D.A., Schalen C., Totolian A.A. Nephritogenic activity of Streptococcus pyogenes genotypes emm1 and emm12, differing by the source of isolation. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2015, vol. 5, no. 3. pp. 233–242. (In Russ.)] doi: 10.15789/2220-7619-2015-3-233-242
  6. Бурова Л.А., Гаврилова Е.А., Пигаревский П.В., Селиверстова В.Г., Нагорнев В.А., Шален К., Тотолян А.А. Способность стрептококков группы А типа М12 связывать иммунные комплексы и их роль в патогенезе постстрептококкового гломерулонефрита. Медицинская иммунология. 2006. Т. 8, № 5–6. С. 623–630. [Burova L.A., Gavrilova E.A., Pigarevsky P.V., Seliverstova V.G., Nagornev V.A., Schalen V.A., Totolian Artem A. Capacity of group A (type M12) streptococci to bind immune complexes and their role in pathogenesis of post- streptococcal glomerulonephritis. Meditsinskaya immunologiya = Medical Immunology (Russia), 2006, vol. 8, no. 5–6, pp. 623–630. (In Russ.)]
  7. Нефрология: руководство для врачей: в 2 томах / Под ред. И.Е. Тареевой. М.: Медицина, 1995. [Nephrology: a guide for physicians: in 2 vol. Ed. Tareeva I.E. Moscow: Meditsina, 1995. (In Russ.)]
  8. Тотолян Артем А., Бурова Л.А., Пигаревский П.В. Экспериментальный постстрептококковый гломерулонефрит. Санкт-Петербург: Издательство «Человек», 2019. 108 с. [Totolian Artem A., Burova L.A., Pigarevsky P.V. Experimental post-streptococcal glomerulonephritis. St. Petersburg: Publishing House “Chelovek”, 2019. 108 p. (In Russ.)]
  9. Тотолян А.А., Бурова Л.А. Fc-рецепторные белки Streptococcus pyogenes и патогенез постинфекционных осложнений (критический обзор) // Журнал микробиологии, эпидемиологии и иммунобиологии. 2014. № 3. С. 78–90. [Totolian A.A., Burova L.A. Fc-receptor proteins of Streptococcus pyogenes and pathogenesis of post-infection complications. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2014, no. 3, pp. 78–90. (In Russ.)]
  10. Тотолян А.А., Бурова Л.А., Нагорнев В.А., Пигаревский П.В. Анализ механизмов развития иммунопатологического постстрептококкового гломерулонефрита (APSGN) // Терапевтический архив. 2008. № 6. С. 90–95. [Totolian A.A., Burova L.A., Nagornev V.A., Pigarevsky P.V. Analysis of mechanisms of development of immunopathological post-streptococcal glomerulonephritis (APSGN). Terapevticheskii arkhiv = Therapeutic Archive, 2008, no. 6, pp. 90–95. (In Russ.)]
