The role of neutrophil extracellular traps (NETs) in the immunopathogenesis of severe COVID-19: potential immunotherapeutic strategies regulating NET formation and activity
- Authors: Nesterova I.V.1,2, Atazhakhova M.G.1, Teterin Y.V.1, Matushkina V.A.1, Chudilova G.A.1, Mitropanova M.N.1
-
Affiliations:
- Kuban State Medical University of the Ministry of Healthcare of the Russian Federation
- Peoples’ Friendship University of Russia
- Issue: Vol 13, No 1 (2023)
- Pages: 9-28
- Section: REVIEWS
- URL: https://journals.rcsi.science/2220-7619/article/view/126029
- DOI: https://doi.org/10.15789/2220-7619-TRO-2058
- ID: 126029
Cite item
Full Text
Abstract
The role of neutrophil granulocytes (NG) in the pathogenesis of COVID-19 is associated with the NG recruitment into inflammatory foci, activation of their functions and enhanced formation of neutrophil extracellular networks (NETs). In this review, we analyzed a large body of scientific literature devoted to the features of developing NETs, their role in the COVID-19 pathogenesis, a role in emerging immunothrombosis, vasculitis, acute respiratory distress syndrome, cytokine storm syndrome, and multi-organ lesions. Convincing data are presented clearly indicating about a profound role of NETs in the COVID-19 immunopathogenesis and associated severe complications resulting from intensified inflammation process, which is a key for the course of SARS-CoV-2 virus infection. The presented role of NGs and NETs, along with that of other immune system cells and pro-inflammatory cytokines, is extremely important in understanding development of overactive immune response in severe COVID-19. The scientific results obtained available now allow to identify an opportunity of regulatory effects on hyperactivated NGs, NETosis at various stages and on limiting a negative impact of pre-formed NETs on various tissues and organs. All the aforementioned data should help in creating new, specialized immunotherapy strategies designed to increase the odds of survival, reduce severity of clinical manifestations in COVID-19 patients as well as markedly reduce mortality rates. Currently, it is possible to use existing drugs, while a number of new drugs are being developed, the action of which can regulate NG quantity, positively affect NG functions and limit intensity of NETosis. Continuing research on the role of hyperactive NG and NETosis as well as understanding the mechanisms of regulating NET formation and restriction in severe COVID-19, apparently, are of high priority, because in the future the new data obtained could pave the basis for development of targeted approaches not only for immunotherapy aimed at limiting education and blocking negative effects already formed NETs in severe COVID-19, but also for immunotherapy, which could be used in combination treatment of other netopathies, primarily autoimmune diseases, auto-inflammatory syndromes, severe purulent-inflammatory processes, including bacterial sepsis and hematogenous osteomyelitis.
Full Text
##article.viewOnOriginalSite##About the authors
Irina V. Nesterova
Kuban State Medical University of the Ministry of Healthcare of the Russian Federation; Peoples’ Friendship University of Russia
Author for correspondence.
Email: inesterova1@yandex.ru
DSc (Medicine), Professor, Head Researcher, Department of Clinical and Experimental Immunology and Molecular Biology, Central Scientific Research Laboratory; Department of Allergology and Immunology, Faculty of Continuing Medical Education
Russian Federation, Krasnodar; MoscowMargarita G. Atazhakhova
Kuban State Medical University of the Ministry of Healthcare of the Russian Federation
Email: inesterova1@yandex.ru
PhD Candidate, Department of Clinical Immunology, Allergology and Laboratory Diagnostics of FAT and PRS
Russian Federation, KrasnodarYuri V. Teterin
Kuban State Medical University of the Ministry of Healthcare of the Russian Federation
Email: inesterova1@yandex.ru
PhD Candidate, Department of Clinical Immunology, Allergology and Laboratory Diagnostics of FAT and PRS
Russian Federation, KrasnodarValeriya A. Matushkina
Kuban State Medical University of the Ministry of Healthcare of the Russian Federation
Email: inesterova1@yandex.ru
PhD Candidate, Department of Infectious Diseases and Epidemiology of FAT and PRS
Russian Federation, KrasnodarGalina A. Chudilova
Kuban State Medical University of the Ministry of Healthcare of the Russian Federation
Email: inesterova1@yandex.ru
DSc (Biology), Associate Professor, Head of the Department of Clinical and Experimental Immunology and Molecular Biology of the Central Scientific Research Laboratory, Professor, Department of Clinical Immunology, Allergology and Laboratory Diagnostics of FAT and PRS
Russian Federation, KrasnodarMarina N. Mitropanova
Kuban State Medical University of the Ministry of Healthcare of the Russian Federation
Email: inesterova1@yandex.ru
DSc (Medicine), Associate Professor, Head of the Department of Pediatric Dentistry, Orthodontics and Dentofacial Surgery
Russian Federation, KrasnodarReferences
- Антонов В.Н., Игнатова Г.Л., Прибыткова О.В., Слепцова С.С., Стребкова Е.А., Худякова Е.А., Симакова А.И., Рабец С.Ю., Тихонова Е.П., Курмаева Д.Ю., Петрушин М.А., Машков А.С., Гаязова Е.В., Яшева И.В., Андреев М.А., Хиновкер В.В., Карпунин А.Ю., Бережанский Б.В. Опыт применения олокизумаба у пациентов с COVID-19 // Терапевтический архив. 2020. Т. 92, № 12. С. 148–154. [Antonov V.N., Ignatova G.L., Pribytkova O.V., Sleptsova S.S., Strebkova E.A, Khudyakova E.A., Simakov A.I., Rabets S.Y., Tikhonova E.P., Kurmaeva D.Y., Petrushin M.A., Mashkov A.S., Gayazova E.V., Yasheva I.V., Andreev M.A., Khinovker V.V., Karpunin A.Y., Berezhanskiy B.V. Experience of olokizumab use in COVID-19 patients. Terapevticheskii arkhiv = Therapeutic Archive, 2020, vol. 92, no. 12, pp. 148–154. (In Russ.)] doi: 10.26442/00403660.2020.12.200522
- Бицадзе В.О., Слуханчук Е.В., Хизроева Д.Х., Третьякова М.В., Шкода А.С., Радецкая Л.С., Макацария А.Д., Элалами И., Грис Ж.-К., Грандоне Э. Внеклеточные ловушки нейтрофилов (NETs) в патогенезе тромбоза и тромбовоспалительных заболеваний // Вестник РАМН. 2021. Т. 76, № 1. С. 75–85. [Bitsadze V.O., Slushanchuk E.V., Khizroeva D.H., Tretyakova M.V., Skoda A.S., Radetskaya L.S., Makatsaria A.D., Elalami I., Gris J.-K., Grandone E. Extracellular neutrophil traps (NETs) in the pathogenesis of thrombosis and thromboinflammatory diseases. Vestnik RAMN = Bulletin of the Russian Academy of Medical Sciences, 2021, vol. 76, no. 1, pp. 75–85. (In Russ.)] doi: 10.15690/vramn1395
- Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 16 от 18.08.2022. 248 с. [Interim guidelines. Prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Version 16 dated 18.08.2022. 248 p. (In Russ.)]
- Городин В.Н., Мойсова Д.Л., Зотов С.В., Ванюков А.А., Чумакова Ю.Е. Проактивная противовоспалительная терапия левилимабом у пациентов с COVID-19 // Инфекционные болезни. 2021. Т. 19, № 3. С. 14–23. [Gorodin V.N., Moisova D.L., Zotov S.V., Vanyukov A.A., Сhumakova Yu.E. Proactive anti-inflammatory therapy with levilimab for patients with COVID-19. Infektsionnye bolezni = Infectious Diseases, 2021, vol. 19, no. 3, pp. 14–23. (In Russ.)] doi: 10.20953/1729-9225-2021-3-14-23
- Гудима Г.О., Хаитов Р.М., Кудлай Д.А., Хаитов М.Р. Молекулярно-иммунологические аспекты диагностики, профилактики и лечения коронавирусной инфекции // Иммунология. 2021. Т. 42, № 3. С. 198–210. [Gudima G.O., Khaitov R.M., Kudlay D.A., Khaitov M.R. Molecular immunological aspects of diagnosis, prevention and treatment of coronavirus infection. Immunologiya = Immunologiya, 2021, vol. 42, no. 3, pp. 198–210. (In Russ.)] doi: 10.33029/0206-4952-2021-42-3-198-210
- Долгушин И.И., Андреева Ю.С., Савочкина А.Ю. Нейтрофильные внеклеточные ловушки и методы оценки функционального статуса нейтрофилов. М.: Издательство РАМН, 2009. 208 с. [Dolgushin I.I., Andreeva Yu.S., Savochkina A.Yu. Neutrophil extracellular traps and methods for assessing the functional status of neutrophils. Moscow: Publishing house RAMS, 2009. 208 p. (In Russ.)]
