Use of some bone-related cytokines as predictors for rheumatoid arthritis severity by neural network analysis

封面

如何引用文章

全文:

详细

Background. Rheumatoid arthritis (RA) is characterized by synovial membrane inflammation that results in joint damage. Many earlier studies have measured cytokines for a better diagnosis of RA. In the present study, three bone biomarkers [osteopontin, stromelysin-1 (MMP3), and vascular endothelial growth factor-A (VEGF)] are examined for their ability to estimate the severity of disease by using artificial neural network (NN) analysis and binary logistic regression analysis. Methods. The study enrolled 87 RA patients and 44 healthy control subjects. The biomarkers were measured by the enzyme-linked immunosorbent assay technique. Disease Activity Score (28 joints) and C-reactive protein (CRP) (DAS28-CRP) was calculated by using DAS28-CRP calculator. The patients with DAS28-CRP ≥ 5.1 are considered as having high disease activity (HDA). While patients’ group with DAS28-CRP < 5.1 are considered as moderate disease activity (MDA). The neural network (NN) analysis was used for the differentiation between groups. Results. Results showed that the most sensitive predictor for high disease activity (HDA) of RA is MMP3, followed by osteopontin and VEGF. These three biomarkers can differentiate significantly between HDA and MDA with a relatively high size effect (Partial η2 = 0.323, p < 0.001). The HDA group has a significantly higher MMP3, CRP, RF, and anti-citrullinated protein antibodies (ACPA) than the MDA group. MMP3 is strongly associated with two inflammatory indicators; CRP and ESR. Conclusion. There was a significant elevation in the serum level of MMP3 in RA patients with HDA compared to the MDA and control groups. High DAS28, RF, CRP, and ACPA were found in HDA patients compared with the MDA group. The use of the NN analysis indicated that the measured biomarkers help predict the HDA state in RA patients. MMP3 and osteopontin are diagnostic biomarkers for the severity of RA and are related to many disease-related characteristics with a sensitivity of 88.9% and specificity of 68.4%.

