The role of neutrophil extracellular traps (NETs) in the immunopathogenesis of severe COVID-19: potential immunotherapeutic strategies regulating NET formation and activity

Cover Page

Cite item

Full Text

Abstract

The role of neutrophil granulocytes (NG) in the pathogenesis of COVID-19 is associated with the NG recruitment into inflammatory foci, activation of their functions and enhanced formation of neutrophil extracellular networks (NETs). In this review, we analyzed a large body of scientific literature devoted to the features of developing NETs, their role in the COVID-19 pathogenesis, a role in emerging immunothrombosis, vasculitis, acute respiratory distress syndrome, cytokine storm syndrome, and multi-organ lesions. Convincing data are presented clearly indicating about a profound role of NETs in the COVID-19 immunopathogenesis and associated severe complications resulting from intensified inflammation process, which is a key for the course of SARS-CoV-2 virus infection. The presented role of NGs and NETs, along with that of other immune system cells and pro-inflammatory cytokines, is extremely important in understanding development of overactive immune response in severe COVID-19. The scientific results obtained available now allow to identify an opportunity of regulatory effects on hyperactivated NGs, NETosis at various stages and on limiting a negative impact of pre-formed NETs on various tissues and organs. All the aforementioned data should help in creating new, specialized immunotherapy strategies designed to increase the odds of survival, reduce severity of clinical manifestations in COVID-19 patients as well as markedly reduce mortality rates. Currently, it is possible to use existing drugs, while a number of new drugs are being developed, the action of which can regulate NG quantity, positively affect NG functions and limit intensity of NETosis. Continuing research on the role of hyperactive NG and NETosis as well as understanding the mechanisms of regulating NET formation and restriction in severe COVID-19, apparently, are of high priority, because in the future the new data obtained could pave the basis for development of targeted approaches not only for immunotherapy aimed at limiting education and blocking negative effects already formed NETs in severe COVID-19, but also for immunotherapy, which could be used in combination treatment of other netopathies, primarily autoimmune diseases, auto-inflammatory syndromes, severe purulent-inflammatory processes, including bacterial sepsis and hematogenous osteomyelitis.

About the authors

Irina V. Nesterova

Kuban State Medical University of the Ministry of Healthcare of the Russian Federation; Peoples’ Friendship University of Russia

Author for correspondence.
Email: inesterova1@yandex.ru

DSc (Medicine), Professor, Head Researcher, Department of Clinical and Experimental Immunology and Molecular Biology, Central Scientific Research Laboratory; Department of Allergology and Immunology, Faculty of Continuing Medical Education

Russian Federation, Krasnodar; Moscow

Margarita G. Atazhakhova

Kuban State Medical University of the Ministry of Healthcare of the Russian Federation

Email: inesterova1@yandex.ru

PhD Candidate, Department of Clinical Immunology, Allergology and Laboratory Diagnostics of FAT and PRS

Russian Federation, Krasnodar

Yuri V. Teterin

Kuban State Medical University of the Ministry of Healthcare of the Russian Federation

Email: inesterova1@yandex.ru

PhD Candidate, Department of Clinical Immunology, Allergology and Laboratory Diagnostics of FAT and PRS

Russian Federation, Krasnodar

Valeriya A. Matushkina

Kuban State Medical University of the Ministry of Healthcare of the Russian Federation

Email: inesterova1@yandex.ru

PhD Candidate, Department of Infectious Diseases and Epidemiology of FAT and PRS

Russian Federation, Krasnodar

Galina A. Chudilova

Kuban State Medical University of the Ministry of Healthcare of the Russian Federation

Email: inesterova1@yandex.ru

DSc (Biology), Associate Professor, Head of the Department of Clinical and Experimental Immunology and Molecular Biology of the Central Scientific Research Laboratory, Professor, Department of Clinical Immunology, Allergology and Laboratory Diagnostics of FAT and PRS

Russian Federation, Krasnodar

Marina N. Mitropanova

Kuban State Medical University of the Ministry of Healthcare of the Russian Federation

Email: inesterova1@yandex.ru

DSc (Medicine), Associate Professor, Head of the Department of Pediatric Dentistry, Orthodontics and Dentofacial Surgery