  11. Abul K.A., Lichtman A., Pillai S. Cellular and molecular immunology: 9th edition. Elsevier, 2018. 608 p.
  12. Almroth G., Lindell A., Aselius H., Sörén L., Svensson L., Hultman P., Eribe E.R., Olsen I. Acute glomerulonephritis associated with Streptococcus pyogenes with concomitant spread of Streptococcus constellatus in four rural families. Ups. J. Med. Sci., 2005, vol. 110, no. 3, pp. 217–231. doi: 10.3109/2000-1967-067
  13. Balter S., Benin A., Pinto S.W., Teixeira L.M., Alvim G.G., Luna E., Jackson D., LaClaire L., Elliott J., Facklam R., Schuchat A. Epidemic nephritis in Nova Serrana, Brazil. Lancet, 2000, vol. 355, no. 9217, pp. 1776–1780. doi: 10.1016/s0140-6736(00)02265-0
  14. Barabas A.Z., Cole C.D., Lafreniere R., Weir D.M. Immunopathological events initiated and maintained by pathogenic IgG autoantibodies in an experimental autoimmune kidney disease. Autoimmunity, 2012, vol. 45, no. 7, pp. 495–509. doi: 10.3.109/089.934.2012.70281216
  15. Barnham M., Thornton T.J., Lange K. Nephritis caused by Streptococcus zooepidemicus (Lancefield group C). Lancet, 1983, no. 1, pp. 945–948. doi: 10.1016/s0140-6736(83)92078-0
  16. Batsford S.R., Mezzano S., Mihatsch M., Schiltz E., Rodríguez-Iturbe B. Is the nephritogenic antigen in post-streptococcal glomerulonephritis pyrogenic exotoxin B (SPE B) or GAPDH? Kidney Int., 2005, vol. 68, no. 3, pp. 1120–1129. doi: 10.1111/j.1523-1755.2005.00504.x
  17. Burova L., Pigarevsky P., Duplik N., Snegova V., Suvorov A., Schalen C., Totolian A. Immune complex binding Streptococcus pyogenes type M12/emm12 in experimental glomerulonephritis. JMM, 2013, vol. 62, pt 9, pp. 1272–1280. doi: 10.1099/jmm.0.059.196-0
  18. Burova L.A., Pigarevsky P.V., Seliverstova V.G., Gupalova T.V., Schalen C., Totolian A.A. Experimental poststreptococcal glomerulonephritis elicited by IgG Fc-binding M family proteins and blocked by IgG Fc-fragment. APMIS, 2012, vol. 120, pp. 359–362. doi: 10.1111/j.1600-0463.2011.02826.x
  19. Burova L A., Gavrilova E.A., Gupalova T.V., Pigarevsky P.V., Nagornev V.A., Grubb R., Schalen C., Totolian A.A. Inhibition of experimental post-streptococcal glomerulonephritis in rabbits by IgG Fc fragments. In: Streptococci — new insights into an old enemy. Ed. Sriprakash K.S. Elsevier B.V., ICS, 2006, vol. 1289, pp. 359–362.
  20. Burova L., Thern A., Pigarevsky P., Gladilina M., Seliverstova V., Gavrilova E., Nagornev V., Schalén C., Totolian A. Role of group A streptococcal IgG-binding proteins in triggering experimental glomerulonephritis in the rabbit. APMIS, 2003, vol. 111, pp. 955–962. doi: 10.1034/j.1600- 0463.2003.1111007.x
  21. Burova L.A., Nagornev V.A., Pigarevsky P.V., Gladilina M.M., Seliverstova V.G., Schalen C., Totolian A.A. Triggering of renal tissue damage in the rabbit by IgGFc-receptor positive group A streptococci. APMIS, 1998, vol. 106, pp. 277–287. doi: 10.1111/j.1699-0463.1998.tb01347.x
  22. Burova L.A., Schalen C., Koroleva I.V., Svensson M.-L. Role of group A streptococcal IgG Fc-receptor in induction of anti-IgG by immunization in rabbit. FEMS Microbiol. Immunol., 1989, vol. 47, pp. 443–448. doi: 10.1111/j.1574-6968.1989.tb02435.x
  23. Carapetis J.R., Steer A.C., Mulholland E.K., Weber M. The global burden of group A streptococcal diseases. Lancet Infect. Dis., 2005, vol. 5, no. 11, pp. 685–694. doi: 10.1016/S1473-3099(05)70267-X
  24. Christensen P., Schroder A.R., Possible role of microbial IgGFc-binding proteins in rheumatoid arthritis. Agents Actions, 1990, vol. 29, no. 1–2, pp. 88–94. doi: 10.1007/BF01964728
  25. Christensen P., Sramec J., Zatterstrom U. Binding of aggregated IgG in the presence of fresh serum: strong association with type 12 group A streptococci. Absence of binding among nephritogenic type 49 strains. APMIS, 1981, vol. 89, no. 2, pp. 87–91. doi: 10.1111/j.1699-0463.1981.tb00158_89b.x
  26. Christensen P., Schalen C., Holm S.E. Reevaluation experiments intended to demonstrate immunological cross-reactions between mammalian tissues and streptococci. Prog. Allergy, 1979, vol. 26, pp. 1–41. doi: 10.1159/000314455
  27. Christensen P., Oxelius V.-A. A reaction between some streptococci and IgA myeloma proteins. Acta Path. Microbiol. Scand., Sect. C, 1975, vol. 83, pp. 184–188.