作者简介

R. Saleh

Al-Maarif University College

Email: sc.kfwi72@uoanbar.edu.iq

Medical Laboratory Techniques Department

伊拉克, Ramadi, Al Anbar Governorate

L. Mahmood

College of Medicine, University of Anbar

Email: sc.kfwi72@uoanbar.edu.iq

Assistent Professor

伊拉克, Ramadi, Al Anbar Governorate

M. Mohammed

General Directorate of Anbar Education, Ministry of Education

Email: sc.kfwi72@uoanbar.edu.iq
伊拉克, Al Anbar

K. Al-Rawi

College of Science, University of Anbar

编辑信件的主要联系方式.
Email: sc.kfwi72@uoanbar.edu.iq

PhD, Professor

俄罗斯联邦, Ramadi, Al Anbar Governorate

H. Al-Hakeim

College of Science, University of Kufa

Email: sc.kfwi72@uoanbar.edu.iq

Professor

伊拉克, Kufa, Najaf Governorate

参考

  1. Al-Hakeim H.K., Moustafa S.R., Jasem K.M. Serum cesium, rhenium, and rubidium in rheumatoid arthritis patients. Biol. Trace Elem. Res., 2019, vol. 189, no. 2, pp. 379–386. doi: 10.1007/s12011-018-1497-5
  2. Aletaha D., Neogi T., Silman A.J., Funovits J., Felson D.T., Bingham III CO, Birnbaum N.S., Burmester G.R., Bykerk V.P., Cohen M.D. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum., 2010, vol. 62, no. 9, pp. 2569–2581. doi: 10.1136/ard.2010.138461
  3. Anandarajah A.P. Clinical aspects of rheumatoid arthritis: highlights from the 2010 ACR conference. Int. J. Clin. Rheumatol, 2011, vol. 6, no. 3: 267. doi: 10.2217/IJR.11.39
  4. Boumiza S., Chahed K., Tabka Z., Jacob M.-P., Norel X., Ozen G. MMPs and TIMPs levels are correlated with anthropometric parameters, blood pressure, and endothelial function in obesity. Scientific Reports, 2021, vol. 11, no. 1: 20052. doi: 10.1038/s41598-021-99577-2
  5. Cessak G., Kuzawinska O., Burda A., Lis K., Wojnar M., Mirowska-Guzel D., Balkowiec-Iskra E. TNF inhibitors — mechanisms of action, approved and off-label indications. Pharmacol. Rep., 2014, vol. 66, no. 5, pp. 836–844. doi: 10.1016/j.pharep.2014.05.004
  6. Chen G., Zhang X., Li R., Fang L., Niu X., Zheng Y., He D., Xu R., Zhang J.Z. Role of osteopontin in synovial Th17 differentiation in rheumatoid arthritis. Arthritis Rheum., 2010, vol. 62, no. 10, pp. 2900–2908. doi: 10.1002/art.27603
  7. Chen J.J., Huang J.F., Du W.X., Tong P.J. Expression and significance of MMP3 in synovium of knee joint at different stage in osteoarthritis patients. Asian Pac. J. Trop. Med., 2014, vol. 7, no. 4, pp. 297–300. doi: 10.1016/S1995-7645(14)60042-0
  8. Cohen J., Cohen P., West S.G., Aiken L.S. Applied multiple regression/correlation analysis for the behavioral sciences; 3rd edition. Taylor and Francis, 2013, 536 p.
  9. Cornec D., Varache S., Morvan J., Devauchelle-Pensec V., Berthelot J.M., Le Henaff-Bourhis C., Hoang S., Martin A., Chalès G., Jousse-Joulin S., Saraux A. Comparison of ACR 1987 and ACR/EULAR 2010 criteria for predicting a 10-year diagnosis of rheumatoid arthritis. Joint Bone Spine, 2012, vol. 79, no. 6, pp. 581–585. doi: 10.1016/j.jbspin.2012.01.015
  10. Fadda S., Abolkheir E., Afifi R., Gamal M. Serum matrix metalloproteinase-3 in rheumatoid arthritis patients: Correlation with disease activity and joint destruction. Egyptian Rheumatol., 2016, vol. 38, no. 3, pp. 153–159. doi: 10.1016/j.ejr.2016.01.001
  11. Fahim N.K., Negida A., Fahim A.K. Sample Size Calculation Guide — Part 3: How to calculate the sample size for an independent case-control study. Adv. J. Emerg. Med., 2019, vol. 3, no. 2: e20. doi: 10.22114/AJEM.v0i0.138