Russian Federation, Krasnodar

References

  1. Антонов В.Н., Игнатова Г.Л., Прибыткова О.В., Слепцова С.С., Стребкова Е.А., Худякова Е.А., Симакова А.И., Рабец С.Ю., Тихонова Е.П., Курмаева Д.Ю., Петрушин М.А., Машков А.С., Гаязова Е.В., Яшева И.В., Андреев М.А., Хиновкер В.В., Карпунин А.Ю., Бережанский Б.В. Опыт применения олокизумаба у пациентов с COVID-19 // Терапевтический архив. 2020. Т. 92, № 12. С. 148–154. [Antonov V.N., Ignatova G.L., Pribytkova O.V., Sleptsova S.S., Strebkova E.A, Khudyakova E.A., Simakov A.I., Rabets S.Y., Tikhonova E.P., Kurmaeva D.Y., Petrushin M.A., Mashkov A.S., Gayazova E.V., Yasheva I.V., Andreev M.A., Khinovker V.V., Karpunin A.Y., Berezhanskiy B.V. Experience of olokizumab use in COVID-19 patients. Terapevticheskii arkhiv = Therapeutic Archive, 2020, vol. 92, no. 12, pp. 148–154. (In Russ.)] doi: 10.26442/00403660.2020.12.200522
  2. Бицадзе В.О., Слуханчук Е.В., Хизроева Д.Х., Третьякова М.В., Шкода А.С., Радецкая Л.С., Макацария А.Д., Элалами И., Грис Ж.-К., Грандоне Э. Внеклеточные ловушки нейтрофилов (NETs) в патогенезе тромбоза и тромбовоспалительных заболеваний // Вестник РАМН. 2021. Т. 76, № 1. С. 75–85. [Bitsadze V.O., Slushanchuk E.V., Khizroeva D.H., Tretyakova M.V., Skoda A.S., Radetskaya L.S., Makatsaria A.D., Elalami I., Gris J.-K., Grandone E. Extracellular neutrophil traps (NETs) in the pathogenesis of thrombosis and thromboinflammatory diseases. Vestnik RAMN = Bulletin of the Russian Academy of Medical Sciences, 2021, vol. 76, no. 1, pp. 75–85. (In Russ.)] doi: 10.15690/vramn1395
  3. Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 16 от 18.08.2022. 248 с. [Interim guidelines. Prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Version 16 dated 18.08.2022. 248 p. (In Russ.)]
  4. Городин В.Н., Мойсова Д.Л., Зотов С.В., Ванюков А.А., Чумакова Ю.Е. Проактивная противовоспалительная терапия левилимабом у пациентов с COVID-19 // Инфекционные болезни. 2021. Т. 19, № 3. С. 14–23. [Gorodin V.N., Moisova D.L., Zotov S.V., Vanyukov A.A., Сhumakova Yu.E. Proactive anti-inflammatory therapy with levilimab for patients with COVID-19. Infektsionnye bolezni = Infectious Diseases, 2021, vol. 19, no. 3, pp. 14–23. (In Russ.)] doi: 10.20953/1729-9225-2021-3-14-23
  5. Гудима Г.О., Хаитов Р.М., Кудлай Д.А., Хаитов М.Р. Молекулярно-иммунологические аспекты диагностики, профилактики и лечения коронавирусной инфекции // Иммунология. 2021. Т. 42, № 3. С. 198–210. [Gudima G.O., Khaitov R.M., Kudlay D.A., Khaitov M.R. Molecular immunological aspects of diagnosis, prevention and treatment of coronavirus infection. Immunologiya = Immunologiya, 2021, vol. 42, no. 3, pp. 198–210. (In Russ.)] doi: 10.33029/0206-4952-2021-42-3-198-210
  6. Долгушин И.И., Андреева Ю.С., Савочкина А.Ю. Нейтрофильные внеклеточные ловушки и методы оценки функционального статуса нейтрофилов. М.: Издательство РАМН, 2009. 208 с. [Dolgushin I.I., Andreeva Yu.S., Savochkina A.Yu. Neutrophil extracellular traps and methods for assessing the functional status of neutrophils. Moscow: Publishing house RAMS, 2009. 208 p. (In Russ.)]
  7. Кравцов А.Л., Бугоркова С.А. Роль плазменного ингибитора сериновых лейкоцитарных протеиназ в защите организма от COVID-19 // Журнал микробиологии, эпидемиологии и иммунобиологии. 2021. Т. 98, № 5. С. 567–578. Kravtsov A.L., Bugorkova S.A. The role of plasma inhibitor of serine leukocyte proteinases in protecting the body from COVID-19. Zhurnal mikrobiologii epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2021, vol. 98, no. 5, pp. 567–578. (In Russ.)] doi: 10.36233/0372-9311-160
  8. Насонов Е.Л. Иммунопатология и иммунофармакотерапия коронавирусной болезни 2019 (COVID-19): фокус на интерлейкин 6 // Научно-практическая ревматология. 2020. Т. 58, № 3. С. 245–261. [Nasonov E.L. Immunopathology and immunopharmacotherapy of coronavirus disease 2019 (COVID-19): focus on interleukin 6. Nauchno-prakticheskaya revmatologiya = Rheumatology Science and Practice, 2020, vol. 58, no. 3, pp. 245–261. (In Russ.)] doi: 10.14412/1995-4484-2020-245-261
  9. Нестерова И.В., Чудилова Г.А., Ковалева С.В., Тараканов В.А., Ломтатидзе Л.В., Колесникова Н.В., Русинова Т.В., Евглевский А.А., Малиновская В.В. Нейтрофильные гранулоциты: отражение в зеркале современных представлений. М.: Capricorn Publishing, UK, USA, 2018. 338 с. [Nesterova I.V., Chudilova G.A., Kovaleva S.V., Tarakanov V.A., Lomtatidze L.V., Kolesnikova N.V., Rusinova T.V., Evglevsky A.A., Malinovskaya V.V. Neutrophil granulocytes: reflection in the mirror of modern ideas. Moscow: Capricorn Publishing, UK, USA, 2018. 338 p. (In Russ.)]
  10. Шатохина Е.А., Полонская А.С., Мершина Е.А., Серединина Е.М., Плисюк А.Г., Георгинова О.А., Краснова Т.Н., Павликова Е.П., Орлова Я.А., Синицын В.Е., Круглова Л.С., Камалов А.А. Возможная роль препаратов против IL17 в лечении COVID-19 — наш собственный опыт и обзор литературы // Иммунология. 2021. Т. 42, № 3. С. 243–253. [Shatokhina E.A., Polonskaia A.S., Mershina Е.А., Seredenina Е.М., Plisyuk А.G., Georginova О.А., Krasnova T.N., Pavlikova E.P., Orlova Ya.А., Sinitsyn V.E., Kruglova L.S., Kamalov A.A. Possible role of anti-IL17 drugs in the management of COVID-19 — our own experience and literature review. Immunologiya = Immunologiya, 2021, vol. 42, no. 3, pp. 243–253. (In Russ.)] doi: 10.33029/0206-4952-2021-42-3-243-253
  11. Abrams S.T., Zhang N., Manson J., Liu T., Dart C., Baluwa F., Wang S.S., Brohi K., Kipar A., Yu W., Wang G., Toh C.H. Circulating histones are mediators of trauma-associated lung injury. Am. J. Respir. Crit. Care Med., 2013, vol. 187, no. 2, pp. 160–169. doi: 10.1164/rccm.201206-1037OC
  12. Ackermann M., Verleden S.E., Kuehnel M., Haverich A., Welte T., Laenger F., Vanstapel A., Werlein C., Stark H., Tzankov A., Li W.W., Li V.W., Mentzer S.J., Jonigk D. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N. Engl. J. Med., 2020, vol. 383, no. 2, pp. 120–128. doi: 10.1056/NEJMoa2015432
  13. Adil M., Amin S.S., Mohtashim M. N-acetylcysteine in dermatology. Indian J. Dermatol. Venereol. Leprol., 2018, vol. 84, pp. 652–659. doi: 10.4103/ijdvl.IJDVL_33_18
  14. Aikawa N., Kawasaki Y. Clinical utility of the neutrophil elastase inhibitor sivelestat for the treatment of acute respiratory distress syndrome. Ther. Clin. Risk Manage, 2014, vol. 10, pp. 621–629. doi: 10.2147/TCRM.S65066
  15. Ali R.A., Gandhi A.A., Meng H., Yalavarthi S., Vreede A.P., Estes S.K., Palmer O.R., Bockenstedt P.L., Pinsky D.J., Greve J.M., Diaz J.A., Kanthi Y., Knight J.S. Adenosine receptor agonist protects against NETosis and thrombosis in antiphospholipid syndrome. Nat. Commun., 2019, vol. 10, no. 1: 1916. doi: 10.1038/s41467-019-09801-x.9
  16. Al-Kuraishy H.M., Al-Gareeb A.I. Acute kidney injury and COVID-19. Egypt. J. Intern. Med., 2021, vol. 33, no. 1: 34. doi: 10.1186/s43162-021-00064-x
  17. Al-Kuraishy H.M., Al-Gareeb A.I., Abdullah S.M., Cruz-Martins N., Batiha G.E. Case report: hyperbilirubinemia in gilbert syndrome attenuates Covid-19-induced metabolic disturbances. Front. Cardiovasc. Med., 2021, vol. 8: 642181. doi: 10.3389/fcvm.2021.642181