- Кравцов А.Л., Бугоркова С.А. Роль плазменного ингибитора сериновых лейкоцитарных протеиназ в защите организма от COVID-19 // Журнал микробиологии, эпидемиологии и иммунобиологии. 2021. Т. 98, № 5. С. 567–578. Kravtsov A.L., Bugorkova S.A. The role of plasma inhibitor of serine leukocyte proteinases in protecting the body from COVID-19. Zhurnal mikrobiologii epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2021, vol. 98, no. 5, pp. 567–578. (In Russ.)] doi: 10.36233/0372-9311-160
- Насонов Е.Л. Иммунопатология и иммунофармакотерапия коронавирусной болезни 2019 (COVID-19): фокус на интерлейкин 6 // Научно-практическая ревматология. 2020. Т. 58, № 3. С. 245–261. [Nasonov E.L. Immunopathology and immunopharmacotherapy of coronavirus disease 2019 (COVID-19): focus on interleukin 6. Nauchno-prakticheskaya revmatologiya = Rheumatology Science and Practice, 2020, vol. 58, no. 3, pp. 245–261. (In Russ.)] doi: 10.14412/1995-4484-2020-245-261
- Нестерова И.В., Чудилова Г.А., Ковалева С.В., Тараканов В.А., Ломтатидзе Л.В., Колесникова Н.В., Русинова Т.В., Евглевский А.А., Малиновская В.В. Нейтрофильные гранулоциты: отражение в зеркале современных представлений. М.: Capricorn Publishing, UK, USA, 2018. 338 с. [Nesterova I.V., Chudilova G.A., Kovaleva S.V., Tarakanov V.A., Lomtatidze L.V., Kolesnikova N.V., Rusinova T.V., Evglevsky A.A., Malinovskaya V.V. Neutrophil granulocytes: reflection in the mirror of modern ideas. Moscow: Capricorn Publishing, UK, USA, 2018. 338 p. (In Russ.)]
- Шатохина Е.А., Полонская А.С., Мершина Е.А., Серединина Е.М., Плисюк А.Г., Георгинова О.А., Краснова Т.Н., Павликова Е.П., Орлова Я.А., Синицын В.Е., Круглова Л.С., Камалов А.А. Возможная роль препаратов против IL17 в лечении COVID-19 — наш собственный опыт и обзор литературы // Иммунология. 2021. Т. 42, № 3. С. 243–253. [Shatokhina E.A., Polonskaia A.S., Mershina Е.А., Seredenina Е.М., Plisyuk А.G., Georginova О.А., Krasnova T.N., Pavlikova E.P., Orlova Ya.А., Sinitsyn V.E., Kruglova L.S., Kamalov A.A. Possible role of anti-IL17 drugs in the management of COVID-19 — our own experience and literature review. Immunologiya = Immunologiya, 2021, vol. 42, no. 3, pp. 243–253. (In Russ.)] doi: 10.33029/0206-4952-2021-42-3-243-253
- Abrams S.T., Zhang N., Manson J., Liu T., Dart C., Baluwa F., Wang S.S., Brohi K., Kipar A., Yu W., Wang G., Toh C.H. Circulating histones are mediators of trauma-associated lung injury. Am. J. Respir. Crit. Care Med., 2013, vol. 187, no. 2, pp. 160–169. doi: 10.1164/rccm.201206-1037OC
- Ackermann M., Verleden S.E., Kuehnel M., Haverich A., Welte T., Laenger F., Vanstapel A., Werlein C., Stark H., Tzankov A., Li W.W., Li V.W., Mentzer S.J., Jonigk D. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N. Engl. J. Med., 2020, vol. 383, no. 2, pp. 120–128. doi: 10.1056/NEJMoa2015432
- Adil M., Amin S.S., Mohtashim M. N-acetylcysteine in dermatology. Indian J. Dermatol. Venereol. Leprol., 2018, vol. 84, pp. 652–659. doi: 10.4103/ijdvl.IJDVL_33_18
- Aikawa N., Kawasaki Y. Clinical utility of the neutrophil elastase inhibitor sivelestat for the treatment of acute respiratory distress syndrome. Ther. Clin. Risk Manage, 2014, vol. 10, pp. 621–629. doi: 10.2147/TCRM.S65066
- Ali R.A., Gandhi A.A., Meng H., Yalavarthi S., Vreede A.P., Estes S.K., Palmer O.R., Bockenstedt P.L., Pinsky D.J., Greve J.M., Diaz J.A., Kanthi Y., Knight J.S. Adenosine receptor agonist protects against NETosis and thrombosis in antiphospholipid syndrome. Nat. Commun., 2019, vol. 10, no. 1: 1916. doi: 10.1038/s41467-019-09801-x.9
- Al-Kuraishy H.M., Al-Gareeb A.I. Acute kidney injury and COVID-19. Egypt. J. Intern. Med., 2021, vol. 33, no. 1: 34. doi: 10.1186/s43162-021-00064-x
- Al-Kuraishy H.M., Al-Gareeb A.I., Abdullah S.M., Cruz-Martins N., Batiha G.E. Case report: hyperbilirubinemia in gilbert syndrome attenuates Covid-19-induced metabolic disturbances. Front. Cardiovasc. Med., 2021, vol. 8: 642181. doi: 10.3389/fcvm.2021.642181
- Al-Kuraishy H.M., Al-Gareeb A.I., Alblihed M., Guerreiro S.G., Cruz-Martins N., Batiha G.E. COVID-19 in Relation to Hyperglycemia and Diabetes Mellitus. Front. Cardiovasc. Med., 2021, vol. 8: 644095. doi: 10.3389/fcvm.2021.644095
- Al-Kuraishy H.M., Al-Gareeb A.I., Al-Hussaniy H.A., Al-Harcan N.A.H., Alexiou A., Batiha G.E. Neutrophil Extracellular Traps (NETs) and Covid-19: a new frontiers for therapeutic modality. Int. Immunopharmacol., 2022, vol. 104: 108516. doi: 10.1016/ j.intimp.2021.108516
- Al-Kuraishy H.M., Al-Gareeb A.I., Atanu F.O., El-Zamkan M.A., Diab H.M., Ahmed A.S., Al-Maiahy T.J., Obaidullah A.J., Alshehri S., Ghoniem M.M., Batiha G.E. Maternal transmission of SARS-CoV-2: safety of breastfeeding in infants born to infected mothers. Front. Pediatr., 2021, vol. 9: 738263. doi: 10.3389/fped.2021.738263
- Al-Kuraishy H.M., Al-Gareeb A.I., Qusti S., Alshammari E.M., Atanu F.O., Batiha G.E. Arginine vasopressin and pathophysiology of COVID-19: an innovative perspective. Biomed. Pharmacother., 2021, vol. 143: 112193. doi: 10.1016/j.biopha.2021.112193
- Al-Kuraishy H.M., Al-Gareeb A.I., Qusty N., Alexiou A., Batiha G.E. Impact of sitagliptin on non-diabetic Covid-19 patients. Curr. Mol. Pharmacol., 2022, vol. 15, no. 4, pp. 683–692. doi: 10.2174/1874467214666210902115650
- Al-Kuraishy H.M., Al-Gareeb A.I., Qusty N., Cruz-Martins N., El-Saber Batiha G. Sequential doxycycline and colchicine combination therapy in Covid-19: the salutary effects. Pulm. Pharmacol. Ther., 2021, vol. 67: 102008. doi: 10.1016/j.pupt.2021.102008
- Al-Kuraishy H.M., Hussien N.R., Al-Naimi M.S., Al-Buhadily A.K., Al-Gareeb A.I., Lungnier C. Renin–angiotensin system and fibrinolytic pathway in COVID 19: one way skepticism. Biomed. Biotechnol. Res. J., 2020, vol. 4: 5. doi: 10.4103/bbrj.bbrj_105_20
- Al-Kuraishy H.M., Sami O.M., Hussain N.R., Al-Gareeb A.I. Metformin and/or vildagliptin mitigate type II diabetes mellitus induced-oxidative stress: the intriguing effect. J. Adv. Pharm. Technol. Res., 2020, vol. 11, no. 3, pp. 142–147. doi: 10.4103/japtr.JAPTR_18_20
- Andreou A., Trantza S., Filippou D., Sipsas N., Tsiodras S. COVID-19: the potential role of copper and N-acetylcysteine (NAC) in a combination of candidate antiviral treatments against SARS-CoV-2. In Vivo, 2020, vol. 34, pp. 1567–1588. doi: 10.21873/invivo.11946