  12. Fane M.E., Ecker B.L., Kaur A., Marino G.E., Alicea G.M., Douglass S.M., Chhabra Y., Webster M.R., Marshall A., Colling R., Espinosa O., Coupe N., Maroo N., Campo L., Middleton M.R., Corrie P., Xu X., Karakousis G.C., Weeraratna A.T. sFRP2 supersedes VEGF as an age-related driver of angiogenesis in melanoma, affecting response to anti-VEGF therapy in older patients. Clin. Cancer. Res., 2020, vol. 26, no. 21, pp. 5709–5719. doi: 10.1158/1078-0432.CCR-20-0446
  13. Forootanfar H., Adeli-Sardou M., Nikkhoo M., Mehrabani M., Amir-Heidari B., Shahverdi A.R., Shakibaie M. Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide. J. Trace Elem. Med. Biol., 2014, vol. 28, no. 1, pp. 75–79. doi: 10.1016/j.jtemb.2013.07.005
  14. Giannini D., Antonucci M., Petrelli F., Bilia S., Alunno A., Puxeddu I. One year in review 2020: pathogenesis of rheumatoid arthritis. Clin. Exp. Rheumatol., 2020, vol. 38, no. 3, pp. 387–397.
  15. Gravallese E.M. Osteopontin: a bridge between bone and the immune system. J. Clin. Invest., 2003, vol. 112, no. 2, pp. 147–149. doi: 10.1172/JCI19190
  16. Guo X., Wang S., Godwood A., Close D., Ryan P.C., Roskos L.K., White W.I. Pharmacodynamic biomarkers and differential effects of TNF- and GM-CSF-targeting biologics in rheumatoid arthritis. Int. J. Rheum. Dis., 2019, vol. 22, no. 4, pp. 646–653. doi: 10.1111/1756-185X.13395
  17. Hattori Y., Kida D., Kaneko A. Normal serum matrix metalloproteinase-3 levels can be used to predict clinical remission and normal physical function in patients with rheumatoid arthritis. Clin. Rheumatol., 2019, vol. 38, no. 1, pp. 181–187. doi: 10.1007/s10067-017-3829-9
  18. Horton M.A., Nesbit M.A., Helfrich M.H. Interaction of osteopontin with osteoclast integrins. Ann. NY Acad. Sci., 1995, vol. 760, pp. 190–200. doi: 10.1111/j.1749-6632.1995.tb44630.x
  19. Hueber A.J., Asquith D.L., Miller A.M., Reilly J., Kerr S., Leipe J., Melendez A.J., McInnes I.B. Cutting edge: mast cells express IL-17A in rheumatoid arthritis synovium. J. Immunol., 2010, vol. 184, no. 7, pp. 3336–3340. doi: 10.4049/jimmunol.0903566
  20. Iwadate H., Kobayashi H., Kanno T., Asano T., Saito R., Sato S., Suzuki E., Watanabe H., Ohira H. Plasma osteopontin is correlated with bone resorption markers in rheumatoid arthritis patients. Int. J. Rheum. Dis., 2014, vol. 17, no. 1, pp. 50–56. doi: 10.1111/1756-185X.12115
  21. Kariuki S.N., Moore J.G., Kirou K.A., Crow M.K., Utset T.O., Niewold T.B. Age- and gender-specific modulation of serum osteopontin and interferon-alpha by osteopontin genotype in systemic lupus erythematosus. Genes Immun., 2009, vol. 10, no. 5, pp. 487–494. doi: 10.1038/gene.2009.15.
  22. Kim H.R., Kim K.W., Kim B.M., Cho M.L., Lee S.H. The effect of vascular endothelial growth factor on osteoclastogenesis in rheumatoid arthritis. PLoS One, 2015, vol. 10, no. 4: e0124909. doi: 10.1371/journal.pone.0124909
  23. Klimiuk P.A., Domysławska I., Sierakowski S., Chwiećko J. Regulation of serum matrix metalloproteinases and tissue inhibitor of metalloproteinases-1 following rituximab therapy in patients with rheumatoid arthritis refractory to anti-tumor necrosis factor blockers. Rheumatol. Int., 2015, vol. 35, no. 4, pp. 749–755. doi: 10.1007/s00296-014-3112-1
  24. Lee Y.H., Bae S.C. Correlation between circulating VEGF levels and disease activity in rheumatoid arthritis: a meta-analysis. Z. Rheumatol., 2018, vol. 77, no. 3, pp. 240–248. doi: 10.1007/s00393-016-0229-5
  25. Lerner A., Neidhofer S., Reuter S., Matthias T. MMP3 is a reliable marker for disease activity, radiological monitoring, disease outcome predictability, and therapeutic response in rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol., 2018, vol. 32, no. 4, pp. 550–562. doi: 10.1016/j.berh.2019.01.006