  18. Al-Kuraishy H.M., Al-Gareeb A.I., Alblihed M., Guerreiro S.G., Cruz-Martins N., Batiha G.E. COVID-19 in Relation to Hyperglycemia and Diabetes Mellitus. Front. Cardiovasc. Med., 2021, vol. 8: 644095. doi: 10.3389/fcvm.2021.644095
  19. Al-Kuraishy H.M., Al-Gareeb A.I., Al-Hussaniy H.A., Al-Harcan N.A.H., Alexiou A., Batiha G.E. Neutrophil Extracellular Traps (NETs) and Covid-19: a new frontiers for therapeutic modality. Int. Immunopharmacol., 2022, vol. 104: 108516. doi: 10.1016/ j.intimp.2021.108516
  20. Al-Kuraishy H.M., Al-Gareeb A.I., Atanu F.O., El-Zamkan M.A., Diab H.M., Ahmed A.S., Al-Maiahy T.J., Obaidullah A.J., Alshehri S., Ghoniem M.M., Batiha G.E. Maternal transmission of SARS-CoV-2: safety of breastfeeding in infants born to infected mothers. Front. Pediatr., 2021, vol. 9: 738263. doi: 10.3389/fped.2021.738263
  21. Al-Kuraishy H.M., Al-Gareeb A.I., Qusti S., Alshammari E.M., Atanu F.O., Batiha G.E. Arginine vasopressin and pathophysiology of COVID-19: an innovative perspective. Biomed. Pharmacother., 2021, vol. 143: 112193. doi: 10.1016/j.biopha.2021.112193
  22. Al-Kuraishy H.M., Al-Gareeb A.I., Qusty N., Alexiou A., Batiha G.E. Impact of sitagliptin on non-diabetic Covid-19 patients. Curr. Mol. Pharmacol., 2022, vol. 15, no. 4, pp. 683–692. doi: 10.2174/1874467214666210902115650
  23. Al-Kuraishy H.M., Al-Gareeb A.I., Qusty N., Cruz-Martins N., El-Saber Batiha G. Sequential doxycycline and colchicine combination therapy in Covid-19: the salutary effects. Pulm. Pharmacol. Ther., 2021, vol. 67: 102008. doi: 10.1016/j.pupt.2021.102008
  24. Al-Kuraishy H.M., Hussien N.R., Al-Naimi M.S., Al-Buhadily A.K., Al-Gareeb A.I., Lungnier C. Renin–angiotensin system and fibrinolytic pathway in COVID 19: one way skepticism. Biomed. Biotechnol. Res. J., 2020, vol. 4: 5. doi: 10.4103/bbrj.bbrj_105_20
  25. Al-Kuraishy H.M., Sami O.M., Hussain N.R., Al-Gareeb A.I. Metformin and/or vildagliptin mitigate type II diabetes mellitus induced-oxidative stress: the intriguing effect. J. Adv. Pharm. Technol. Res., 2020, vol. 11, no. 3, pp. 142–147. doi: 10.4103/japtr.JAPTR_18_20
  26. Andreou A., Trantza S., Filippou D., Sipsas N., Tsiodras S. COVID-19: the potential role of copper and N-acetylcysteine (NAC) in a combination of candidate antiviral treatments against SARS-CoV-2. In Vivo, 2020, vol. 34, pp. 1567–1588. doi: 10.21873/invivo.11946
  27. Azkur A.K., Akdis M., Azkur D., Sokolowska M., van de Veen W., Brüggen M.C., O’Mahony L., Gao Y., Nadeau K., Akdis C.A. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy, 2020, vol. 75, no. 7, pp. 1564–1581. doi: 10.1111/all.14364
  28. Baillie G.S., Tejeda G.S., Kelly M.P. Therapeutic targeting of 3’,5’-cyclic nucleotide phosphodiesterases: inhibition and beyond. Nat. Rev. Drug. Discov., 2019, vol. 18, no. 10, pp. 770–796. doi: 10.1038/s41573-019-0033-4
  29. Barnes B.J., Adrover J.M., Baxter-Stoltzfus A., Borczuk A., Cools-Lartigue J., Crawford J.M., Daßler-Plenker J., Guerci P., Huynh C., Knight J.S., Loda M., Looney M.R., McAllister F., Rayes R., Renaud S., Rousseau S., Salvatore S., Schwartz R.E., Spicer J.D., Yost C.C., Weber A., Zuo Y., Egeblad M. Targeting potential drivers of COVID-19: neutrophil extracellular traps. J. Exp. Med., 2020, vol. 217, no. 6: e20200652. doi: 10.1084/jem.20200652
  30. Barth P., Bruijnzeel P., Wach A., Sellier Kessler O., Hooftman L., Zimmermann J., Naue N., Huber B., Heimbeck I., Kappeler D., Timmer W., Chevalier E. Single dose escalation studies with inhaled POL6014, a potent novel selective reversible inhibitor of human neutrophil elastase, in healthy volunteers and subjects with cystic fibrosis. J. Cyst. Fibros., 2020, vol. 19, no. 2, pp. 299–304. doi: 10.1016/j.jcf.2019.08.020
  31. Barton L.M., Duval E.J., Stroberg E., Ghosh S., Mukhopadhyay S. COVID-19 Autopsies, Oklahoma, USA. Am. J. Clin. Pathol., 2020, vol. 153, no. 6, pp. 725–733. doi: 10.1093/ajcp/aqaa062
  32. Belen-Apak F.B., Sarıalioğlu F. Pulmonary intravascular coagulation in COVID-19: possible pathogenesis and recommendations on anticoagulant/thrombolytic therapy. J. Thromb. Thrombolysis, 2020, vol. 50, no. 2, pp. 278–280. doi: 10.1007/s11239-020-02129-0
  33. Bikdeli B., Madhavan M.V., Gupta A., Jimenez D., Burton J.R., Der Nigoghossian C., Chuich T., Nouri S.N., Dreyfus I., Driggin E., Sethi S., Sehgal K., Chatterjee S., Ageno W., Madjid M., Guo Y., Tang L.V., Hu Y., Bertoletti L., Giri J., Cushman M., Quéré I., Dimakakos E.P., Gibson C.M., Lippi G., Favaloro E.J., Fareed J., Tafur A.J., Francese D.P., Batra J., Falanga A., Clerkin K.J., Uriel N., Kirtane A., McLintock C., Hunt B.J., Spyropoulos A.C., Barnes G.D., Eikelboom J.W., Weinberg I., Schulman S., Carrier M., Piazza G., Beckman J.A., Leon M.B., Stone G.W., Rosenkranz S., Goldhaber S.Z., Parikh S.A., Monreal M., Krumholz H.M., Konstantinides S.V., Weitz J.I., Lip G.Y.H.; Global COVID-19 Thrombosis Collaborative Group. Pharmacological agents targeting thromboinflammation in COVID-19: review and implications for future research. Thromb. Haemost., 2020, vol. 120, no. 7, pp. 1004–1024. doi: 10.1055/s-0040-1713152
  34. Bilusic M., Heery C.R., Collins J.M., Donahue R.N., Palena C., Madan R.A., Karzai F., Marté J.L., Strauss J., Gatti-Mays M.E., Schlom J., Gulley J.L. Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors. J. Immunother. Cancer, 2019, vol. 7, no. 1: 240. doi: 10.1186/s40425-019-0706-x
  35. Block H., Zarbock A. A fragile balance: does neutrophil extracellular trap formation drive pulmonary disease progression? Cells, 2021, vol. 10, no. 8: 1932. doi: 10.3390/cells10081932
  36. Bouchard B.A., Colovos C., Lawson M.A., Osborn Z.T., Sackheim A.M., Mould K.J., Janssen W.J., Cohen M.J., Majumdar D., Freeman K. Increased histone-DNA complexes and endothelial-dependent thrombin generation in severe COVID-19. Vascul. Pharmacol., 2022, vol. 142: 106950. doi: 10.1016/j.vph.2021.106950
  37. Brinkmann V. Neutrophil extracellular traps in the second decade. J. Innate Immun., 2018, vol. 10, no. 5–6, pp. 414–421. doi: 10.1159/000489829
  38. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., Weinrauch Y., Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science, 2004, vol. 303, no. 5663, pp. 1532–1535. doi: 10.1126/science.1092385
  39. Buijsers B., Yanginlar C., Maciej-Hulme M.L., de Mast Q., van der Vlag J. Beneficial non-anticoagulant mechanisms underlying heparin treatment of COVID-19 patients. EBioMedicine, 2020, vol. 59: 102969. doi: 10.1016/j.ebiom.2020.102969
  40. Bulat V., Situm M., Azdajic M.D., Likic R. Potential role of IL-17 blocking agents in the treatment of severe COVID-19? Br. J. Clin. Pharmacol., 2021, vol. 87, no. 3, pp. 1578–1581. doi: 10.1111/bcp.14437