  28. Collin M., Olsén A. Effect of SpeB and EndoS from Streptococcus pyogenes on human immunoglobulins. Infect. Immun., 2001, vol. 69, no. 11, pp. 7187–7189. doi: 10.1128/IAI.69.11.7187-7189.2001
  29. Collin M., Olsén A. EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG. EMBO J., 2001, vol. 20, no. 12, pp. 3046–3055. doi: 10.1093/emboj/20.12.3046
  30. Cu G.A., Mezanno S., Bannan J.D., Zabriskie J.B. Immunohistochemical and serological evidence for the role of streptococcal proteinase in acute post-streptococcal glomerulonephritis. Kidney Int., 1998, vol. 54, no. 3, pp. 819–826. doi: 10.1046/j.1523-1755.1998.00052.x
  31. Cunningham M.W. Molecular mimicry, autoimmunity, and infection: the cross-reactive antigens of group A Streptococci and their sequelae. Microbiol. Spectr., 2019, vol. 7, no. 4: 10.1128/microbiolspec.GPP3-0045-2018. doi: 10.1128/microbiolspec.GPP3-0045-2018
  32. Cunningham M.W. Pathogenesis of group A streptococcal infections. Clin. Microbiol. Rev., 2000, vol. 13, no. 3, pp. 470–511. doi: 10.1128/cmr.13.3.470-511.2000
  33. Facklam R., Beall B., Efstratiou A., Fischetti V., Johnson D., Kaplan E., Kriz P., Lovgren M., Martin D., Schwartz B., Totolian A., Bessen D., Hollingshead S., Rubin F., Scott J., Tyrrell G.. emm typing and validation of provisional M types for group A streptococci. Emerg. Infect. Dis., 1999, no. 5, pp. 247–253. doi: 10.3201/eid0502.990209
  34. Fitzsimons E.J., Lange C.F. Hybridomas to specific streptococcal antigen induce tissue pathology in vivo; autoimmune mechanisms for post-streptococcal sequelae. Autoimmunity, 1991, vol. 10, no. 2, pp. 115–124. doi: 10.3109/08916939109004815
  35. Flores A.R., Olsen R.J., Wunsche A., Kumaraswami M., Shelburne S.A., Carroll R.K., Musser J.M. Natural variation in the promoter of the gene encoding the Mga regulator alters host-pathogen interaction in group A Streptococcus carrier strains. Infect. Immun., 2013, vol., 81, no. 11, pp. 4128–4138. doi: 10.1128/IAI.00405-13
  36. Forsgren A., Sjoquist J. “Protein A” from S. aureus. I. Pseudoimmune reaction with human gamma-globulin. J. Immunol., 1966, vol. 97, no. 6, pp. 822–827.
  37. Gomes-Guerrero C., Duque N., Casado M.T., Pastor C., Blanco J., Mampaso F., Vivanco F., Egido J. Administration of IgGFc-fragments prevents glomerular injury in experimental immune complex nephritis. J. Immunol., 2000, vol. 164, pp. 2091–2101. doi: 10.4049/jimmunol.164.4.2092
  38. Grubb R., Burova L., Hultguist R., Schalen C., Totolian A. Anti-Ig-allotypic specifities of spontaneously occurring anti-immunoglobulins. In: Antibodies- protective, destructive and regulatory role. Eds. Milgrome F., Abeyounis C., Albini B. Basel: Karger, 1985, pp. 224–233.
  39. Haanes E.J., Heath D.G., Cleary P.P. Architecture of the vir regulons of group A streptococci parallels opacity factor phenotype and M protein class. J. Bacteriol., 1992, vol. 174, no. 15, pp. 4967–4976. doi: 10.1128/jb.174.15.4967-4976.1992
  40. Hollingshead S.K., Readdy T.L., Yung D.L., Bessen D.E. Structural heterogeneity of the emm gene cluster in group A streptococci. Mol. Microbiol., 1993, vol. 8, no. 4, pp. 707–717. doi: 10.1111/j.1365-2958.1993.tb01614.x
  41. Honda-Ogawa M., Ogawa T., Terao Y., Sumitomo T., Nakata M., Ikebe K., Maeda Y., Kawabata S. Cysteine proteinase from Streptococcus pyogenes enables evasion of innate immunity via degradation of complement factors. J. Biol. Chem., 2013, vol. 288, no. 22, pp. 15854–15864. doi: 10.1074/jbc.M113.469106
  42. Johnston K.H., Chaiban J.I., Wheeler R.C. Analysis of the variable domain of the streptokinase gene from streptococci associated with poststreptococcal glomerulonephritis. Zbl. Bact., 1992, vol. 22, pp. 339–342.