- Azkur A.K., Akdis M., Azkur D., Sokolowska M., van de Veen W., Brüggen M.C., O’Mahony L., Gao Y., Nadeau K., Akdis C.A. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy, 2020, vol. 75, no. 7, pp. 1564–1581. doi: 10.1111/all.14364
- Baillie G.S., Tejeda G.S., Kelly M.P. Therapeutic targeting of 3’,5’-cyclic nucleotide phosphodiesterases: inhibition and beyond. Nat. Rev. Drug. Discov., 2019, vol. 18, no. 10, pp. 770–796. doi: 10.1038/s41573-019-0033-4
- Barnes B.J., Adrover J.M., Baxter-Stoltzfus A., Borczuk A., Cools-Lartigue J., Crawford J.M., Daßler-Plenker J., Guerci P., Huynh C., Knight J.S., Loda M., Looney M.R., McAllister F., Rayes R., Renaud S., Rousseau S., Salvatore S., Schwartz R.E., Spicer J.D., Yost C.C., Weber A., Zuo Y., Egeblad M. Targeting potential drivers of COVID-19: neutrophil extracellular traps. J. Exp. Med., 2020, vol. 217, no. 6: e20200652. doi: 10.1084/jem.20200652
- Barth P., Bruijnzeel P., Wach A., Sellier Kessler O., Hooftman L., Zimmermann J., Naue N., Huber B., Heimbeck I., Kappeler D., Timmer W., Chevalier E. Single dose escalation studies with inhaled POL6014, a potent novel selective reversible inhibitor of human neutrophil elastase, in healthy volunteers and subjects with cystic fibrosis. J. Cyst. Fibros., 2020, vol. 19, no. 2, pp. 299–304. doi: 10.1016/j.jcf.2019.08.020
- Barton L.M., Duval E.J., Stroberg E., Ghosh S., Mukhopadhyay S. COVID-19 Autopsies, Oklahoma, USA. Am. J. Clin. Pathol., 2020, vol. 153, no. 6, pp. 725–733. doi: 10.1093/ajcp/aqaa062
- Belen-Apak F.B., Sarıalioğlu F. Pulmonary intravascular coagulation in COVID-19: possible pathogenesis and recommendations on anticoagulant/thrombolytic therapy. J. Thromb. Thrombolysis, 2020, vol. 50, no. 2, pp. 278–280. doi: 10.1007/s11239-020-02129-0
- Bikdeli B., Madhavan M.V., Gupta A., Jimenez D., Burton J.R., Der Nigoghossian C., Chuich T., Nouri S.N., Dreyfus I., Driggin E., Sethi S., Sehgal K., Chatterjee S., Ageno W., Madjid M., Guo Y., Tang L.V., Hu Y., Bertoletti L., Giri J., Cushman M., Quéré I., Dimakakos E.P., Gibson C.M., Lippi G., Favaloro E.J., Fareed J., Tafur A.J., Francese D.P., Batra J., Falanga A., Clerkin K.J., Uriel N., Kirtane A., McLintock C., Hunt B.J., Spyropoulos A.C., Barnes G.D., Eikelboom J.W., Weinberg I., Schulman S., Carrier M., Piazza G., Beckman J.A., Leon M.B., Stone G.W., Rosenkranz S., Goldhaber S.Z., Parikh S.A., Monreal M., Krumholz H.M., Konstantinides S.V., Weitz J.I., Lip G.Y.H.; Global COVID-19 Thrombosis Collaborative Group. Pharmacological agents targeting thromboinflammation in COVID-19: review and implications for future research. Thromb. Haemost., 2020, vol. 120, no. 7, pp. 1004–1024. doi: 10.1055/s-0040-1713152
- Bilusic M., Heery C.R., Collins J.M., Donahue R.N., Palena C., Madan R.A., Karzai F., Marté J.L., Strauss J., Gatti-Mays M.E., Schlom J., Gulley J.L. Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors. J. Immunother. Cancer, 2019, vol. 7, no. 1: 240. doi: 10.1186/s40425-019-0706-x
- Block H., Zarbock A. A fragile balance: does neutrophil extracellular trap formation drive pulmonary disease progression? Cells, 2021, vol. 10, no. 8: 1932. doi: 10.3390/cells10081932
- Bouchard B.A., Colovos C., Lawson M.A., Osborn Z.T., Sackheim A.M., Mould K.J., Janssen W.J., Cohen M.J., Majumdar D., Freeman K. Increased histone-DNA complexes and endothelial-dependent thrombin generation in severe COVID-19. Vascul. Pharmacol., 2022, vol. 142: 106950. doi: 10.1016/j.vph.2021.106950
- Brinkmann V. Neutrophil extracellular traps in the second decade. J. Innate Immun., 2018, vol. 10, no. 5–6, pp. 414–421. doi: 10.1159/000489829
- Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., Weinrauch Y., Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science, 2004, vol. 303, no. 5663, pp. 1532–1535. doi: 10.1126/science.1092385
- Buijsers B., Yanginlar C., Maciej-Hulme M.L., de Mast Q., van der Vlag J. Beneficial non-anticoagulant mechanisms underlying heparin treatment of COVID-19 patients. EBioMedicine, 2020, vol. 59: 102969. doi: 10.1016/j.ebiom.2020.102969
- Bulat V., Situm M., Azdajic M.D., Likic R. Potential role of IL-17 blocking agents in the treatment of severe COVID-19? Br. J. Clin. Pharmacol., 2021, vol. 87, no. 3, pp. 1578–1581. doi: 10.1111/bcp.14437
- Caricchio R., Abbate A., Gordeev I., Meng J., Hsue P.Y., Neogi T., Arduino R., Fomina D., Bogdanov R., Stepanenko T., Ruiz-Seco P., Gónzalez-García A., Chen Y., Li Y., Whelan S., Noviello S.; CAN-COVID Investigators. Effect of canakinumab vs placebo on survival without invasive mechanical ventilation in patients hospitalized with severe COVID-19: a randomized clinical trial. JAMA, 2021, vol. 326, no. 3, pp. 230–239. doi: 10.1001/jama.2021.9508
- Cauchois R., Koubi M., Delarbre D., Manet C., Carvelli J., Blasco V.B., Jean R., Fouche L., Bornet C., Pauly V., Mazodier K., Pestre V., Jarrot P.A., Dinarello C.A., Kaplanski G. Early IL-1 receptor blockade in severe inflammatory respiratory failure complicating COVID-19. Proc. Natl Acad. Sci. USA, 2020, vol. 117, no. 32, pp. 18951–18953. doi: 10.1073/pnas.2009017117
- Chiang C.C., Korinek M., Cheng W.J., Hwang T.L. Targeting neutrophils to treat acute respiratory distress syndrome in coronavirus disease. Front. Pharmacol., 2020, vol. 11: 572009. doi: 10.3389/fphar.2020.572009
- Clark S.R., Ma A.C., Tavener S.A., McDonald B., Goodarzi Z., Kelly M.M., Patel K.D., Chakrabarti S., McAvoy E., Sinclair G.D., Keys E.M., Allen-Vercoe E., Devinney R., Doig C.J., Green F.H., Kubes P. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med., 2007, vol. 13, no. 4, pp. 463–469. doi: 10.1038/nm1565
- Daviet F., Guervilly C., Baldesi O., Bernard-Guervilly F., Pilarczyk E., Genin A., Lefebvre L., Forel J.M., Papazian L., Camoin-Jau L. Heparin-induced thrombocytopenia in severe COVID-19. Circulation, 2020, vol. 142, pp. 1875–1877. doi: 10.1161/CIRCULATIONAHA.120.049015
- Dinarello C.A. The IL-1 family of cytokines and receptors in rheumatic diseases. Nat. Rev. Rheumatol., 2019, vol. 15, no. 10, pp. 612–632. doi: 10.1038/s41584-019-0277-8
- Dolhnikoff M., Duarte-Neto A.N., de Almeida Monteiro R.A., da Silva L.F.F., de Oliveira E.P., Saldiva P.H.N., Mauad T., Negri E.M. Pathological evidence of pulmonary thrombotic phenomena in severe COVID-19. J. Thromb. Haemost., 2020, vol. 18, no. 6, pp. 1517–1519. doi: 10.1111/jth.14844
- Dwyer M., Shan Q., D’Ortona S., Maurer R., Mitchell R., Olesen H., Thiel S., Huebner J., Gadjeva M. Cystic fibrosis sputum DNA has NETosis characteristics and neutrophil extracellular trap release is regulated by macrophage migration-inhibitory factor. J. Innate Immun., 2014, vol. 6, no. 6, pp 765–779. doi: 10.1159/000363242