  41. Caricchio R., Abbate A., Gordeev I., Meng J., Hsue P.Y., Neogi T., Arduino R., Fomina D., Bogdanov R., Stepanenko T., Ruiz-Seco P., Gónzalez-García A., Chen Y., Li Y., Whelan S., Noviello S.; CAN-COVID Investigators. Effect of canakinumab vs placebo on survival without invasive mechanical ventilation in patients hospitalized with severe COVID-19: a randomized clinical trial. JAMA, 2021, vol. 326, no. 3, pp. 230–239. doi: 10.1001/jama.2021.9508
  42. Cauchois R., Koubi M., Delarbre D., Manet C., Carvelli J., Blasco V.B., Jean R., Fouche L., Bornet C., Pauly V., Mazodier K., Pestre V., Jarrot P.A., Dinarello C.A., Kaplanski G. Early IL-1 receptor blockade in severe inflammatory respiratory failure complicating COVID-19. Proc. Natl Acad. Sci. USA, 2020, vol. 117, no. 32, pp. 18951–18953. doi: 10.1073/pnas.2009017117
  43. Chiang C.C., Korinek M., Cheng W.J., Hwang T.L. Targeting neutrophils to treat acute respiratory distress syndrome in coronavirus disease. Front. Pharmacol., 2020, vol. 11: 572009. doi: 10.3389/fphar.2020.572009
  44. Clark S.R., Ma A.C., Tavener S.A., McDonald B., Goodarzi Z., Kelly M.M., Patel K.D., Chakrabarti S., McAvoy E., Sinclair G.D., Keys E.M., Allen-Vercoe E., Devinney R., Doig C.J., Green F.H., Kubes P. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med., 2007, vol. 13, no. 4, pp. 463–469. doi: 10.1038/nm1565
  45. Daviet F., Guervilly C., Baldesi O., Bernard-Guervilly F., Pilarczyk E., Genin A., Lefebvre L., Forel J.M., Papazian L., Camoin-Jau L. Heparin-induced thrombocytopenia in severe COVID-19. Circulation, 2020, vol. 142, pp. 1875–1877. doi: 10.1161/CIRCULATIONAHA.120.049015
  46. Dinarello C.A. The IL-1 family of cytokines and receptors in rheumatic diseases. Nat. Rev. Rheumatol., 2019, vol. 15, no. 10, pp. 612–632. doi: 10.1038/s41584-019-0277-8
  47. Dolhnikoff M., Duarte-Neto A.N., de Almeida Monteiro R.A., da Silva L.F.F., de Oliveira E.P., Saldiva P.H.N., Mauad T., Negri E.M. Pathological evidence of pulmonary thrombotic phenomena in severe COVID-19. J. Thromb. Haemost., 2020, vol. 18, no. 6, pp. 1517–1519. doi: 10.1111/jth.14844
  48. Dwyer M., Shan Q., D’Ortona S., Maurer R., Mitchell R., Olesen H., Thiel S., Huebner J., Gadjeva M. Cystic fibrosis sputum DNA has NETosis characteristics and neutrophil extracellular trap release is regulated by macrophage migration-inhibitory factor. J. Innate Immun., 2014, vol. 6, no. 6, pp 765–779. doi: 10.1159/000363242
  49. Ely E.W., Ramanan A.V., Kartman C.E., de Bono S., Liao R., Piruzeli M.L.B., Goldman J.D., Saraiva J.F.K., Chakladar S., Marconi V.C.; COV-BARRIER Study Group. Efficacy and safety of baricitinib plus standard of care for the treatment of critically ill hospitalised adults with COVID-19 on invasive mechanical ventilation or extracorporeal membrane oxygenation: an exploratory, randomised, placebo-controlled trial. Lancet Respir. Med., 2022, vol. 10, no. 4, pp. 327–336. doi: 10.1016/S2213-2600(22)00006-6
  50. García-Prieto J., Villena-Gutiérrez R., Gómez M., Bernardo E., Pun-García A., García-Lunar I., Crainiciuc G., Fernández-Jiménez R., Sreeramkumar V., Bourio-Martínez R., García-Ruiz J.M., Del Valle A.S., Sanz-Rosa D., Pizarro G., Fernández-Ortiz A., Hidalgo A., Fuster V., Ibanez B. Neutrophil stunning by metoprolol reduces infarct size. Nat. Commun., 2017, vol. 8: 14780. doi: 10.1038/ncomms14780
  51. Ginsburg I., Fibach E. Polycations and polyanions in SARS-CoV-2 infection. Med. Hypotheses, 2021, vol. 146: 110470. doi: 10.1016/j.mehy.2020.110470
  52. Giorgi M., Cardarelli S., Ragusa F., Saliola M., Biagioni S., Poiana G., Naro F., Massimi M. Phosphodiesterase inhibitors: could they be beneficial for the treatment of COVID-19? Int. J. Mol. Sci., 2020, vol. 21, no. 15: 5338. doi: 10.3390/ijms21155338
  53. Godement M., Zhu J., Cerf C., Vieillard-Baron A., Maillon A., Zuber B., Bardet V., Geri G. Neutrophil extracellular traps in SARS-CoV-2 related pneumonia in ICU patients: the NETCOV2 Study. Front. Med. (Lausanne), 2021, vol. 8: 615984. doi: 10.3389/fmed.2021.615984
  54. Gould T.J., Vu T.T., Swystun L.L., Dwivedi D.J., Mai S.H., Weitz J.I., Liaw P.C. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms. Arterioscler. Thromb Vasc. Biol., 2014, vol. 34, no. 9, pp. 1977–84. doi: 10.1161/ATVBAHA.114.304114
  55. Gozzo L., Viale P., Longo L., Vitale D.C., Drago F. The potential role of heparin in patients with COVID-19: beyond the anticoagulant effect. A review. Front. Pharmacol., 2020, vol. 11: 1307. doi: 10.3389/fphar.2020.01307
  56. Guan W.J., Ni Z.Y., Hu Y., Liang W.H., Ou C.Q., He J.X., Liu L., Shan H., Lei C.L., Hui D.S.C., Du B., Li L.J., Zeng G., Yuen K.Y., Chen R.C., Tang C.L., Wang T., Chen P.Y., Xiang J., Li S.Y., Wang J.L., Liang Z.J., Peng Y.X., Wei L., Liu Y., Hu Y.H., Peng P., Wang J.M., Liu J.Y., Chen Z., Li G., Zheng Z.J., Qiu S.Q., Luo J., Ye C.J., Zhu S.Y., Zhong N.S.; China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med., 2020, vol. 382, pp. 1708–1720. doi: 10.1056/NEJMoa2002032
  57. Guaraldi G., Meschiari M., Cozzi-Lepri A., Milic J., Tonelli R., Menozzi M., Franceschini E., Cuomo G., Orlando G., Borghi V., Santoro A., Di Gaetano M., Puzzolante C., Carli F., Bedini A., Corradi L., Fantini R., Castaniere I., Tabbì L., Girardis M., Tedeschi S., Giannella M., Bartoletti M., Pascale R., Dolci G., Brugioni L., Pietrangelo A., Cossarizza A., Pea F., Clini E., Salvarani C., Massari M., Viale P.L., Mussini C. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol., 2020, vol. 2, no. 8: e474–e484. doi: 10.1016/S2665-9913(20)30173-9
  58. Guimarães P.O., Quirk D., Furtado R.H., Maia L.N., Saraiva J.F., Antunes M.O., Kalil Filho R., Junior V.M., Soeiro A.M., Tognon A.P., Veiga V.C., Martins P.A., Moia D.D.F., Sampaio B.S., Assis S.R.L., Soares R.V.P., Piano L.P.A., Castilho K., Momesso R.G.R.A.P., Monfardini F., Guimarães H.P., Ponce de Leon D., Dulcine M., Pinheiro M.R.T., Gunay L.M., Deuring J.J., Rizzo L.V., Koncz T., Berwanger O.; STOP-COVID Trial Investigators. Tofacitinib in patients hospitalized with Covid-19 pneumonia. N. Engl. J. Med., 2021, vol. 385, no. 5, pp. 406–415. doi: 10.1056/NEJMoa2101643
  59. Guimarães-Costa A.B., Nascimento M.T., Froment G.S., Soares R.P., Morgado F.N., Conceição-Silva F., Saraiva E.M. Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proc. Natl Acad. Sci. USA, 2009, vol. 106, no. 16, pp. 6748–6753. doi: 10.1073/pnas.0900226106
  60. Guo D.W., Wang C.Y., Shih H.C. N-acetylcysteine and atorvastatin alleviates lung injury due to ischemia-reperfusion injury in rats. J. Chin. Med. Assoc., 2019, vol. 82, no. 12, pp. 909–914. doi: 10.1097/JCMA.0000000000000193
  61. Gupta A.K., Hasler P., Holzgreve W., Gebhardt S., Hahn S. Induction of neutrophil extracellular DNA lattices by placental microparticles and IL-8 and their presence in preeclampsia. Hum. Immunol., 2005, vol. 66, no. 11, pp. 1146–1154. doi: 10.1016/j.humimm.2005.11.003
  62. Heller A.R., Groth G., Heller S.C., Breitkreutz R., Nebe T., Quintel M., Koch T. N-acetylcysteine reduces respiratory burst but augments neutrophil phagocytosis in intensive care unit patients. Crit. Care Med., 2001, vol. 29, no. 2, pp. 272–276. doi: 10.1097/00003246-200102000-00009