  43. Kambham N. Postinfectious glomerulonephritis. Adv. Anat. Pathol., 2012, vol. 19, no. 5, pp. 338–347. doi: 10.1097/PAP.0b013e31826663d9
  44. Kefalides N.A., Pegg M.T., Ohno N., Poon-King T., Zabriskie J., Fillit H. Antibodies to basement membrane collagen and to laminin are present in sera from patients with poststreptococcal glomerulonephritis. J. Exp. Med., 1986, vol. 163, no. 3, pp. 588–602. doi: 10.1084/jem.163.3.588
  45. Kil K.S., Cunningham M.W., Barnett L.A. Cloning and sequence analysis of a gene encoding a 67-kilodalton myosin-cross reactive antigen of Streptococcus pyogenes reveals its similarity with class II major histocompatibility antigens. Infect. Immun., 1994, vol. 62, no. 6, pp. 2440–2449. doi: 10.1128/iai.62.6.2440-2449.1994
  46. Kovalenko P., Fujinaka H., Yoshida Y., Kawamura H., Qu Z., El-Shemi A., Li H., Matsuki A., Bilim V., Yaoita E., Abo T., Uchiyama M., Yamamoto T. Fc receptor-mediated accumulation of macrophages in crescentic glomerulonephritis induced by antiglomerular basement membrane antibody administration in WKY rats. Int. Immunol., 2004, vol. 16, no. 5, pp. 625–634. doi: 10.1093/ intimm/dxh058
  47. Kronvall G. A surface component in group A, C and G streptococci with non-immune reactivity for immunoglobulin G. J. Immunol., 1973, vol. 111, no. 5, pp. 1401–1406.
  48. Lange C.F. Tracking the in vivo localization of streptococcal cell membrane (SCM) monoclonal antibodies: potential model for post-streptococcal sequelae. Res. Commun. Mol. Pathol. Pharmacol., 1995, vol. 89, no. 2, pp. 241–255.
  49. Lange C.F., Esmao M.J. Epitope mapping of homologous and cross-reactive antigens by monoclonal antibodies to streptococcal cell membrane (mAb to SCM). Mol. Immunol., 1996, vol. 33, no. 9, pp. 777–786. doi: 10.1016/0161-5890(96)00019-3
  50. Lebrun L., Pillot J., Grangeot-Keros L. Significance of anti-IgG antibodies obtained by immunization of rabbits with same streptococcal strains. Ann. Inst. Pasteur Immunol., 1982, vol. 133, pp. 45–56.
  51. Lindahl G. An Odyssey in word of M proteins. In: Perspectives on receptins and resistance. Ed. Kronvall G. Stockholm, 2013, pp. 13–23.
  52. Lindahl G., Akerstrom B. Receptor for IgA in group A streptococci: cloning of the gene and characterization of the protein expressed in E. coli. Mol. Microbiol., 1989, vol. 3, no. 2, pp. 239–247. doi: 10.1111/j.1365-2958.1989.tb01813.x
  53. Luo Y.H., Kuo C.F., Huang K.J., Wu J.J., Lei H.-Y., Lin M.T., Chuang W.-J., Liu C.-C., Lin C.-F., Lin Y.-S. Streptococcal pyrogenic exotoxin B antibodies in a mouse model of glomerulonephritis. Kidney Int., 2007, vol. 72, no. 6, pp. 716–724. doi: 10.1038/sj.ki.5002407
  54. Maharaj S., Seegobin K., Chrzanowski S., Chang S. Acute glomerulonephritis secondary to Streptococcus anginosus. BMJ Case Rep., 2018: bcr2017223314. doi: 10.1136/bcr-2017-223314
  55. Malke H. Polymorphism of the SK gene: implication for the pathogenesis of poststreptococcal glomerulonephritis. J. Med. Microbiol. Virol. Parasitol. Infect. Dis., 1993, vol. 278, pp. 3686–3693. doi: 10.1016/S0934-8840(11)80842-X
  56. McIntosh R.M., Allen J.E., Rabideua D., Carcio R., Rubio L., Rodriquez-Iturbe B. The role of interaction between streptococcal products and immunoglobulins in the pathogenesis of glomerular and vascular injure. In: Streptococcal diseases and the immune response (Eds. Read S.E., Zabriskie J.B.). New York, London Academic Press, 1980, pp. 585–596.