- Ely E.W., Ramanan A.V., Kartman C.E., de Bono S., Liao R., Piruzeli M.L.B., Goldman J.D., Saraiva J.F.K., Chakladar S., Marconi V.C.; COV-BARRIER Study Group. Efficacy and safety of baricitinib plus standard of care for the treatment of critically ill hospitalised adults with COVID-19 on invasive mechanical ventilation or extracorporeal membrane oxygenation: an exploratory, randomised, placebo-controlled trial. Lancet Respir. Med., 2022, vol. 10, no. 4, pp. 327–336. doi: 10.1016/S2213-2600(22)00006-6
- García-Prieto J., Villena-Gutiérrez R., Gómez M., Bernardo E., Pun-García A., García-Lunar I., Crainiciuc G., Fernández-Jiménez R., Sreeramkumar V., Bourio-Martínez R., García-Ruiz J.M., Del Valle A.S., Sanz-Rosa D., Pizarro G., Fernández-Ortiz A., Hidalgo A., Fuster V., Ibanez B. Neutrophil stunning by metoprolol reduces infarct size. Nat. Commun., 2017, vol. 8: 14780. doi: 10.1038/ncomms14780
- Ginsburg I., Fibach E. Polycations and polyanions in SARS-CoV-2 infection. Med. Hypotheses, 2021, vol. 146: 110470. doi: 10.1016/j.mehy.2020.110470
- Giorgi M., Cardarelli S., Ragusa F., Saliola M., Biagioni S., Poiana G., Naro F., Massimi M. Phosphodiesterase inhibitors: could they be beneficial for the treatment of COVID-19? Int. J. Mol. Sci., 2020, vol. 21, no. 15: 5338. doi: 10.3390/ijms21155338
- Godement M., Zhu J., Cerf C., Vieillard-Baron A., Maillon A., Zuber B., Bardet V., Geri G. Neutrophil extracellular traps in SARS-CoV-2 related pneumonia in ICU patients: the NETCOV2 Study. Front. Med. (Lausanne), 2021, vol. 8: 615984. doi: 10.3389/fmed.2021.615984
- Gould T.J., Vu T.T., Swystun L.L., Dwivedi D.J., Mai S.H., Weitz J.I., Liaw P.C. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms. Arterioscler. Thromb Vasc. Biol., 2014, vol. 34, no. 9, pp. 1977–84. doi: 10.1161/ATVBAHA.114.304114
- Gozzo L., Viale P., Longo L., Vitale D.C., Drago F. The potential role of heparin in patients with COVID-19: beyond the anticoagulant effect. A review. Front. Pharmacol., 2020, vol. 11: 1307. doi: 10.3389/fphar.2020.01307
- Guan W.J., Ni Z.Y., Hu Y., Liang W.H., Ou C.Q., He J.X., Liu L., Shan H., Lei C.L., Hui D.S.C., Du B., Li L.J., Zeng G., Yuen K.Y., Chen R.C., Tang C.L., Wang T., Chen P.Y., Xiang J., Li S.Y., Wang J.L., Liang Z.J., Peng Y.X., Wei L., Liu Y., Hu Y.H., Peng P., Wang J.M., Liu J.Y., Chen Z., Li G., Zheng Z.J., Qiu S.Q., Luo J., Ye C.J., Zhu S.Y., Zhong N.S.; China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med., 2020, vol. 382, pp. 1708–1720. doi: 10.1056/NEJMoa2002032
- Guaraldi G., Meschiari M., Cozzi-Lepri A., Milic J., Tonelli R., Menozzi M., Franceschini E., Cuomo G., Orlando G., Borghi V., Santoro A., Di Gaetano M., Puzzolante C., Carli F., Bedini A., Corradi L., Fantini R., Castaniere I., Tabbì L., Girardis M., Tedeschi S., Giannella M., Bartoletti M., Pascale R., Dolci G., Brugioni L., Pietrangelo A., Cossarizza A., Pea F., Clini E., Salvarani C., Massari M., Viale P.L., Mussini C. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol., 2020, vol. 2, no. 8: e474–e484. doi: 10.1016/S2665-9913(20)30173-9
- Guimarães P.O., Quirk D., Furtado R.H., Maia L.N., Saraiva J.F., Antunes M.O., Kalil Filho R., Junior V.M., Soeiro A.M., Tognon A.P., Veiga V.C., Martins P.A., Moia D.D.F., Sampaio B.S., Assis S.R.L., Soares R.V.P., Piano L.P.A., Castilho K., Momesso R.G.R.A.P., Monfardini F., Guimarães H.P., Ponce de Leon D., Dulcine M., Pinheiro M.R.T., Gunay L.M., Deuring J.J., Rizzo L.V., Koncz T., Berwanger O.; STOP-COVID Trial Investigators. Tofacitinib in patients hospitalized with Covid-19 pneumonia. N. Engl. J. Med., 2021, vol. 385, no. 5, pp. 406–415. doi: 10.1056/NEJMoa2101643
- Guimarães-Costa A.B., Nascimento M.T., Froment G.S., Soares R.P., Morgado F.N., Conceição-Silva F., Saraiva E.M. Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proc. Natl Acad. Sci. USA, 2009, vol. 106, no. 16, pp. 6748–6753. doi: 10.1073/pnas.0900226106
- Guo D.W., Wang C.Y., Shih H.C. N-acetylcysteine and atorvastatin alleviates lung injury due to ischemia-reperfusion injury in rats. J. Chin. Med. Assoc., 2019, vol. 82, no. 12, pp. 909–914. doi: 10.1097/JCMA.0000000000000193
- Gupta A.K., Hasler P., Holzgreve W., Gebhardt S., Hahn S. Induction of neutrophil extracellular DNA lattices by placental microparticles and IL-8 and their presence in preeclampsia. Hum. Immunol., 2005, vol. 66, no. 11, pp. 1146–1154. doi: 10.1016/j.humimm.2005.11.003
- Heller A.R., Groth G., Heller S.C., Breitkreutz R., Nebe T., Quintel M., Koch T. N-acetylcysteine reduces respiratory burst but augments neutrophil phagocytosis in intensive care unit patients. Crit. Care Med., 2001, vol. 29, no. 2, pp. 272–276. doi: 10.1097/00003246-200102000-00009
- Hogwood J., Pitchford S., Mulloy B., Page C., Gray E. Heparin and non-anticoagulant heparin attenuate histone-induced inflammatory responses in whole blood. PLoS One, 2020, vol. 15, no. 5: e0233644. doi: 10.1371/journal.pone.0233644
- Holz O., Khalilieh S., Ludwig-Sengpiel A., Watz H., Stryszak P., Soni P., Tsai M., Sadeh J., Magnussen H. SCH527123, a novel CXCR2 antagonist, inhibits ozone-induced neutrophilia in healthy subjects. Eur. Respir. J., 2010, vol. 35, no. 3, pp. 564–570. doi: 10.1183/09031936.00048509
- Horowitz R.I., Freeman P.R. Three novel prevention, diagnostic, and treatment options for COVID-19 urgently necessitating controlled randomized trials. Med. Hypotheses, 2020, vol. 143: 109851. doi: 10.1016/j.mehy.2020.109851
- Huckriede J., de Vries F., Hultström M., Wichapong K., Reutelingsperger C., Lipcsey M., Garcia de Frutos P., Frithiof R., Nicolaes G.A.F. Histone H3 cleavage in severe COVID-19 ICU patients. Front. Cell. Infect. Microbiol., 2021, vol. 11: 694186. doi: 10.3389/fcimb.2021.694186
- Huet T., Beaussier H., Voisin O., Jouveshomme S., Dauriat G., Lazareth I., Sacco E., Naccache J.M., Bézie Y., Laplanche S., Le Berre A., Le Pavec J., Salmeron S., Emmerich J., Mourad J.J., Chatellier G., Hayem G. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol., 2020, vol. 2, no. 7: e393–e400. doi: 10.1016/S2665-9913(20)30164-8
- Hussien N.R., Al-Niemi M.S., Al-Kuraishy H.M., Al-Gareeb A.I. Statins and Covid-19: the neglected front of bidirectional effects. J. Pak. Med. Assoc., 2021, vol. 71, no. 12, pp. S133–S136. doi: 10.1007/s10787-022-00988-y