  63. Hogwood J., Pitchford S., Mulloy B., Page C., Gray E. Heparin and non-anticoagulant heparin attenuate histone-induced inflammatory responses in whole blood. PLoS One, 2020, vol. 15, no. 5: e0233644. doi: 10.1371/journal.pone.0233644
  64. Holz O., Khalilieh S., Ludwig-Sengpiel A., Watz H., Stryszak P., Soni P., Tsai M., Sadeh J., Magnussen H. SCH527123, a novel CXCR2 antagonist, inhibits ozone-induced neutrophilia in healthy subjects. Eur. Respir. J., 2010, vol. 35, no. 3, pp. 564–570. doi: 10.1183/09031936.00048509
  65. Horowitz R.I., Freeman P.R. Three novel prevention, diagnostic, and treatment options for COVID-19 urgently necessitating controlled randomized trials. Med. Hypotheses, 2020, vol. 143: 109851. doi: 10.1016/j.mehy.2020.109851
  66. Huckriede J., de Vries F., Hultström M., Wichapong K., Reutelingsperger C., Lipcsey M., Garcia de Frutos P., Frithiof R., Nicolaes G.A.F. Histone H3 cleavage in severe COVID-19 ICU patients. Front. Cell. Infect. Microbiol., 2021, vol. 11: 694186. doi: 10.3389/fcimb.2021.694186
  67. Huet T., Beaussier H., Voisin O., Jouveshomme S., Dauriat G., Lazareth I., Sacco E., Naccache J.M., Bézie Y., Laplanche S., Le Berre A., Le Pavec J., Salmeron S., Emmerich J., Mourad J.J., Chatellier G., Hayem G. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol., 2020, vol. 2, no. 7: e393–e400. doi: 10.1016/S2665-9913(20)30164-8
  68. Hussien N.R., Al-Niemi M.S., Al-Kuraishy H.M., Al-Gareeb A.I. Statins and Covid-19: the neglected front of bidirectional effects. J. Pak. Med. Assoc., 2021, vol. 71, no. 12, pp. S133–S136. doi: 10.1007/s10787-022-00988-y
  69. Iba T., Hashiguchi N., Nagaoka I., Tabe Y., Kadota K., Sato K. Heparins attenuated histone-mediated cytotoxicity in vitro and improved the survival in a rat model of histone-induced organ dysfunction. Intensive Care Med. Exp., 2015, vol. 3, no. 1: 36. doi: 10.1186/s40635-015-0072-z
  70. Jamil Z., Khan A.A., Khalid S., Asghar M., Muhammad K., Waheed Y. Beneficial Effects of anticoagulants on the clinical outcomes of COVID-19 patients. Antibiotics, 2021, vol. 10, no. 11: 1394. doi: 10.3390/antibiotics10111394
  71. Jenne C.N., Wong C.H., Zemp F.J., McDonald B., Rahman M.M., Forsyth P.A., McFadden G., Kubes P. Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell. Host Microbe, 2013, vol. 13, no. 2, pp. 169–180. doi: 10.1016/j.chom.2013.01.005
  72. Jimeno S., Ventura P.S., Castellano J.M., García-Adasme S.I., Miranda M., Touza P., Lllana I., López-Escobar A. Prognostic implications of neutrophil-lymphocyte ratio in COVID-19. Eur. J. Clin. Invest., 2021, vol. 51, no. 1: e13404. doi: 10.1111/eci.13404
  73. Jorch S.K., Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat. Med., 2017, vol. 723, no. 3, pp. 279–287. doi: 10.1038/nm.4294
  74. Jorgensen S.C.J., Tse C.L.Y., Burry L., Dresser L.D. Baricitinib: a review of pharmacology, safety, and emerging clinical experience in COVID-19. Pharmacotherapy, 2020, vol. 40, no. 8, pp. 843–856. doi: 10.1002/phar.2438
  75. Joshi M.B., Lad A., Bharath Prasad A.S., Balakrishnan A., Ramachandra L., Satyamoorthy K. High glucose modulates IL-6 mediated immune homeostasis through impeding neutrophil extracellular trap formation. FEBS Lett., 2013, vol. 587, no. 14, pp. 2241–2246. doi: 10.1016/j.febslet.2013.05.053
  76. Khandpur R., Carmona-Rivera C., Vivekanandan-Giri A., Gizinski A., Yalavarthi S., Knight J.S., Friday S., Li S., Patel R.M., Subramanian V., Thompson P., Chen P., Fox D.A., Pennathur S., Kaplan M.J. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med., 2013, vol. 5, no. 178: 178ra40. doi: 10.1126/scitranslmed.3005580
  77. Kim D.H., Chung J.H., Son B.S., Kim Y.J., Lee S.G. Effect of a neutrophil elastase inhibitor on ventilator-induced lung injury in rats. J. Thorac. Dis., 2014, vol. 6, no. 12, pp. 1681–1689. doi: 10.3978/j.issn.2072-1439.2014.11.10
  78. Korkmaz B., Lesner A., Marchand-Adam S., Moss C., Jenne D.E. Lung protection by cathepsin C inhibition: a new hope for COVID-19 and ARDS? J. Med. Chem., 2020, vol. 63, no. 22, pp. 13258–13265. doi: 10.1021/acs.jmedchem.0c00776
  79. Kraakman M.J., Lee M.K., Al-Sharea A., Dragoljevic D., Barrett T.J., Montenont E., Basu D., Heywood S., Kammoun H.L., Flynn M., Whillas A., Hanssen N.M., Febbraio M.A., Westein E., Fisher E.A., Chin-Dusting J., Cooper M.E., Berger J.S., Goldberg I.J., Nagareddy P.R., Murphy A.J. Neutrophil-derived S100 calcium-binding proteins A8/A9 promote reticulated thrombocytosis and atherogenesis in diabetes. J. Clin. Invest., 2017, vol. 127, no. 6, pp. 2133–2147. doi: 10.1172/JCI92450
  80. Kulshrestha R., Pandey A., Jaggi A., Bansal S. Beneficial effects of N-acetylcysteine on protease-antiprotease balance in attenuating bleomycin-induced pulmonary fibrosis in rats. Iran J. Basic Med. Sci., 2020, vol. 23, no. 3, pp. 396–405. doi: 10.22038/IJBMS.2020.39031.9261
  81. Lai J.J., Cruz F.M., Rock K.L. Immune sensing of cell death through recognition of histone sequences by C-type lectin-receptor-2d causes inflammation and tissue injury. Immunity, 2020, vol. 52, no. 1, pp. 123–135.e6. doi: 10.1016/j.immuni.2019.11.013
  82. Lande R., Ganguly D., Facchinetti V., Frasca L., Conrad C., Gregorio J., Meller S., Chamilos G., Sebasigari R., Riccieri V., Bassett R., Amuro H., Fukuhara S., Ito T., Liu Y.J., Gilliet M. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci. Transl. Med., 2011, vol. 3, no. 73: 73ra19. doi: 10.1126/scitranslmed.3001180
  83. Lax S.F., Skok K., Zechner P., Kessler H.H., Kaufmann N., Koelblinger C., Vander K., Bargfrieder U., Trauner M. Pulmonary arterial thrombosis in COVID-19 with fatal outcome : results from a prospective, single-center, clinicopathologic case series. Ann. Intern. Med., 2020, vol. 173, no. 5, pp. 350–361. doi: 10.7326/M20-2566
  84. Lazaar A.L., Miller B.E., Donald A.C., Keeley T., Ambery C., Russell J., Watz H., Tal-Singer R.; for 205724 Investigators. CXCR2 antagonist for patients with chronic obstructive pulmonary disease with chronic mucus hypersecretion: a phase 2b trial. Respir. Res., 2020, vol. 21, no. 1: 149. doi: 10.1186/s12931-020-01401-4
  85. Lefrançais E., Mallavia B., Zhuo H., Calfee C.S., Looney M.R. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. JCI Insight., 2018, vol. 3, no. 3: e98178. doi: 10.1172/jci.insight.98178
  86. Li Y., Wan D., Luo X., Song T., Wang Y., Yu Q., Jiang L., Liao R., Zhao W., Su B. Circulating histones in sepsis: potential outcome predictors and therapeutic targets. Front. Immunol., 2021, vol. 12: 650184. doi: 10.3389/fimmu.2021.650184
  87. Ligi D., Maniscalco R., Plebani M., Lippi G., Mannello F. Do circulating histones represent the missing link among COVID-19 infection and multiorgan injuries, microvascular coagulopathy and systemic hyperinflammation? J. Clin. Med., 2022, vol. 11, no. 7: 1800. doi: 10.3390/jcm1107180