  57. McIntosh R.M., Kaufman D.B., McIntosh J.R., Griswold W.R. Glomerular lesions produced in rabbits by autologous serum and autologous IgG modified by treated with a culture of a hemolytic Streptococcus. J. Med. Microbiol., 1972, vol. 5, no. 1, pp. 1–7. doi: 10.1099/00222615-5-1-1
  58. McIntosh R.M., Kulvinskas C., Kaufman D.B. Alteration of the chemical composition of human immunoglobulin G by Streptococcus pyogenes. J. Med. Microbiol., 1971, vol. 4, no. 4, pp. 535–538. doi: 10.1099/00222615-4-4-535
  59. Mills J.O., Ghosh P. Nonimmune antibody interactions of Group A Streptococcus M and M-like proteins. PLoS Pathog., 2021, vol. 17, no. 2: e1009248. doi: 10.1371/journal. ppat.1009248 E
  60. Mosquera J., Romero M., Viera N., Rincon J., Pedreáñez A. Could streptococcal erythrogenic toxin B induce inflammation prior to the development of immune complex deposits in poststreptococcal glomerulonephritis? Nephron Exp. Nephrol., 2007, vol. 105, no. 2, pp. e41–e44. doi: 10.1159/000097602
  61. Myhre E.B., Kronvall G. Heterogeneity of nonimmune immunoglobulin Fc reactivity among gram-positive cocci. Description of three major types of receptors for human immunoglobulin G. Infect. Immun., 1977, vol. 17, no. 3, pp. 475–482. doi: 10.1128/IAI.17.3.475-482.1977
  62. Nardella F.A., Oppliger I.R., Stone G.C., Sasso E.H., Mannik M., Sjoquist J., Schroder A.K., Christensen P., Johansson P.J., Bjork L. Fc epitopes to human RFs and the relationships of RFs to the Fc binding proteins of microorganisms. Scand. J. Rheumatol. Suppl., 1988, vol. 75, pp. 190–198. doi: 10.3109/ 03009748809096761
  63. Nelson D.C., Garbe J., Collin M. Cysteine proteinase SpeB from Streptococcus pyogenes – a potent modifier of immunologically important host and bacterial proteins. Biol. Chem., 2011, 392, no. 12, pp. 1077–1088. doi: 10.1515/BC.2011.208
  64. Nordenfelt P., Waldemarson S., Linder A., Morgelin M., Karlsson C., Malmstrom J., Bjorck L. Antibodies orientation at bacterial surfaces is related to invasive infection. J. Exp. Med., 2012, vol. 209, no. 13, pp. 2367–2381. doi: 10.1084/jem.20120325
  65. Nordstrand A., McShan W.M., Ferretti J.J., Holm S.E., Norgren M. Allele substitution of the streptokinase gene reduces the nephritogenic capacity of group A streptococcal strain NZ131. Infect. Immun., 2000, vol. 68, no. 3, pp. 1019–1025. doi: 10.1128/iai.68.3.1019-1025.2000
  66. Nordstrand A., Norgren M., Ferretti J.J., Holm S.E. Streptokinase as a mediator of acute post-streptococcal glomerulonephritis in an experimental mouse model. Infect. Immun., 1998, vol. 66, no. 1, pp. 315–321. doi: 10.1128/IAI.66.1.315-321.1998
  67. Nordstrand A., Norgren M., Holm S.E. An experimental model for acute glomerulonephritis in mice. APMIS, 1996, vol. 104, pp. 805–816. doi: 10.1111/j.1699-0463.1996.tb04946.x
  68. Oda T., Yoshizawa N., Yamakami K., Yutaka Sakurai Y., Hanako Takechi H., Yamamoto K., Oshima N., Kumagai H. The Role of nephritis-associated plasmin receptor (NAPlr) in glomerulonephritis associated with streptococcal infection. J. Biomed. Biotechnol., 2012: 417675. doi: 10.1155/2012/417675