- Iba T., Hashiguchi N., Nagaoka I., Tabe Y., Kadota K., Sato K. Heparins attenuated histone-mediated cytotoxicity in vitro and improved the survival in a rat model of histone-induced organ dysfunction. Intensive Care Med. Exp., 2015, vol. 3, no. 1: 36. doi: 10.1186/s40635-015-0072-z
- Jamil Z., Khan A.A., Khalid S., Asghar M., Muhammad K., Waheed Y. Beneficial Effects of anticoagulants on the clinical outcomes of COVID-19 patients. Antibiotics, 2021, vol. 10, no. 11: 1394. doi: 10.3390/antibiotics10111394
- Jenne C.N., Wong C.H., Zemp F.J., McDonald B., Rahman M.M., Forsyth P.A., McFadden G., Kubes P. Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell. Host Microbe, 2013, vol. 13, no. 2, pp. 169–180. doi: 10.1016/j.chom.2013.01.005
- Jimeno S., Ventura P.S., Castellano J.M., García-Adasme S.I., Miranda M., Touza P., Lllana I., López-Escobar A. Prognostic implications of neutrophil-lymphocyte ratio in COVID-19. Eur. J. Clin. Invest., 2021, vol. 51, no. 1: e13404. doi: 10.1111/eci.13404
- Jorch S.K., Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat. Med., 2017, vol. 723, no. 3, pp. 279–287. doi: 10.1038/nm.4294
- Jorgensen S.C.J., Tse C.L.Y., Burry L., Dresser L.D. Baricitinib: a review of pharmacology, safety, and emerging clinical experience in COVID-19. Pharmacotherapy, 2020, vol. 40, no. 8, pp. 843–856. doi: 10.1002/phar.2438
- Joshi M.B., Lad A., Bharath Prasad A.S., Balakrishnan A., Ramachandra L., Satyamoorthy K. High glucose modulates IL-6 mediated immune homeostasis through impeding neutrophil extracellular trap formation. FEBS Lett., 2013, vol. 587, no. 14, pp. 2241–2246. doi: 10.1016/j.febslet.2013.05.053
- Khandpur R., Carmona-Rivera C., Vivekanandan-Giri A., Gizinski A., Yalavarthi S., Knight J.S., Friday S., Li S., Patel R.M., Subramanian V., Thompson P., Chen P., Fox D.A., Pennathur S., Kaplan M.J. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med., 2013, vol. 5, no. 178: 178ra40. doi: 10.1126/scitranslmed.3005580
- Kim D.H., Chung J.H., Son B.S., Kim Y.J., Lee S.G. Effect of a neutrophil elastase inhibitor on ventilator-induced lung injury in rats. J. Thorac. Dis., 2014, vol. 6, no. 12, pp. 1681–1689. doi: 10.3978/j.issn.2072-1439.2014.11.10
- Korkmaz B., Lesner A., Marchand-Adam S., Moss C., Jenne D.E. Lung protection by cathepsin C inhibition: a new hope for COVID-19 and ARDS? J. Med. Chem., 2020, vol. 63, no. 22, pp. 13258–13265. doi: 10.1021/acs.jmedchem.0c00776
- Kraakman M.J., Lee M.K., Al-Sharea A., Dragoljevic D., Barrett T.J., Montenont E., Basu D., Heywood S., Kammoun H.L., Flynn M., Whillas A., Hanssen N.M., Febbraio M.A., Westein E., Fisher E.A., Chin-Dusting J., Cooper M.E., Berger J.S., Goldberg I.J., Nagareddy P.R., Murphy A.J. Neutrophil-derived S100 calcium-binding proteins A8/A9 promote reticulated thrombocytosis and atherogenesis in diabetes. J. Clin. Invest., 2017, vol. 127, no. 6, pp. 2133–2147. doi: 10.1172/JCI92450
- Kulshrestha R., Pandey A., Jaggi A., Bansal S. Beneficial effects of N-acetylcysteine on protease-antiprotease balance in attenuating bleomycin-induced pulmonary fibrosis in rats. Iran J. Basic Med. Sci., 2020, vol. 23, no. 3, pp. 396–405. doi: 10.22038/IJBMS.2020.39031.9261
- Lai J.J., Cruz F.M., Rock K.L. Immune sensing of cell death through recognition of histone sequences by C-type lectin-receptor-2d causes inflammation and tissue injury. Immunity, 2020, vol. 52, no. 1, pp. 123–135.e6. doi: 10.1016/j.immuni.2019.11.013
- Lande R., Ganguly D., Facchinetti V., Frasca L., Conrad C., Gregorio J., Meller S., Chamilos G., Sebasigari R., Riccieri V., Bassett R., Amuro H., Fukuhara S., Ito T., Liu Y.J., Gilliet M. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci. Transl. Med., 2011, vol. 3, no. 73: 73ra19. doi: 10.1126/scitranslmed.3001180
- Lax S.F., Skok K., Zechner P., Kessler H.H., Kaufmann N., Koelblinger C., Vander K., Bargfrieder U., Trauner M. Pulmonary arterial thrombosis in COVID-19 with fatal outcome : results from a prospective, single-center, clinicopathologic case series. Ann. Intern. Med., 2020, vol. 173, no. 5, pp. 350–361. doi: 10.7326/M20-2566
- Lazaar A.L., Miller B.E., Donald A.C., Keeley T., Ambery C., Russell J., Watz H., Tal-Singer R.; for 205724 Investigators. CXCR2 antagonist for patients with chronic obstructive pulmonary disease with chronic mucus hypersecretion: a phase 2b trial. Respir. Res., 2020, vol. 21, no. 1: 149. doi: 10.1186/s12931-020-01401-4
- Lefrançais E., Mallavia B., Zhuo H., Calfee C.S., Looney M.R. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. JCI Insight., 2018, vol. 3, no. 3: e98178. doi: 10.1172/jci.insight.98178
- Li Y., Wan D., Luo X., Song T., Wang Y., Yu Q., Jiang L., Liao R., Zhao W., Su B. Circulating histones in sepsis: potential outcome predictors and therapeutic targets. Front. Immunol., 2021, vol. 12: 650184. doi: 10.3389/fimmu.2021.650184
- Ligi D., Maniscalco R., Plebani M., Lippi G., Mannello F. Do circulating histones represent the missing link among COVID-19 infection and multiorgan injuries, microvascular coagulopathy and systemic hyperinflammation? J. Clin. Med., 2022, vol. 11, no. 7: 1800. doi: 10.3390/jcm1107180
- Lippi G., Henry B.M., Favaloro E.J. The benefits of heparin use in COVID-19: pleiotropic antiviral activity beyond anticoagulant and anti-inflammatory properties. Semin. Thromb. Hemost., 2022. doi: 10.1055/s-0042-1742740
- Liu X., Li Z., Liu S., Sun J., Chen Z., Jiang M., Zhang Q., Wei Y., Wang X., Huang Y.Y., Shi Y., Xu Y., Xian H., Bai F., Ou C., Xiong B., Lew A.M., Cui J., Fang R., Huang H., Zhao J., Hong X., Zhang Y., Zhou F., Luo H.B. Potential therapeutic effects of dipyridamole in the severely ill patients with COVID-19. Acta Pharm. Sin. B, 2020, vol. 10, no. 7, pp. 1205–1215. doi: 10.1016/ j.apsb.2020.04.008
- Lobo-Galo N., Terrazas-López M., Martínez-Martínez A., Díaz-Sánchez Á.G. FDA-approved thiol-reacting drugs that potentially bind into the SARS-CoV-2 main protease, essential for viral replication. J. Biomol. Struct. Dyn., 2021, vol. 39, no. 9, pp. 3419–3427. doi: 10.1080/07391102.2020.1764393
- Lomakin N.V., Bakirov B.A., Protsenko D.N., Mazurov V.I., Musaev G.H., Moiseeva O.M., Pasechnik E.S., Popov V.V., Smolyarchuk E.A., Gordeev I.G., Gilyarov M.Y., Fomina D.S., Seleznev A.I., Linkova Y.N., Dokukina E.A., Eremeeva A.V., Pukhtinskaia P.S., Morozova M.A., Zinkina-Orikhan A.V., Lutckii A.A. The efficacy and safety of levilimab in severely ill COVID-19 patients not requiring mechanical ventilation: results of a multicenter randomized double-blind placebo-controlled phase III CORONA clinical study. Inflamm. Res., 2021, vol. 70, no. 10–12, pp. 1233–1246. doi: 10.1007/s00011-021-01507-5