  88. Lippi G., Henry B.M., Favaloro E.J. The benefits of heparin use in COVID-19: pleiotropic antiviral activity beyond anticoagulant and anti-inflammatory properties. Semin. Thromb. Hemost., 2022. doi: 10.1055/s-0042-1742740
  89. Liu X., Li Z., Liu S., Sun J., Chen Z., Jiang M., Zhang Q., Wei Y., Wang X., Huang Y.Y., Shi Y., Xu Y., Xian H., Bai F., Ou C., Xiong B., Lew A.M., Cui J., Fang R., Huang H., Zhao J., Hong X., Zhang Y., Zhou F., Luo H.B. Potential therapeutic effects of dipyridamole in the severely ill patients with COVID-19. Acta Pharm. Sin. B, 2020, vol. 10, no. 7, pp. 1205–1215. doi: 10.1016/ j.apsb.2020.04.008
  90. Lobo-Galo N., Terrazas-López M., Martínez-Martínez A., Díaz-Sánchez Á.G. FDA-approved thiol-reacting drugs that potentially bind into the SARS-CoV-2 main protease, essential for viral replication. J. Biomol. Struct. Dyn., 2021, vol. 39, no. 9, pp. 3419–3427. doi: 10.1080/07391102.2020.1764393
  91. Lomakin N.V., Bakirov B.A., Protsenko D.N., Mazurov V.I., Musaev G.H., Moiseeva O.M., Pasechnik E.S., Popov V.V., Smolyarchuk E.A., Gordeev I.G., Gilyarov M.Y., Fomina D.S., Seleznev A.I., Linkova Y.N., Dokukina E.A., Eremeeva A.V., Pukhtinskaia P.S., Morozova M.A., Zinkina-Orikhan A.V., Lutckii A.A. The efficacy and safety of levilimab in severely ill COVID-19 patients not requiring mechanical ventilation: results of a multicenter randomized double-blind placebo-controlled phase III CORONA clinical study. Inflamm. Res., 2021, vol. 70, no. 10–12, pp. 1233–1246. doi: 10.1007/s00011-021-01507-5
  92. Lu C.C., Chen M.Y., Lee W.S., Chang Y.L. Potential therapeutic agents against COVID-19: what we know so far. J. Chin. Med. Assoc., 2020, vol. 83, no. 6, pp. 534–536. doi: 10.1097/JCMA.0000000000000318
  93. Madan A., Chen S., Yates P., Washburn M.L., Roberts G., Peat A.J., Tao Y., Parry M.F., Barnum O., McClain M.T., Roy-Ghanta S. Efficacy and safety of danirixin (GSK1325756) co-administered with standard-of-care antiviral (oseltamivir): a phase 2b, global, randomized study of adults hospitalized with influenza. Open Forum Infect. Dis., 2019, vol. 6, no. 4: ofz163. doi: 10.1093/ofid/ofz163
  94. Maeshima K., Yamaoka K., Kubo S., Nakano K., Iwata S., Saito K., Ohishi M., Miyahara H., Tanaka S., Ishii K., Yoshimatsu H., Tanaka Y. The JAK inhibitor tofacitinib regulates synovitis through inhibition of interferon-γ and interleukin-17 production by human CD4+ T cells. Arthritis Rheum., 2012, vol. 64, no. 6, pp. 1790–1798. doi: 10.1002/art.34329
  95. Magnani H.N. Rationale for the role of heparin and related GAG antithrombotics in COVID-19 infection. Clin. Appl. Thromb. Hemost., 2021, vol. 27: 1076029620977702. doi: 10.1177/1076029620977702
  96. Maki C., Inoue Y., Ishihara T., Hirano Y., Kondo Y., Sueyoshi K., Okamoto K., Tanaka H. Evaluation of appropriate indications for the use of sivelestat sodium in acute respiratory distress syndrome: a retrospective cohort study. Acute Med. Surg., 2019, vol. 7, no. 1: e471. doi: 10.1002/ams2.471
  97. Massberg S., Grahl L., von Bruehl M.L., Manukyan D., Pfeiler S., Goosmann C., Brinkmann V., Lorenz M., Bidzhekov K., Khandagale A.B., Konrad I., Kennerknecht E., Reges K., Holdenrieder S., Braun S., Reinhardt C., Spannagl M., Preissner K.T., Engelmann B. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat. Med., 2010, vol. 16, no. 8, pp. 887–896. doi: 10.1038/nm.2184
  98. Mastaglio S., Ruggeri A., Risitano A.M., Angelillo P., Yancopoulou D., Mastellos D.C., Huber-Lang M., Piemontese S., Assanelli A., Garlanda C., Lambris J.D., Ciceri F. The first case of COVID-19 treated with the complement C3 inhibitor AMY-101. Clin. Immunol., 2020, vol. 215: 108450. doi: 10.1016/j.clim.2020.108450
  99. McCormick A., Heesemann L., Wagener J., Marcos V., Hartl D., Loeffler J., Heesemann J., Ebel F. NETs formed by human neutrophils inhibit growth of the pathogenic mold Aspergillus fumigatus. Microbes Infect., 2010, vol. 12, no. 12–13, pp. 928–936. doi: 10.1016/j.micinf.2010.06.009
  100. Middleton E.A., He X.Y., Denorme F., Campbell R.A., Ng D., Salvatore S.P., Mostyka M., Baxter-Stoltzfus A., Borczuk A.C., Loda M., Cody M.J., Manne B.K., Portier I., Harris E.S., Petrey A.C., Beswick E.J., Caulin A.F., Iovino A., Abegglen L.M., Weyrich A.S., Rondina M.T., Egeblad M., Schiffman J.D., Yost C.C. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood, 2020, vol. 136, no. 10, pp. 1169–1179. doi: 10.1182/blood.2020007008
  101. Mohamed M.M.A., El-Shimy I.A., Hadi M.A. Neutrophil elastase inhibitors: a potential prophylactic treatment option for SARS-CoV-2-induced respiratory complications? Crit. Care, 2020, vol. 24, no. 1: 311. doi: 10.1186/s13054-020-03023-0
  102. Moiana M., Aranda F., de Larrañaga G. A focus on the roles of histones in health and diseases. Clin. Biochem., 2021, vol. 94, pp. 12–19. doi: 10.1016/j.clinbiochem.2021.04.019
  103. Mokhtari V., Afsharian P., Shahhoseini M., Kalantar S.M., Moini A. A review on various uses of N-acetyl cysteine. Cell J., 2017, vol. 19, no. 1, pp. 11–17. doi: 10.22074/cellj.2016.4872
  104. Narasaraju T., Tang B.M., Herrmann M., Muller S., Chow V.T.K., Radic M. Neutrophilia and NETopathy as key pathologic drivers of progressive lung impairment in patients with COVID-19. Front. Pharmacol., 2020, vol. 11: 870. doi: 10.3389/fphar.2020.00870
  105. Nicolai L., Leunig A., Brambs S., Kaiser R., Joppich M., Hoffknecht M.L., Gold C., Engel A., Polewka V., Muenchhoff M., Hellmuth J.C., Ruhle A., Ledderose S., Weinberger T., Schulz H., Scherer C., Rudelius M., Zoller M., Keppler O.T., Zwißler B., von Bergwelt-Baildon M., Kääb S., Zimmer R., Bülow R.D., von Stillfried S., Boor P., Massberg S., Pekayvaz K., Stark K. Vascular neutrophilic inflammation and immunothrombosis distinguish severe COVID-19 from influenza pneumonia. J. Thromb. Haemost., 2021, vol. 19, no. 2, pp. 574–581. doi: 10.1111/jth.15179
  106. Oehmcke S., Mörgelin M., Herwald H. Activation of the human contact system on neutrophil extracellular traps. J. Innate Immun., 2009, vol. 1, no. 3, pp. 225–30. doi: 10.1159/000203700
  107. Ouwendijk W.J.D., Raadsen M.P., van Kampen J.J.A., Verdijk R.M., von der Thusen J.H., Guo L., Hoek R.A.S., van den Akker J.P.C., Endeman H., Langerak T., Molenkamp R., Gommers D., Koopmans M.P.G., van Gorp E.C.M., Verjans G.M.G.M., Haagmans B.L. High levels of neutrophil extracellular traps persist in the lower respiratory tract of critically ill patients with coronavirus disease 2019. J. Infect. Dis., 2021, vol. 223, no. 9, pp. 1512–1521. doi: 10.1093/infdis/jiab050
  108. Pacha O., Sallman M.A., Evans S.E. COVID-19: a case for inhibiting IL-17? Nat. Rev. Immunol., 2020, vol. 20, no. 6, pp. 345–346. doi: 10.1038/s41577-020-0328-z
  109. Palmér R., Mäenpää J., Jauhiainen A., Larsson B., Mo J., Russell M., Root J., Prothon S., Chialda L., Forte P., Egelrud T., Stenvall K., Gardiner P. Dipeptidyl peptidase 1 inhibitor AZD7986 induces a sustained, exposure-dependent reduction in neutrophil elastase activity in healthy subjects. Clin. Pharmacol. Ther., 2018, vol. 104, no. 6, pp. 1155–1164. doi: 10.1002/cpt.1053