  26. Li L., Cai B., Liao J., Yang B., Huang Z., Wang L. [Clinical value of serum matrix metalloproteinase-3 in evaluating joint destruction and therapeutic effect in rheumatoid arthritis patients]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 2013, vol. 29, no. 9, pp. 966–969.
  27. Liu M.K., Wang L.C., Hu F.L. [Value of serum matrix metalloproteinase 3 in the assessment of early rheumatoid arthritis]. Beijing Da Xue Xue Bao Yi Xue Ban, 2018, vol. 50, no. 6, pp. 981–985.
  28. Ma J.-D., Zhou J.-J., Zheng D.-H., Chen L.-F., Mo Y.-Q., Wei X.-N., Yang L.-J., Dai L. Serum matrix metalloproteinase-3 as a noninvasive biomarker of histological synovitis for diagnosis of rheumatoid arthritis. Mediat. Inflamm., 2014, vol. 2014: 179284. doi: 10.1155/2014/179284
  29. Ma J., Wang X., Mo Y., Chen L., Zheng D., Wei X., Dai L. [Value of serum matrix metalloproteinase-3 in the assessment of active disease in patients with rheumatoid arthritis]. Zhonghua Yi Xue Za Zhi, 2015, vol. 95, no. 47, pp. 3823–3828.
  30. Ma M.J., Liu H.C., Qu X.Q., Wang J.L. Matrix metalloproteinase-3 gene polymorphism and its mRNA expression in rheumatoid arthritis. Genet. Mol. Res., 2015, vol. 14, no. 4, pp. 15652–9. doi: 10.4238/2015.December.1.17
  31. Malemud C.J. Growth hormone, VEGF and FGF: involvement in rheumatoid arthritis. Clin. Chim. Acta, 2007, vol. 375, no. 1–2, pp. 10–19. doi: 10.1016/j.cca.2006.06.033
  32. Mamehara A., Sugimoto T., Sugiyama D., Morinobu S., Tsuji G., Kawano S., Morinobu A., Kumagai S. Serum matrix metalloproteinase-3 as predictor of joint destruction in rheumatoid arthritis, treated with non-biological disease modifying anti-rheumatic drugs. Kobe J. Med. Sci., 2010, vol. 56, no. 3, pp. E98–107.
  33. Mateen S., Zafar A., Moin S., Khan A.Q., Zubair S. Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clin. Chim. Acta, 2016, vol. 455, pp. 161–171. doi: 10.1016/j.cca.2016.02.010
  34. Miossec P. Rheumatoid arthritis: still a chronic disease. Lancet, 2013, vol. 381, no. 9870, pp. 884–886. doi: 10.1016/S0140-6736(12)62192-8
  35. Mohammed Ali D.M., Al-Fadhel S.Z., Al-Ghuraibawi NHA, Al-Hakeim H.K. Serum chemerin and visfatin levels and their ratio as possible diagnostic parameters of rheumatoid arthritis. Reumatologia, 2020, vol. 58, no. 2, pp. 67–75. doi: 10.5114/reum.2020.95359
  36. Mu N., Gu J.T., Huang T.L., Liu N.N., Chen H., Bu X., Zheng Z.H., Jia B., Liu J., Wang B.L., Wang Y.M., Zhu Z.F., Zhang Y., Zhang Y.Q., Xue X.C., Li M., Zhang W. Blockade of discoidin domain receptor 2 as a strategy for reducing inflammation and joint destruction in rheumatoid arthritis via altered interleukin-15 and dkk-1 signaling in fibroblast-like synoviocytes. Arthritis Rheumatol., 2020, vol. 72, no. 6, pp. 943–956. doi: 10.1002/art.41205
  37. Ohshima S., Yamaguchi N., Nishioka K., Mima T., Ishii T., Umeshita-Sasai M., Kobayashi H., Shimizu M., Katada Y., Wakitani S., Murata N., Nomura S., Matsuno H., Katayama R., Kon S., Inobe M., Uede T., Kawase I., Saeki Y. Enhanced local production of osteopontin in rheumatoid joints. J. Rheumatol., 2002, vol. 29, no. 10, pp. 2061–2067.
  38. Orr C., Najm A., Biniecka M., McGarry T., Ng C.T., Young F., Fearon U., Veale D.J. Synovial immunophenotype and anti-citrullinated peptide antibodies in rheumatoid arthritis patients: relationship to treatment response and radiologic prognosis. Arthritis Rheum., 2017, vol. 69, no. 11, pp. 2114–2123. doi: 10.1002/art.40218