- Lu C.C., Chen M.Y., Lee W.S., Chang Y.L. Potential therapeutic agents against COVID-19: what we know so far. J. Chin. Med. Assoc., 2020, vol. 83, no. 6, pp. 534–536. doi: 10.1097/JCMA.0000000000000318
- Madan A., Chen S., Yates P., Washburn M.L., Roberts G., Peat A.J., Tao Y., Parry M.F., Barnum O., McClain M.T., Roy-Ghanta S. Efficacy and safety of danirixin (GSK1325756) co-administered with standard-of-care antiviral (oseltamivir): a phase 2b, global, randomized study of adults hospitalized with influenza. Open Forum Infect. Dis., 2019, vol. 6, no. 4: ofz163. doi: 10.1093/ofid/ofz163
- Maeshima K., Yamaoka K., Kubo S., Nakano K., Iwata S., Saito K., Ohishi M., Miyahara H., Tanaka S., Ishii K., Yoshimatsu H., Tanaka Y. The JAK inhibitor tofacitinib regulates synovitis through inhibition of interferon-γ and interleukin-17 production by human CD4+ T cells. Arthritis Rheum., 2012, vol. 64, no. 6, pp. 1790–1798. doi: 10.1002/art.34329
- Magnani H.N. Rationale for the role of heparin and related GAG antithrombotics in COVID-19 infection. Clin. Appl. Thromb. Hemost., 2021, vol. 27: 1076029620977702. doi: 10.1177/1076029620977702
- Maki C., Inoue Y., Ishihara T., Hirano Y., Kondo Y., Sueyoshi K., Okamoto K., Tanaka H. Evaluation of appropriate indications for the use of sivelestat sodium in acute respiratory distress syndrome: a retrospective cohort study. Acute Med. Surg., 2019, vol. 7, no. 1: e471. doi: 10.1002/ams2.471
- Massberg S., Grahl L., von Bruehl M.L., Manukyan D., Pfeiler S., Goosmann C., Brinkmann V., Lorenz M., Bidzhekov K., Khandagale A.B., Konrad I., Kennerknecht E., Reges K., Holdenrieder S., Braun S., Reinhardt C., Spannagl M., Preissner K.T., Engelmann B. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat. Med., 2010, vol. 16, no. 8, pp. 887–896. doi: 10.1038/nm.2184
- Mastaglio S., Ruggeri A., Risitano A.M., Angelillo P., Yancopoulou D., Mastellos D.C., Huber-Lang M., Piemontese S., Assanelli A., Garlanda C., Lambris J.D., Ciceri F. The first case of COVID-19 treated with the complement C3 inhibitor AMY-101. Clin. Immunol., 2020, vol. 215: 108450. doi: 10.1016/j.clim.2020.108450
- McCormick A., Heesemann L., Wagener J., Marcos V., Hartl D., Loeffler J., Heesemann J., Ebel F. NETs formed by human neutrophils inhibit growth of the pathogenic mold Aspergillus fumigatus. Microbes Infect., 2010, vol. 12, no. 12–13, pp. 928–936. doi: 10.1016/j.micinf.2010.06.009
- Middleton E.A., He X.Y., Denorme F., Campbell R.A., Ng D., Salvatore S.P., Mostyka M., Baxter-Stoltzfus A., Borczuk A.C., Loda M., Cody M.J., Manne B.K., Portier I., Harris E.S., Petrey A.C., Beswick E.J., Caulin A.F., Iovino A., Abegglen L.M., Weyrich A.S., Rondina M.T., Egeblad M., Schiffman J.D., Yost C.C. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood, 2020, vol. 136, no. 10, pp. 1169–1179. doi: 10.1182/blood.2020007008
- Mohamed M.M.A., El-Shimy I.A., Hadi M.A. Neutrophil elastase inhibitors: a potential prophylactic treatment option for SARS-CoV-2-induced respiratory complications? Crit. Care, 2020, vol. 24, no. 1: 311. doi: 10.1186/s13054-020-03023-0
- Moiana M., Aranda F., de Larrañaga G. A focus on the roles of histones in health and diseases. Clin. Biochem., 2021, vol. 94, pp. 12–19. doi: 10.1016/j.clinbiochem.2021.04.019
- Mokhtari V., Afsharian P., Shahhoseini M., Kalantar S.M., Moini A. A review on various uses of N-acetyl cysteine. Cell J., 2017, vol. 19, no. 1, pp. 11–17. doi: 10.22074/cellj.2016.4872
- Narasaraju T., Tang B.M., Herrmann M., Muller S., Chow V.T.K., Radic M. Neutrophilia and NETopathy as key pathologic drivers of progressive lung impairment in patients with COVID-19. Front. Pharmacol., 2020, vol. 11: 870. doi: 10.3389/fphar.2020.00870
- Nicolai L., Leunig A., Brambs S., Kaiser R., Joppich M., Hoffknecht M.L., Gold C., Engel A., Polewka V., Muenchhoff M., Hellmuth J.C., Ruhle A., Ledderose S., Weinberger T., Schulz H., Scherer C., Rudelius M., Zoller M., Keppler O.T., Zwißler B., von Bergwelt-Baildon M., Kääb S., Zimmer R., Bülow R.D., von Stillfried S., Boor P., Massberg S., Pekayvaz K., Stark K. Vascular neutrophilic inflammation and immunothrombosis distinguish severe COVID-19 from influenza pneumonia. J. Thromb. Haemost., 2021, vol. 19, no. 2, pp. 574–581. doi: 10.1111/jth.15179
- Oehmcke S., Mörgelin M., Herwald H. Activation of the human contact system on neutrophil extracellular traps. J. Innate Immun., 2009, vol. 1, no. 3, pp. 225–30. doi: 10.1159/000203700
- Ouwendijk W.J.D., Raadsen M.P., van Kampen J.J.A., Verdijk R.M., von der Thusen J.H., Guo L., Hoek R.A.S., van den Akker J.P.C., Endeman H., Langerak T., Molenkamp R., Gommers D., Koopmans M.P.G., van Gorp E.C.M., Verjans G.M.G.M., Haagmans B.L. High levels of neutrophil extracellular traps persist in the lower respiratory tract of critically ill patients with coronavirus disease 2019. J. Infect. Dis., 2021, vol. 223, no. 9, pp. 1512–1521. doi: 10.1093/infdis/jiab050
- Pacha O., Sallman M.A., Evans S.E. COVID-19: a case for inhibiting IL-17? Nat. Rev. Immunol., 2020, vol. 20, no. 6, pp. 345–346. doi: 10.1038/s41577-020-0328-z
- Palmér R., Mäenpää J., Jauhiainen A., Larsson B., Mo J., Russell M., Root J., Prothon S., Chialda L., Forte P., Egelrud T., Stenvall K., Gardiner P. Dipeptidyl peptidase 1 inhibitor AZD7986 induces a sustained, exposure-dependent reduction in neutrophil elastase activity in healthy subjects. Clin. Pharmacol. Ther., 2018, vol. 104, no. 6, pp. 1155–1164. doi: 10.1002/cpt.1053
- Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol., 2018, vol. 18, no. 2, pp. 134–147. doi: 10.1038/nri.2017.105
- Pérez-Sánchez C., Ruiz-Limón P., Aguirre M.A., Jiménez-Gómez Y., Arias-de la Rosa I., Ábalos-Aguilera M.C., Rodriguez-Ariza A., Castro-Villegas M.C., Ortega-Castro R., Segui P., Martinez C., Gonzalez-Conejero R., Rodríguez-López S., Gonzalez-Reyes J.A., Villalba J.M., Collantes-Estévez E., Escudero A., Barbarroja N., López-Pedrera C. Diagnostic potential of NETosis-derived products for disease activity, atherosclerosis and therapeutic effectiveness in rheumatoid arthritis patients. J. Autoimmun., 2017, vol. 82, pp. 31–40. doi: 10.1016/j.jaut.2017.04.007