  110. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol., 2018, vol. 18, no. 2, pp. 134–147. doi: 10.1038/nri.2017.105
  111. Pérez-Sánchez C., Ruiz-Limón P., Aguirre M.A., Jiménez-Gómez Y., Arias-de la Rosa I., Ábalos-Aguilera M.C., Rodriguez-Ariza A., Castro-Villegas M.C., Ortega-Castro R., Segui P., Martinez C., Gonzalez-Conejero R., Rodríguez-López S., Gonzalez-Reyes J.A., Villalba J.M., Collantes-Estévez E., Escudero A., Barbarroja N., López-Pedrera C. Diagnostic potential of NETosis-derived products for disease activity, atherosclerosis and therapeutic effectiveness in rheumatoid arthritis patients. J. Autoimmun., 2017, vol. 82, pp. 31–40. doi: 10.1016/j.jaut.2017.04.007
  112. Potey P.M., Rossi A.G., Lucas C.D., Dorward D.A. Neutrophils in the initiation and resolution of acute pulmonary inflammation: understanding biological function and therapeutic potential. J. Pathol., 2019, vol. 247, no. 5, pp. 672–685. doi: 10.1002/path.5221
  113. Qi H., Yang S., Zhang L. Neutrophil extracellular traps and endothelial dysfunction in atherosclerosis and thrombosis. Front. Immunol., 2017, vol. 8: 928. doi: 10.3389/fimmu.2017.00928
  114. Risitano A.M., Mastellos D.C., Huber-Lang M., Yancopoulou D., Garlanda C., Ciceri F., Lambris J.D. Complement as a target in COVID-19? Nat. Rev. Immunol., 2020, vol. 20, no. 6, pp. 343–344. doi: 10.1038/s41577-020-0320-7
  115. Ruiz-Limón P., Ortega R., Arias de la Rosa I., Abalos-Aguilera M.D.C., Perez-Sanchez C., Jimenez-Gomez Y., Peralbo-Santaella E., Font P., Ruiz-Vilches D., Ferrin G., Collantes-Estevez E., Escudero-Contreras A., López-Pedrera C., Barbarroja N. Tocilizumab improves the proatherothrombotic profile of rheumatoid arthritis patients modulating endothelial dysfunction, NETosis, and inflammation. Transl, Res., 2017, vol. 183, pp. 87–103. doi: 10.1016/j.trsl.2016.12.003
  116. Saitoh T., Komano J., Saitoh Y., Misawa T., Takahama M., Kozaki T., Uehata T., Iwasaki H., Omori H., Yamaoka S., Yamamoto N., Akira S. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell. Host Microbe, 2012, vol. 12, no. 1, pp. 109–116. doi: 10.1016/j.chom.2012.05.015
  117. Schönrich G., Raftery M.J. Neutrophil extracellular traps go viral. Front. Immunol., 2016, vol. 19, pp. 7: 366. doi: 10.3389/fimmu.2016.00366
  118. Schreiber A., Rousselle A., Becker J.U., von Mässenhausen A., Linkermann A., Kettritz R. Necroptosis controls NET generation and mediates complement activation, endothelial damage, and autoimmune vasculitis. Proc. Natl Acad. Sci. USA, 2017, vol. 114, no. 45, pp. E9618–E9625. doi: 10.1073/pnas.1708247114
  119. Schulman S., Harenberg J. Anticoagulant treatment of COVID-19 as early as possible-sulodexide and perspectives. Thromb. Haemost., 2021, vol. 121, no. 7, pp. 849–853. doi: 10.1055/a-1477-3569
  120. Shaw R.J., Abrams S.T., Austin J., Taylor J.M., Lane S., Dutt T., Downey C., Du M., Turtle L., Baillie J.K., Openshaw P.J.M., Wang G., Semple M.G., Toh C.H. Circulating histones play a central role in COVID-19-associated coagulopathy and mortality. Haematologica, 2021, vol. 106, no. 9, pp. 2493–2498. doi: 10.3324/haematol.2021.278492
  121. Shaw S., Bourne T., Meier C., Carrington B., Gelinas R., Henry A., Popplewell A., Adams R., Baker T., Rapecki S., Marshall D., Moore A., Neale H., Lawson A. Discovery and characterization of olokizumab: a humanized antibody targeting interleukin-6 and neutralizing gp130-signaling. MAbs, 2014, vol. 6, no. 3, pp. 774–782. doi: 10.4161/mabs.28612
  122. Shi H., Gandhi A.A., Smith S.A., Wang Q., Chiang D., Yalavarthi S., Ali R.A., Liu C., Sule G., Tsou P.S., Zuo Y., Kanthi Y., Farkash E.A., Lin J.D., Morrissey J.H, Knight J.S. Endothelium-protective, histone-neutralizing properties of polyanionic agent defibrotide. JCI Insight., 2021, vol. 6, no. 17: e149149. doi: 10.1172/jci.insight.149149
  123. Shi Y., Wang Y., Shao C., Huang J., Gan J., Huang X., Bucci E., Piacentini M., Ippolito G., Melino G. COVID-19 infection: the perspectives on immune responses. Cell. Death Differ., 2020, vol. 27, no. 5, pp. 1451–1454. doi: 10.1038/s41418-020-0530-3
  124. Silk E., Zhao H., Weng H., Ma D. The role of extracellular histone in organ injury. Cell. Death Dis., 2017, vol. 8, no. 5: e2812. doi: 10.1038/cddis.2017.52
  125. Silvestre-Roig C., Braster Q., Wichapong K., Lee E.Y., Teulon J.M., Berrebeh N., Winter J., Adrover J.M., Santos G.S., Froese A., Lemnitzer P., Ortega-Gómez A., Chevre R., Marschner J., Schumski A., Winter C., Perez-Olivares L., Pan C., Paulin N., Schoufour T., Hartwig H., González-Ramos S., Kamp F., Megens R.T.A., Mowen K.A., Gunzer M., Maegdefessel L., Hackeng T., Lutgens E., Daemen M., von Blume J., Anders H.J., Nikolaev V.O., Pellequer J.L., Weber C., Hidalgo A., Nicolaes G.A.F., Wong G.C.L., Soehnlein O. Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature, 2019, vol. 569, no. 7755, pp. 236–240. doi: 10.1038/s41586-019-1167-6
  126. Skendros P., Mitsios A., Chrysanthopoulou A., Mastellos D.C., Metallidis S., Rafailidis P., Ntinopoulou M., Sertaridou E., Tsironidou V., Tsigalou C., Tektonidou M., Konstantinidis T., Papagoras C., Mitroulis I., Germanidis G., Lambris J.D., Ritis K. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J. Clin. Invest., 2020, vol. 130, no. 11, pp. 6151–6157. doi: 10.1172/JCI141374
  127. Sollberger G., Choidas A., Burn G.L., Habenberger P., Di Lucrezia R., Kordes S., Menninger S., Eickhoff J., Nussbaumer P., Klebl B., Krüger R., Herzig A., Zychlinsky A. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci. Immunol., 2018, vol. 3, no. 26: eaar6689. doi: 10.1126/sciimmunol.aar6689
  128. Soy M., Keser G., Atagündüz P., Tabak F., Atagündüz I., Kayhan S. Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clin. Rheumatol., 2020, vol. 39, no. 7, pp. 2085–2094. doi: 10.1007/s10067-020-05190-5
  129. Spyropoulos A.C., Bonaca M.P. Studying the coagulopathy of COVID-19. Lancet, 2022, vol. 399, no. 10320, pp. 118–119. doi: 10.1016/S0140-6736(21)01906-1
  130. Stark J.M., Colasurdo G.N. Lung defences: intrinsic, innate and adaptive. In: Chernick V., Boat T.F., Wilmott R.W., Bush A., editors. Kendig’s disorders of the respiratory tract in children, vol. 7, 7th ed. Philadelphia: W.B. Saunders, 2006, pp. 205–223. doi: 10.1016/B978-1-4377-1984-0.00007-3
  131. Stebbing J., Phelan A., Griffin I., Tucker C., Oechsle O., Smith D., Richardson P. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect. Dis., 2020, vol. 20, no. 4, pp. 400–402. doi: 10.1016/S1473-3099(20)30132-8
  132. Tan M.K.X., Heng T.Y.J., Mak A. The potential use of metformin, dipyridamole, N-acetylcysteine and statins as adjunctive therapy for systemic lupus erythematosus. Cells, 2019, vol. 8, no. 4: 323. doi: 10.3390/cells8040323
  133. Teijeira Á., Garasa S., Gato M., Alfaro C., Migueliz I., Cirella A., de Andrea C., Ochoa M.C., Otano I., Etxeberria I., Andueza M.P., Nieto C.P., Resano L., Azpilikueta A., Allegretti M., de Pizzol M., Ponz-Sarvisé M., Rouzaut A., Sanmamed M.F., Schalper K., Carleton M., Mellado M., Rodriguez-Ruiz M.E., Berraondo P., Perez-Gracia J.L., Melero I. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity, 2020, vol. 52, no. 5, pp. 856–871.e8. doi: 10.1016/j.immuni.2020.03.001