  69. Oda T., Yoshizawa N., Yamakami K., Tamura K., Kuroki A., Sugisaki T., Sawanobori E., Higashida K., Ohtomo Y., Hotta O., Kumagai H. Localization of nephritis-associated plasmin receptor in acute poststreptococcal glomerulonephritis. Hum. Pathol., 2010, vol. 41, no. 9, pp. 1276–1285. doi: 10.1016/j.humpath.2010.02.006
  70. Okuhara K., Yoshimoto M., Fujisawa S., Watanabe Y., Okuda R. Anti-streptococcal cell membrane and anti-human glomerular basement membrane titers in sera of patient with poststreptococcal acute glomerulonephritis and anaphylactoid purpura. Jpn Circ. J., 1983, vol. 47, no. 11, pp. 1293–1299. doi: 10.1253/jcj.47.1293
  71. Otten M.A., Groeneveld T.W. L, Flierman R., Rastaldi M.P., Trouw L.A., Faber-Krol M.C., Visser A., Essers M.C., Claassens J., Verbeek S., Cees van Kooten, Roos A., Daha M.R. Both complement and IgG Fc receptors are required for development of attenuated antiglomerular basement membrane nephritis in mice. J. Immunol., 2009, vol. 183, no. 6, pp. 3980–3988. doi: 10.4049/ jimmunol.0901301
  72. Pancholi V., Fischetti V.A. A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate dehydrogenase with multiple binding activity. J. Exp. Med., 1992, vol. 176, no. 2, pp. 415–426. doi: 10.1084/jem.176.2.415
  73. Phillips J., Palmer A., Baliga R. Glomerulonephritis associated with acute pneumococcal pneumonia: a case report. Pediatr. Nephrol., 2005, vol. 20, no. 10, pp. 1494–1495. doi: 10.1007/s00467-005-1994-6
  74. Qu Z., Cui Z., Liu G., Zhao M. The distribution of IgG subclass deposition on renal tissues from patients with anti-glomerular basement membrane disease. BMC Immunology, 2013, vol. 14: 19. doi: 10.1186/1471-2172-14-19
  75. Rodriguez-Iturbe B. Autoimmunity in acute poststreptococcal GN: a neglected aspect of the disease. JASN, 2021, vol. 32, pp. 534–542. doi: 10.1681/ASN.2020081228
  76. Rodriguez-Iturbe B., Haas M. Post-Streptococcal Glomerulonephritis. In: Streptococcus pyogenes: Basic Biology to Clinical Manifestations [Internet]. Oklahoma City (OK): University of Oklahoma Health Sciences Center; 2016. URL: http://www.ncbi.nlm.nih.gov/books/NBK333424
  77. Rodriguez-Iturbe B., Musser J.M. The current state of poststreptococcal glomerulonephritis. J. Am. Soc. Nephrol., 2008, vol. 19, no. 10, pp. 1855–1864. doi: 10.1681/ASN.2008010092
  78. Rukshan R.A.M., Hamlin A.S., Andronicos N.M., Lawlor C.S., McMillan D.J., Sriprakash K.S., Ketheesan N. Characterization of an experimental model to determine streptococcal M protein-induced autoimmune cardiac and neurobehavioral abnormalities. Immunol. Cell. Biol., 2022, vol. 100, no. 8, pp. 653–666. doi: 10.1111/imcb.12571
  79. Rukshan R.A.M., Sikder S., Hamlin A.S., Andronicos N.M., McMillan D.J., Sriprakash K.S., Ketheesan N. Requirements for a robust animal model to investigate the disease mechanism of autoimmune complications associated with ARF/RHD. Front. Cardiovasc. Med., 2021, vol. 8: 675339. doi: 10.3389/fcsm.2021.676339
  80. Schalen C., Kurl D.N., Christensen P. Independent binding of native and aggregated IgG in group A streptococci. AMIS, 1986, vol. 94, no. 5, pp. 333–338. doi: 10.1111/j.1699-0463.1986.tb03062.x
  81. Schroder A.K., Nardella F.A., Mannik M., Johansson P.J., Christensen P. Identification of the site on IgG Fc for interaction with streptococci of groups A, C and G. Immunology, 1987, vol. 62, no. 4, pp. 523–527.