- Potey P.M., Rossi A.G., Lucas C.D., Dorward D.A. Neutrophils in the initiation and resolution of acute pulmonary inflammation: understanding biological function and therapeutic potential. J. Pathol., 2019, vol. 247, no. 5, pp. 672–685. doi: 10.1002/path.5221
- Qi H., Yang S., Zhang L. Neutrophil extracellular traps and endothelial dysfunction in atherosclerosis and thrombosis. Front. Immunol., 2017, vol. 8: 928. doi: 10.3389/fimmu.2017.00928
- Risitano A.M., Mastellos D.C., Huber-Lang M., Yancopoulou D., Garlanda C., Ciceri F., Lambris J.D. Complement as a target in COVID-19? Nat. Rev. Immunol., 2020, vol. 20, no. 6, pp. 343–344. doi: 10.1038/s41577-020-0320-7
- Ruiz-Limón P., Ortega R., Arias de la Rosa I., Abalos-Aguilera M.D.C., Perez-Sanchez C., Jimenez-Gomez Y., Peralbo-Santaella E., Font P., Ruiz-Vilches D., Ferrin G., Collantes-Estevez E., Escudero-Contreras A., López-Pedrera C., Barbarroja N. Tocilizumab improves the proatherothrombotic profile of rheumatoid arthritis patients modulating endothelial dysfunction, NETosis, and inflammation. Transl, Res., 2017, vol. 183, pp. 87–103. doi: 10.1016/j.trsl.2016.12.003
- Saitoh T., Komano J., Saitoh Y., Misawa T., Takahama M., Kozaki T., Uehata T., Iwasaki H., Omori H., Yamaoka S., Yamamoto N., Akira S. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell. Host Microbe, 2012, vol. 12, no. 1, pp. 109–116. doi: 10.1016/j.chom.2012.05.015
- Schönrich G., Raftery M.J. Neutrophil extracellular traps go viral. Front. Immunol., 2016, vol. 19, pp. 7: 366. doi: 10.3389/fimmu.2016.00366
- Schreiber A., Rousselle A., Becker J.U., von Mässenhausen A., Linkermann A., Kettritz R. Necroptosis controls NET generation and mediates complement activation, endothelial damage, and autoimmune vasculitis. Proc. Natl Acad. Sci. USA, 2017, vol. 114, no. 45, pp. E9618–E9625. doi: 10.1073/pnas.1708247114
- Schulman S., Harenberg J. Anticoagulant treatment of COVID-19 as early as possible-sulodexide and perspectives. Thromb. Haemost., 2021, vol. 121, no. 7, pp. 849–853. doi: 10.1055/a-1477-3569
- Shaw R.J., Abrams S.T., Austin J., Taylor J.M., Lane S., Dutt T., Downey C., Du M., Turtle L., Baillie J.K., Openshaw P.J.M., Wang G., Semple M.G., Toh C.H. Circulating histones play a central role in COVID-19-associated coagulopathy and mortality. Haematologica, 2021, vol. 106, no. 9, pp. 2493–2498. doi: 10.3324/haematol.2021.278492
- Shaw S., Bourne T., Meier C., Carrington B., Gelinas R., Henry A., Popplewell A., Adams R., Baker T., Rapecki S., Marshall D., Moore A., Neale H., Lawson A. Discovery and characterization of olokizumab: a humanized antibody targeting interleukin-6 and neutralizing gp130-signaling. MAbs, 2014, vol. 6, no. 3, pp. 774–782. doi: 10.4161/mabs.28612
- Shi H., Gandhi A.A., Smith S.A., Wang Q., Chiang D., Yalavarthi S., Ali R.A., Liu C., Sule G., Tsou P.S., Zuo Y., Kanthi Y., Farkash E.A., Lin J.D., Morrissey J.H, Knight J.S. Endothelium-protective, histone-neutralizing properties of polyanionic agent defibrotide. JCI Insight., 2021, vol. 6, no. 17: e149149. doi: 10.1172/jci.insight.149149
- Shi Y., Wang Y., Shao C., Huang J., Gan J., Huang X., Bucci E., Piacentini M., Ippolito G., Melino G. COVID-19 infection: the perspectives on immune responses. Cell. Death Differ., 2020, vol. 27, no. 5, pp. 1451–1454. doi: 10.1038/s41418-020-0530-3
- Silk E., Zhao H., Weng H., Ma D. The role of extracellular histone in organ injury. Cell. Death Dis., 2017, vol. 8, no. 5: e2812. doi: 10.1038/cddis.2017.52
- Silvestre-Roig C., Braster Q., Wichapong K., Lee E.Y., Teulon J.M., Berrebeh N., Winter J., Adrover J.M., Santos G.S., Froese A., Lemnitzer P., Ortega-Gómez A., Chevre R., Marschner J., Schumski A., Winter C., Perez-Olivares L., Pan C., Paulin N., Schoufour T., Hartwig H., González-Ramos S., Kamp F., Megens R.T.A., Mowen K.A., Gunzer M., Maegdefessel L., Hackeng T., Lutgens E., Daemen M., von Blume J., Anders H.J., Nikolaev V.O., Pellequer J.L., Weber C., Hidalgo A., Nicolaes G.A.F., Wong G.C.L., Soehnlein O. Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature, 2019, vol. 569, no. 7755, pp. 236–240. doi: 10.1038/s41586-019-1167-6
- Skendros P., Mitsios A., Chrysanthopoulou A., Mastellos D.C., Metallidis S., Rafailidis P., Ntinopoulou M., Sertaridou E., Tsironidou V., Tsigalou C., Tektonidou M., Konstantinidis T., Papagoras C., Mitroulis I., Germanidis G., Lambris J.D., Ritis K. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J. Clin. Invest., 2020, vol. 130, no. 11, pp. 6151–6157. doi: 10.1172/JCI141374
- Sollberger G., Choidas A., Burn G.L., Habenberger P., Di Lucrezia R., Kordes S., Menninger S., Eickhoff J., Nussbaumer P., Klebl B., Krüger R., Herzig A., Zychlinsky A. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci. Immunol., 2018, vol. 3, no. 26: eaar6689. doi: 10.1126/sciimmunol.aar6689
- Soy M., Keser G., Atagündüz P., Tabak F., Atagündüz I., Kayhan S. Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clin. Rheumatol., 2020, vol. 39, no. 7, pp. 2085–2094. doi: 10.1007/s10067-020-05190-5
- Spyropoulos A.C., Bonaca M.P. Studying the coagulopathy of COVID-19. Lancet, 2022, vol. 399, no. 10320, pp. 118–119. doi: 10.1016/S0140-6736(21)01906-1
- Stark J.M., Colasurdo G.N. Lung defences: intrinsic, innate and adaptive. In: Chernick V., Boat T.F., Wilmott R.W., Bush A., editors. Kendig’s disorders of the respiratory tract in children, vol. 7, 7th ed. Philadelphia: W.B. Saunders, 2006, pp. 205–223. doi: 10.1016/B978-1-4377-1984-0.00007-3
- Stebbing J., Phelan A., Griffin I., Tucker C., Oechsle O., Smith D., Richardson P. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect. Dis., 2020, vol. 20, no. 4, pp. 400–402. doi: 10.1016/S1473-3099(20)30132-8
- Tan M.K.X., Heng T.Y.J., Mak A. The potential use of metformin, dipyridamole, N-acetylcysteine and statins as adjunctive therapy for systemic lupus erythematosus. Cells, 2019, vol. 8, no. 4: 323. doi: 10.3390/cells8040323
- Teijeira Á., Garasa S., Gato M., Alfaro C., Migueliz I., Cirella A., de Andrea C., Ochoa M.C., Otano I., Etxeberria I., Andueza M.P., Nieto C.P., Resano L., Azpilikueta A., Allegretti M., de Pizzol M., Ponz-Sarvisé M., Rouzaut A., Sanmamed M.F., Schalper K., Carleton M., Mellado M., Rodriguez-Ruiz M.E., Berraondo P., Perez-Gracia J.L., Melero I. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity, 2020, vol. 52, no. 5, pp. 856–871.e8. doi: 10.1016/j.immuni.2020.03.001