  39. Page-McCaw A., Ewald A.J., Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol., 2007, vol. 8, no. 3, pp. 221–233. doi: 10.1038/nrm2125
  40. Rakieh C., Nam J.L., Hunt L., Hensor E.M., Das S., Bissell L.A., Villeneuve E., McGonagle D., Hodgson R., Grainger A., Wakefield R.J., Conaghan P.G., Emery P. Predicting the development of clinical arthritis in anti-CCP positive individuals with non-specific musculoskeletal symptoms: a prospective observational cohort study. Ann. Rheum. Dis., 2015, vol. 74, no. 9, pp. 1659–1666. doi: 10.1136/annrheumdis-2014-205227
  41. Ribbens C., Martin y Porras M., Franchimont N., Kaiser M.J., Jaspar J.M., Damas P., Houssiau F.A., Malaise M.G. Increased matrix metalloproteinase-3 serum levels in rheumatic diseases: relationship with synovitis and steroid treatment. Ann. Rheum. Dis., 2002, vol. 61, no. 2, pp. 161–166. doi: 10.1136/ard.61.2.161
  42. Sasaki S., Iwata H., Ishiguro N., Obata K., Miura T. Detection of stromelysin in synovial fluid and serum from patients with rheumatoid arthritis and osteoarthritis. Clin. Rheumatol., 1994, vol. 13, no. 2, pp. 228–233. doi: 10.1007/BF02249017
  43. Schuerwegh A.J., Ioan-Facsinay A., Dorjee A.L., Roos J., Bajema I.M., van der Voort E.I., Huizinga T.W., Toes R.E. Evidence for a functional role of IgE anticitrullinated protein antibodies in rheumatoid arthritis. Proc. Natl Acad. Sci. USA, 2010, vol. 107, no. 6, pp. 2586–2591. doi: 10.1073/pnas.0913054107
  44. Sponholtz T.R., Zhang X., Fontes J.D., Meigs J.B., Cupples L.A., Kiel D.P., Hannan M.T., McLean R.R. Association between inflammatory biomarkers and bone mineral density in a community-based cohort of men and women. Arthritis Care Res. (Hoboken), 2014, vol. 66, no. 8, pp. 1233–1240. doi: 10.1002/acr.22270
  45. Sun S., Bay-Jensen A.-C., Karsdal M.A., Siebuhr A.S., Zheng Q., Maksymowych W.P., Christiansen T.G., Henriksen K. The active form of MMP-3 is a marker of synovial inflammation and cartilage turnover in inflammatory joint diseases. BMC Musculoskelet. Disord., 2014, vol. 15, no. 93, pp. 1–12. doi: 10.1186/1471-2474-15-93
  46. Tetlow L.C., Lees M., Ogata Y., Nagase H., Woolley D.E. Differential expression of gelatinase B (MMP-9) and stromelysin-1 (MMP-3) by rheumatoid synovial cells in vitro and in vivo. Rheumatol. Int., 1993, vol. 13, no. 2, pp. 53–59. doi: 10.1007/BF00307734
  47. Tokai N., Yoshida S., Kotani T., Yoshikawa A., Kimura Y., Fujiki Y., Matsumura Y., Takeuchi T., Makino S., Arawaka S. Serum matrix metalloproteinase 3 levels are associated with an effect of iguratimod as add-on therapy to biological DMARDs in patients with rheumatoid arthritis. PLoS One, 2018, vol. 13, no. 8: e0202601. doi: 10.1371/journal.pone.0202601
  48. Tuncer T., Kaya A., Gulkesen A., Kal G.A., Kaman D., Akgol G. Matrix metalloproteinase-3 levels in relation to disease activity and radiological progression in rheumatoid arthritis. Adv. Clin. Exp. Med., 2019, vol. 28, no. 5, pp. 665–670. doi: 10.17219/acem/94065
  49. Uemura Y., Hayashi H., Takahashi T., Saitho T., Umeda R., Ichise Y., Sendo S., Tsuji G., Kumagai S. [MMP-3 as a biomarker of disease activity of rheumatoid arthritis]. Rinsho Byori, 2015, vol. 63, no. 12, pp. 1357–1364.
  50. Umeda N., Matsumoto I., Sumida T. [The pathogenic role of ACPA in rheumatoid arthritis]. Nihon Rinsho Meneki Gakkai Kaishi, 2017, vol. 40, no. 6, pp. 391–395. doi: 10.2177/jsci.40.391