  82. Segelmark M., Hellmark T. Anti-glomerular basement membrane disease: an update on subgroups, pathogenesis and therapies. Nephrol. Dial. Transplant., 2019, vol. 34, no. 11, pp. 1826–1832. doi: 10.1093/ndt/gfy327
  83. Segelmark M., Björck L. Streptococcal enzymes as precision tools against pathogenic IgG autoantibodies in small vessel vasculitis. Front. Immunol., 2019, vol. 10: 2165. doi: 10.3389/fimmu. 2019.02165
  84. Seligson G., Lange K., Majeed H.A. Deol H., Cronin W., Bovie R. Significance of endostreptosin antibody titers in poststreptococcal glomerulonephritis. Clin. Nephrol., 1985, vol. 24, no. 2, pp. 69–75.
  85. Sjogren J., Okumura Y.M., Collin M., Nizet V., Hollands A. Study of the IgG endoglycosidase EndoS in group A streptococcal phagocyte resistance and virulence. BMC Microbiol., 2011, vol. 11: 120. doi: 10.1186/1471-2180-11-120
  86. Sun H., Ringdahl U., Homeister J.W., Fay W.P., Engleberg N.C., Yang A.Y., Rozek L.S., Wang X., Sjöbring U., Ginsburg D. Plasminogen is a critical host pathogenicity factor for group A streptococcal infection. Science, New Series, 2004, vol. 305, no. 5688, pp. 1283–1286 doi: 10.1126/science.1101245
  87. Tewodros W., Nordstrand A., Kronvall G., Holm S.E., Norgren M. Streptokinase gene polymorphism in group A streptococci isolated from Ethiopian children with various disease manifestations. Microb. Pathog., 1993, vol. 15, no. 4, pp. 303–311. doi: 10.1006/mpat.1993.1080
  88. Thern A., Wastfelt M., Lindahl G. Expression of two different antiphagocytic M-proteins by Streptococcus pyogenes of the OF+ lineage. J. Immunol., 1998, vol. 160, no. 2, pp. 860–869.
  89. Whatmore A.M., Kehoe M.A. Horizontal gene transfer in the evolution of group A streptococcal emm-like genes: gene mosaics and variation in Vir regulons. Mol. Microbiol., 1994, vol. 11, no. 2, pp. 363–374. doi: 10.1111/j.1365- 2958.1994.tb00316.x
  90. Yang R., Otte M.A., Hellmark T., Collin M., Bjorck L., Zhao M.-H., Daha M.R., Segelmark M. Successful treatment of experimental glomerulonephritis with IdeS and EndoS, IgG-degrading streptococcal enzymes. Nephrol. Dial. Transplant., 2010, vol. 25, no. 8, pp. 2479–2486. doi: 10.1093/ndt/gfq115
  91. Yoshimoto M., Hosoi S., Fujisawa S., Sudo M., Okuda R. High level of antibodies to streptococcal cell membrane antigens specifically bound to monoclonal antibodies in acute poststreptococcal glomerulonephritis. J. Clin. Microbiol., 1987, vol. 25, no. 4, pp. 680–688. doi: 10.1128/jcm.25.4.680-684.1987
  92. Yoshizawa N., Yamakami K., Fujino M., Oda T., Tamura K., Matsumoto K., Sugisaki T., Boyle M.D.P. Nephritis-associated plasmin receptor and acute poststreptococcal glomerulonephritis: characterization of the antigen and associated immune response. J. Am. Soc. Nephrol., 2004, vol. 15, no. 7, pp. 1785–1793. doi: 10.1097/01.asn.0000130624.94920.6b.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Burova L.A., Suvorov A.N., Pigarevsky P.V., Totolian A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies