The features of developing rat autoimmune pathology with mitochondrial dysfunction

Cover Page

Cite item

Full Text

Abstract

The central role of the mitochondria in energy supply and cell death determines highlight these organelles as one of the promising objects for investigating pathogenesis of immune-mediated inflammatory disorders. The aim: to study features of pathogenesis in rat adjuvant-induced autoimmune pathology separately and in combination with mitochondrial disorders. Materials and methods. Wistar rats were divided into groups of negative control (solvent), positive control (single subcutaneous injection of complete Freund’s adjuvant (CAF) at dose of 0.1 ml/200 g body weight), experimental (CAF 0.1 ml/200 g body weight and 5 weeks later — with cuprizone 0.2% per feed weight). At the end of experiment (7 weeks), animals were tested in the “open field” model, euthanized, and biomaterial was collected to measure the relative mass coefficients of internal organs, hematological and histological studies. We calculated the mean, standard error of the mean; comparison of hypotheses was carried out by paired Student’s t-test. Results. In case of impaired immunological tolerance there was detected reduced rat body weight gain during the study period (negative control +74.7 g, positive control +10.3 g) along with modelled mitochondrial dysfunction, a general decrease in weight by 6.7 g was noted. The magnitude of mass coefficients indicate a relative reduction in mass of liver, kidneys, spleen and thymus in experimental animals. The leukocyte counts (× 109/L) are as follows: negative control — 8.68±0.37, positive control — 10.98±1.03 (p < 0.05), experimental group — 12.28±0.63 (p < 0.001). No significant changes were found in the leukocyte formula and the red cell lineage. During modelled autoimmune pathology, platelet count increased by 22.5% (p < 0.05), whereas after cuprizone was administered it decreased by 6.3% (relative to the negative control). Mitochondrial dysfunction caused an abrupt decrease in motor activity in rats: the number of crossed sectors in positive control animals was 55.50±6.91, experimental group — 44.50±3.60 (inter-group comparison, p < 0.001). Positive control: enlarged lymphatic nodules were found in the spleen, germinal center clarification, wall thickening of the pulpal and central arteries; single foci of hemorrhages in the red pulp. Experimental group: atrophy of lymphoid follicles of varying severity (relative to the groups of negative and positive controls), numerous foci of hemorrhages with hemosiderosis in the red pulp. Conclusion. Mitochondrial dysfunction is accompanied by augmented pathogenetic signs of autoimmune pathology, which can serve as one of the keys to understanding the mechanisms of human autoimmunity.

About the authors

Sergeii V. Skupnevskiy

Institute of Biomedical Investigations — the Affiliate of Vladikavkaz Scientific Centre of RAS

Email: medgenetika435@yandex.ru

DSc (Biology), Leading Researcher, Laboratory of Subcellular Structures, Department of Molecular and Cellular Mechanisms of Autoimmune Diseases

Russian Federation, Vladikavkaz

Elena G. Pukhaeva

Institute of Biomedical Investigations — the Affiliate of Vladikavkaz Scientific Centre of RAS

Author for correspondence.
Email: medgenetika435@yandex.ru

Junior Researcher, Laboratory of Subcellular Structures, Department of Molecular and Cellular Mechanisms of Autoimmune Diseases

Russian Federation, Vladikavkaz

Alibek K. Badtiev

Institute of Biomedical Investigations — the Affiliate of Vladikavkaz Scientific Centre of RAS

Email: medgenetika435@yandex.ru

PhD (Biology), Senior Researcher, Laboratory of Subcellular Structures, Department of Molecular and Cellular Mechanisms of Autoimmune Diseases

Russian Federation, Vladikavkaz

Fatima K. Rurua

Institute of Biomedical Investigations — the Affiliate of Vladikavkaz Scientific Centre of RAS

Email: medgenetika435@yandex.ru

Junior Researcher, Laboratory of Subcellular Structures, Department of Molecular and Cellular Mechanisms of Autoimmune Diseases

Russian Federation, Vladikavkaz

Fatima E. Batagova

Institute of Biomedical Investigations — the Affiliate of Vladikavkaz Scientific Centre of RAS

Email: medgenetika435@yandex.ru

Junior Researcher, Laboratory of Subcellular Structures, Postgraduate of the Department of Molecular and Cellular Mechanisms of Autoimmune Diseases

Russian Federation, Vladikavkaz

Zhanna G. Farnieva

Institute of Biomedical Investigations — the Affiliate of Vladikavkaz Scientific Centre of RAS

Email: medgenetika435@yandex.ru

Junior Researcher, Laboratory of Subcellular Structures, Postgraduate of the Department of Molecular and Cellular Mechanisms of Autoimmune Diseases