  134. Thålin C., Hisada Y., Lundström S., Mackman N., Wallén H. Neutrophil extracellular traps: villains and targets in arterial, venous, and cancer-associated thrombosis. Arterioscler. Thromb. Vasc. Biol., 2019, vol. 39, no. 9, pp. 1724–1738. doi: 10.1161/ATVBAHA.119.312463
  135. Thierry A.R., Roch B. Neutrophil extracellular traps and by-products play a key role in COVID-19: pathogenesis, risk factors, and therapy. J. Clin. Med., 2020, vol. 9, no. 9: 2942. doi: 10.3390/jcm9092942
  136. Thierry A.R. Anti-protease treatments targeting plasmin(ogen) and neutrophil elastase may be beneficial in fighting COVID-19. Physiol. Rev., 2020, vol. 100, no. 4, pp. 1597–1598. doi: 10.1152/physrev.00019.2020
  137. Thierry A.R. Does the newly observed inflammatory syndrome in children demonstrate a link between uncontrolled neutrophil extracellular traps formation and COVID-19. Pediatr. Res., 2021, vol. 89, no. 4, pp. 716–717. doi: 10.1038/s41390-020-0996-1
  138. Todd C.M., Salter B.M., Murphy D.M., Watson R.M., Howie K.J., Milot J., Sadeh J., Boulet L.P., O’Byrne P.M., Gauvreau G.M. The effects of a CXCR1/CXCR2 antagonist on neutrophil migration in mild atopic asthmatic subjects. Pulm. Pharmacol. Ther., 2016, vol. 41, pp. 34–39. doi: 10.1016/j.pupt.2016.09.005
  139. Twaddell S.H., Baines K.J., Grainge C., Gibson P.G. The emerging role of neutrophil extracellular traps in respiratory disease. Chest, 2019, vol. 156, no. 4, pp. 774–782. doi: 10.1016/j.chest.2019.06.012
  140. Urban C.F., Nett J.E. Neutrophil extracellular traps in fungal infection. In: Seminars in cell & developmental biology. Academic Press, 2019, vol. 89, pp. 47–57. doi: 10.1016/j.semcdb.2018.03.020
  141. Urban C.F., Reichard U., Brinkmann V., Zychlinsky A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell. Microbiol., 2006, vol. 8, no. 4, pp. 668–676. doi: 10.1111/j.1462-5822.2005.00659.x
  142. Vorobjeva N., Galkin I., Pletjushkina O., Golyshev S., Zinovkin R., Prikhodko A., Pinegin V., Kondratenko I., Pinegin B., Chernyak B. Mitochondrial permeability transition pore is involved in oxidative burst and NETosis of human neutrophils. Biochim. Biophys. Acta Mol. Basis Dis., 2020, vol. 1866, no. 5: 165664. doi: 10.1016/j.bbadis.2020.165664
  143. Wang J., Li Q., Yin Y., Zhang Y., Cao Y., Lin X., Huang L., Hoffmann D., Lu M., Qiu Y. Excessive neutrophils and neutrophil extracellular traps in COVID-19. Front. Immunol., 2020, vol. 11: 2063. doi: 10.3389/fimmu.2020.02063
  144. Wang Y., Luo L., Braun O.Ö., Westman J., Madhi R., Herwald H., Mörgelin M., Thorlacius H. Neutrophil extracellular trap-microparticle complexes enhance thrombin generation via the intrinsic pathway of coagulation in mice. Sci. Rep., 2018, vol. 8, no. 1: 4020. doi: 10.1038/s41598-018-22156-5
  145. Warnatsch A., Ioannou M., Wang Q., Papayannopoulos V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science, 2015, vol. 349, no. 6245, pp. 316–320. doi: 10.1126/science.aaa8064
  146. Weber A.G., Chau A.S., Egeblad M., Barnes B.J., Janowitz T. Nebulized in-line endotracheal dornase alfa and albuterol administered to mechanically ventilated COVID-19 patients: a case series. medRxiv [Preprint], 2020: 2020.05.13.20087734. doi: 10.1101/2020.05.13.20087734
  147. Winnersbach P., Rossaint J., Buhl E.M., Singh S., Lölsberg J., Wessling M., Rossaint R., Bleilevens C. Platelet count reduction during in vitro membrane oxygenation affects platelet activation, neutrophil extracellular trap formation and clot stability, but does not prevent clotting. Perfusion, 2022, vol. 37, no. 2, pp. 134–143. doi: 10.1177/0267659121989231
  148. Wu C., Chen X., Cai Y., Xia J., Zhou X., Xu S., Huang H., Zhang L., Zhou X., Du C., Zhang Y., Song J., Wang S., Chao Y., Yang Z., Xu J., Zhou X., Chen D., Xiong W., Xu L., Zhou F., Jiang J., Bai C., Zheng J., Song Y. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med., 2020, vol. 180, no. 7, pp. 934–943. doi: 10.1001/jamainternmed.2020.0994
  149. Xu J., Zhang X., Pelayo R., Monestier M., Ammollo C.T., Semeraro F., Taylor F.B., Esmon N.L., Lupu F., Esmon C.T. Extracellular histones are major mediators of death in sepsis. Nat. Med., 2009, vol. 15, no. 11, pp. 1318–1321. doi: 10.1038/nm.2053
  150. Xu X., Han M., Li T., Sun W., Wang D., Fu B., Zhou Y., Zheng X., Yang Y., Li X., Zhang X., Pan A., Wei H. Effective treatment of severe COVID-19 patients with tocilizumab. Proc. Natl Acad. Sci. USA, 2020, vol. 117, no. 20, pp. 10970–10975. doi: 10.1073/pnas.2005615117
  151. Yang S.C., Tsai Y.F., Pan Y.L., Hwang T.L. Understanding the role of neutrophils in acute respiratory distress syndrome. Biomed J., 2021, vol. 44, no. 4, pp. 439–446. doi: 10.1016/j.bj.2020.09.001
  152. Yaqinuddin A., Kashir J. Novel therapeutic targets for SARS-CoV-2-induced acute lung injury: targeting a potential IL-1β/neutrophil extracellular traps feedback loop. Med. Hypotheses, 2020, vol. 143: 109906. doi: 10.1016/j.mehy.2020.109906
  153. Yu S., Liu J., Yan N. Endothelial dysfunction induced by extracellular neutrophil traps plays important role in the occurrence and treatment of extracellular neutrophil traps-related disease. Int. J. Mol. Sci., 2022, vol. 23, no. 10: 5626. doi: 10.3390/ijms23105626
  154. Zhang H., Zhou P., Wei Y., Yue H., Wang Y., Hu M., Zhang S., Cao T., Yang C., Li M., Guo G., Chen X., Chen Y., Lei M., Liu H., Zhao J., Peng P., Wang C.Y., Du R. Histopathologic changes and SARS-CoV-2 immunostaining in the lung of a patient with COVID-19. Ann. Intern Med., 2020, vol. 172, no. 9, pp. 629–632. doi: 10.7326/M20-0533
  155. Zhang Y., Ding S., Li C., Wang Y., Chen Z., Wang Z. Effects of N-acetylcysteine treatment in acute respiratory distress syndrome: a meta-analysis. Exp. Ther. Med., 2017, vol. 14, no. 4, pp. 2863–2868. doi: 10.3892/etm.2017.4891
  156. Zou X., Chen K., Zou J., Han P., Hao J., Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front. Med., 2020, vol. 14, no. 2, pp. 185–192. doi: 10.1007/s11684-020-0754-0
  157. Zou Y., Chen X., Xiao J., Bo Zhou D., Xiao Lu X., Li W., Xie B., Kuang X., Chen Q. Neutrophil extracellular traps promote lipopolysaccharide-induced airway inflammation and mucus hypersecretion in mice. Oncotarget, 2018, vol. 9, no. 17, pp. 13276–13286. doi: 10.18632/oncotarget.24022
  158. Zuo Y., Zuo M., Yalavarthi S., Gockman K., Madison J.A., Shi H., Woodard W., Lezak S.P., Lugogo N.L., Knight J.S., Kanthi Y. Neutrophil extracellular traps and thrombosis in COVID-19. J. Thromb. Thrombolysis, 2021, vol. 51, no. 2, pp. 446–453. doi: 10.1007/s11239-020-02324-z

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Nesterova I.V., Atazhakhova M.G., Teterin Y.V., Matushkina V.A., Chudilova G.A., Mitropanova M.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».