- Thålin C., Hisada Y., Lundström S., Mackman N., Wallén H. Neutrophil extracellular traps: villains and targets in arterial, venous, and cancer-associated thrombosis. Arterioscler. Thromb. Vasc. Biol., 2019, vol. 39, no. 9, pp. 1724–1738. doi: 10.1161/ATVBAHA.119.312463
- Thierry A.R., Roch B. Neutrophil extracellular traps and by-products play a key role in COVID-19: pathogenesis, risk factors, and therapy. J. Clin. Med., 2020, vol. 9, no. 9: 2942. doi: 10.3390/jcm9092942
- Thierry A.R. Anti-protease treatments targeting plasmin(ogen) and neutrophil elastase may be beneficial in fighting COVID-19. Physiol. Rev., 2020, vol. 100, no. 4, pp. 1597–1598. doi: 10.1152/physrev.00019.2020
- Thierry A.R. Does the newly observed inflammatory syndrome in children demonstrate a link between uncontrolled neutrophil extracellular traps formation and COVID-19. Pediatr. Res., 2021, vol. 89, no. 4, pp. 716–717. doi: 10.1038/s41390-020-0996-1
- Todd C.M., Salter B.M., Murphy D.M., Watson R.M., Howie K.J., Milot J., Sadeh J., Boulet L.P., O’Byrne P.M., Gauvreau G.M. The effects of a CXCR1/CXCR2 antagonist on neutrophil migration in mild atopic asthmatic subjects. Pulm. Pharmacol. Ther., 2016, vol. 41, pp. 34–39. doi: 10.1016/j.pupt.2016.09.005
- Twaddell S.H., Baines K.J., Grainge C., Gibson P.G. The emerging role of neutrophil extracellular traps in respiratory disease. Chest, 2019, vol. 156, no. 4, pp. 774–782. doi: 10.1016/j.chest.2019.06.012
- Urban C.F., Nett J.E. Neutrophil extracellular traps in fungal infection. In: Seminars in cell & developmental biology. Academic Press, 2019, vol. 89, pp. 47–57. doi: 10.1016/j.semcdb.2018.03.020
- Urban C.F., Reichard U., Brinkmann V., Zychlinsky A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell. Microbiol., 2006, vol. 8, no. 4, pp. 668–676. doi: 10.1111/j.1462-5822.2005.00659.x
- Vorobjeva N., Galkin I., Pletjushkina O., Golyshev S., Zinovkin R., Prikhodko A., Pinegin V., Kondratenko I., Pinegin B., Chernyak B. Mitochondrial permeability transition pore is involved in oxidative burst and NETosis of human neutrophils. Biochim. Biophys. Acta Mol. Basis Dis., 2020, vol. 1866, no. 5: 165664. doi: 10.1016/j.bbadis.2020.165664
- Wang J., Li Q., Yin Y., Zhang Y., Cao Y., Lin X., Huang L., Hoffmann D., Lu M., Qiu Y. Excessive neutrophils and neutrophil extracellular traps in COVID-19. Front. Immunol., 2020, vol. 11: 2063. doi: 10.3389/fimmu.2020.02063
- Wang Y., Luo L., Braun O.Ö., Westman J., Madhi R., Herwald H., Mörgelin M., Thorlacius H. Neutrophil extracellular trap-microparticle complexes enhance thrombin generation via the intrinsic pathway of coagulation in mice. Sci. Rep., 2018, vol. 8, no. 1: 4020. doi: 10.1038/s41598-018-22156-5
- Warnatsch A., Ioannou M., Wang Q., Papayannopoulos V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science, 2015, vol. 349, no. 6245, pp. 316–320. doi: 10.1126/science.aaa8064
- Weber A.G., Chau A.S., Egeblad M., Barnes B.J., Janowitz T. Nebulized in-line endotracheal dornase alfa and albuterol administered to mechanically ventilated COVID-19 patients: a case series. medRxiv [Preprint], 2020: 2020.05.13.20087734. doi: 10.1101/2020.05.13.20087734
- Winnersbach P., Rossaint J., Buhl E.M., Singh S., Lölsberg J., Wessling M., Rossaint R., Bleilevens C. Platelet count reduction during in vitro membrane oxygenation affects platelet activation, neutrophil extracellular trap formation and clot stability, but does not prevent clotting. Perfusion, 2022, vol. 37, no. 2, pp. 134–143. doi: 10.1177/0267659121989231
- Wu C., Chen X., Cai Y., Xia J., Zhou X., Xu S., Huang H., Zhang L., Zhou X., Du C., Zhang Y., Song J., Wang S., Chao Y., Yang Z., Xu J., Zhou X., Chen D., Xiong W., Xu L., Zhou F., Jiang J., Bai C., Zheng J., Song Y. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med., 2020, vol. 180, no. 7, pp. 934–943. doi: 10.1001/jamainternmed.2020.0994
- Xu J., Zhang X., Pelayo R., Monestier M., Ammollo C.T., Semeraro F., Taylor F.B., Esmon N.L., Lupu F., Esmon C.T. Extracellular histones are major mediators of death in sepsis. Nat. Med., 2009, vol. 15, no. 11, pp. 1318–1321. doi: 10.1038/nm.2053
- Xu X., Han M., Li T., Sun W., Wang D., Fu B., Zhou Y., Zheng X., Yang Y., Li X., Zhang X., Pan A., Wei H. Effective treatment of severe COVID-19 patients with tocilizumab. Proc. Natl Acad. Sci. USA, 2020, vol. 117, no. 20, pp. 10970–10975. doi: 10.1073/pnas.2005615117
- Yang S.C., Tsai Y.F., Pan Y.L., Hwang T.L. Understanding the role of neutrophils in acute respiratory distress syndrome. Biomed J., 2021, vol. 44, no. 4, pp. 439–446. doi: 10.1016/j.bj.2020.09.001
- Yaqinuddin A., Kashir J. Novel therapeutic targets for SARS-CoV-2-induced acute lung injury: targeting a potential IL-1β/neutrophil extracellular traps feedback loop. Med. Hypotheses, 2020, vol. 143: 109906. doi: 10.1016/j.mehy.2020.109906
- Yu S., Liu J., Yan N. Endothelial dysfunction induced by extracellular neutrophil traps plays important role in the occurrence and treatment of extracellular neutrophil traps-related disease. Int. J. Mol. Sci., 2022, vol. 23, no. 10: 5626. doi: 10.3390/ijms23105626
- Zhang H., Zhou P., Wei Y., Yue H., Wang Y., Hu M., Zhang S., Cao T., Yang C., Li M., Guo G., Chen X., Chen Y., Lei M., Liu H., Zhao J., Peng P., Wang C.Y., Du R. Histopathologic changes and SARS-CoV-2 immunostaining in the lung of a patient with COVID-19. Ann. Intern Med., 2020, vol. 172, no. 9, pp. 629–632. doi: 10.7326/M20-0533
- Zhang Y., Ding S., Li C., Wang Y., Chen Z., Wang Z. Effects of N-acetylcysteine treatment in acute respiratory distress syndrome: a meta-analysis. Exp. Ther. Med., 2017, vol. 14, no. 4, pp. 2863–2868. doi: 10.3892/etm.2017.4891
- Zou X., Chen K., Zou J., Han P., Hao J., Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front. Med., 2020, vol. 14, no. 2, pp. 185–192. doi: 10.1007/s11684-020-0754-0
- Zou Y., Chen X., Xiao J., Bo Zhou D., Xiao Lu X., Li W., Xie B., Kuang X., Chen Q. Neutrophil extracellular traps promote lipopolysaccharide-induced airway inflammation and mucus hypersecretion in mice. Oncotarget, 2018, vol. 9, no. 17, pp. 13276–13286. doi: 10.18632/oncotarget.24022
- Zuo Y., Zuo M., Yalavarthi S., Gockman K., Madison J.A., Shi H., Woodard W., Lezak S.P., Lugogo N.L., Knight J.S., Kanthi Y. Neutrophil extracellular traps and thrombosis in COVID-19. J. Thromb. Thrombolysis, 2021, vol. 51, no. 2, pp. 446–453. doi: 10.1007/s11239-020-02324-z
Supplementary files