  51. Van de Stadt L.A., de Koning M.H., van de Stadt R.J., Wolbink G., Dijkmans B.A., Hamann D., van Schaardenburg D. Development of the anti-citrullinated protein antibody repertoire prior to the onset of rheumatoid arthritis. Arthritis Rheum., 2011, vol. 63, no. 11, pp. 3226–3233. doi: 10.1002/art.30537
  52. Van Riel P., Renskers L. The Disease Activity Score (DAS) and the Disease Activity Score using 28 joint counts (DAS28) in the management of rheumatoid arthritis. Clin. Exp. Rheumatol., 2016, vol. 34, no. 5 (suppl. 101), pp. S4–S40.
  53. Vasilev G., Manolova I., Ivanova M., Stanilov I., Miteva L., Stanilova S. The role of IL-18 in addition to Th17 cytokines in rheumatoid arthritis development and treatment in women. Sci. Rep., 2021, vol. 11, no. 1: 15391. doi: 10.1038/s41598-021-94841-x
  54. Vickers N.J. Animal communication: when i’m calling you, will you answer too? Curr. Biol., 2017, vol. 27, no. 14, pp. R713–R715. doi: 10.1016/j.cub.2017.05.064
  55. Wasserman A. Rheumatoid arthritis: common questions about diagnosis and management. Am. Fam. Physician., 2018, vol. 97, no. 7, pp. 455–462.
  56. Wijbrandts C.A., Vergunst C.E., Haringman J.J., Gerlag D.M., Smeets T.J., Tak P.P. Absence of changes in the number of synovial sublining macrophages after ineffective treatment for rheumatoid arthritis: implications for use of synovial sublining macrophages as a biomarker. Arthritis Rheumatol., 2007, vol. 56, no. 11, pp. 3869–3871. doi: 10.1002/art.22964
  57. Wu J., Li Q., Deng J., Zhao J.J., Yu Q.H. Association between IL-33 and other inflammatory factors in patients with rheumatoid arthritis and in fibroblast-like synoviocytes in vitro. Exp. Ther. Med., 2021, vol. 21, no. 2: 161. doi: 10.3892/etm.2020.9592
  58. Xu J., Feng Z., Chen S., Zhu J., Wu X., Chen X., Li J. Taxol alleviates collagen-induced arthritis in mice by inhibiting the formation of microvessels. Clin. Rheumatol., 2019, vol. 38, no. 1, pp. 19–27 doi: 10.1007/s10067-017-3646-1
  59. Yoshihara Y., Obata Ki, Fujimot N., Yamashita K., Hayakawa T., Shimmei M. Increased levels of stromelysin-1 and tissue inhibitor of metalloproteinases-1 in sera from patients with rheumatoid arthritis. Arthritis Rheumatol., 1995, vol. 38, no. 7, pp. 969–975. doi: 10.1002/art.1780380713
  60. Yumoto K., Ishijima M., Rittling S.R., Tsuji K., Tsuchiya Y., Kon S., Nifuji A., Uede T., Denhardt D.T., Noda M. Osteopontin deficiency protects joints against destruction in anti-type II collagen antibody-induced arthritis in mice. Proc. Natl Acad. Sci. USA, 2002, vol. 99, no. 7, pp. 4556–4561. doi: 10.1073/pnas.052523599
  61. Zhang F.-J., Gao S.-G., Cheng L., Tian J., Xu W.-S., Luo W., Song Y., Yang Y., Lei G.-H. The effect of hyaluronic acid on osteopontin and CD44 mRNA of fibroblast-like synoviocytes in patients with osteoarthritis of the knee. Rheumatol Int., 2013, vol. 33, no. 1, pp. 79–83. doi: 10.1007/s00296-011-2339-3
  62. Zhang F., Luo W., Li Y., Gao S., Lei G. Role of osteopontin in rheumatoid arthritis. Rheumatol. Int., 2015, vol. 35, no. 4, pp. 589–595. doi: 10.1007/s00296-014-3122-z
  63. Zheng W., Li R., Pan H., He D., Xu R., Guo T.B., Guo Y., Zhang J.Z. Role of osteopontin in induction of monocyte chemoattractant protein 1 and macrophage inflammatory protein 1β through the NF-κB and MAPK pathways in rheumatoid arthritis. Arthritis Rheum., 2009, vol. 60, no. 7, pp. 1957–1965. doi: 10.1002/art.24625

补充文件

附件文件
动作
1. JATS XML

版权所有 © Saleh R.O., Mahmood L.A., Mohammed M.A., Al-Rawi K.F., Al-Hakeim H.K., 2023

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».