Russian Federation, Vladikavkaz

References

  1. Будихина А.С., Пащенков М.В. Роль гликолиза в иммунном ответе // Иммунология. 2021. Т. 42, № 1. С. 5–20. [Budikhina A.S., Pashchenkov M.V. The role of glycolysis in the immune response. Immunologiya = Immunologiya, 2021, vol. 42, no. 1. pp. 5–20. (In Russ.)] doi: 10.33029/0206-4952-2021-42-1-5-20
  2. Григорьев Е.В., Салахов Р.Р., Голубенко М.В., Понасенко А.В., Шукевич Д.Л., Матвеева В.Г., Радивилко А.С., Цепокина А.В., Великанова Е.А., Корнелюк Р.А., Ивкин А.А. Митохондриальная ДНК как кандидатный DAMP при критических состояниях // Бюллетень сибирской медицины. 2019. Т. 18, № 3. С. 134–143. [Grigor’ev E.V., Salakhov R.R., Golubenko M.V., Ponasenko A.V., Shukevich D.L., Matveeva V.G., Radivilko A.S., Tsepokina A.V., Velikanova E.A., Kornelyuk R.A., Ivkin A.A. Mitochondrial DNA as a candidate DAMP in critical conditions. Byulleten’ sibirskoi meditsiny = Bulletin of Siberian Medicine, 2019, vol. 18, no. 3, pp. 134–143. (In Russ.)] doi: 10.20538/1682-0363-2019-3-134-143
  3. Пинегин Б.В., Воробьева Н.В., Пащенков М.В., Черняк Б.В. Роль митохондриальных активных форм кислорода в активации врожденного иммунитета // Иммунология. 2018. Т. 39, № 4. С. 221–229. [Pinegin B.V., Vorob’eva N.V., Pashchenkov M.V., Chernyak B.V. The role of mitochondrial reactive oxygen species in the activation of innate immunity. Immunologiya = Immunologiya, 2018, vol. 39, no. 4. pp. 221–229. (In Russ.)] doi: 10.18821/0206-4952-2018-39-4-221-229
  4. Шейбак В.М., Павлюковец А.Ю. Биохимическая гетерогенность Т-лимфоцитов // Вестник ВГМУ. 2018. Т. 17, № 6. С. 7–17. [Sheibak V.M., Pavlyukovets A.Yu. Biochemical heterogeneity of T-lymphocytes. Vestnik Vitebskogo Gosudarstvennogo Meditsinskogo Universiteta = Vitebsk Medical Jornal, 2018, vol. 17, no. 6. pp. 7–17. (In Russ.)] doi: 10.22263/2312-4156.2018.5.7
  5. Abdel El-Gaphar O.A.M., Abo-Youssef A.M., Abo-Saif A.A. Effect of losartan in complete freund’s adjuvant-induced arthritis in rats. Iran J. Pharm. Res., 2018, vol. 17, no. 4, pp. 1420–1430.
  6. Rashida Gnanaprakasam J.N., Wu R., Wang R. Metabolic reprogramming in modulating t cell reactive oxygen species generation and antioxidant capacity. Front. Immunol., 2018, vol. 16, no. 9: 1075. doi: 10.3389/fimmu.2018.01075
  7. Shekhova E. Mitochondrial reactive oxygen species as major effectors of antimicrobial immunity. PLoS Pathog., 2020, vol. 16, no. 5: 1008470. doi: 10.1371/journal.ppat.1008470
  8. Tavassolifar M.J., Vodjgani M., Salehi Z., Izad M. The influence of reactive oxygen species in the immune system and pathogenesis of multiple sclerosis. Autoimmune Dis., 2020, vol. 2020: 5793817. doi: 10.1155/2020/5793817
  9. Varhaug K.N., Kråkenes T., Alme M.N., Vedeler C.A., Bindoff L.A. Mitochondrial complex IV is lost in neurons in the cuprizone mouse model. Mitochondrion, 2020, vol. 50, pp. 58–62. doi: 10.1016/j.mito.2019.09.003
  10. Zischka H., Einer C. Mitochondrial copper homeostasis and its derailment in Wilson disease. Int. J. Biochem. Cell. Biol., 2018, vol. 102, pp. 71–75. doi: 10.1016/j.biocel.2018.07.001

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Micrographs of the rat spleen: lymphoid nodules and areas of red pulp (magnification 10×20): A) negative control; B) positive control; C) experiment

Download (684KB)

Copyright (c) 2023 Skupnevskiy S.V., Pukhaeva E.G., Badtiev A.K., Rurua F.K., Batagova F.E., Farnieva Z.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».