Enhanced hydroxyl radical generation by human leukocytes exposed to bacterial diamines highlighting immunomodulatory effect of microbial metabolites

Cover Page

Cite item

Full Text

Abstract

Recently, there have been increasing an interest to study a role of polyamines in intercellular interactions, especially in the focus of inflammation, where accumulation of such polycations is observed. In this regard, products of microbial origin — cadaverine and putrescine — are of particular attention. The role of polyamines as «scavengers» of free radicals has been described, but no data of their effect on the leukocyte radical-producing activity have been obtained so far. The aim of the investigation was to study features of hydroxyl radical generation by human leukocytes exposed to microbe-derived polyamines. Materials and methods. Peripheral venous blood samples were obtained from 20 healthy donors. To assess radical production, a luminol-dependent chemiluminescence reaction was carried out with blood leukocytes pre-incubated with cadaverine (0.01 M) and putrescine (0.01 M), measured on a Luminoskan Ascent® Thermo Labsystems luminometer (USA) for 180 min. For statistical analysis, an integral chemiluminescence index was used for the entire measurement period (RLU). Results and discussion. It was shown that cadaverine has a stimulating effect on the leukocyte potential to produce radicals (averaged area under the curve is 6.7±0.7 r.u., p < 0.05). Putrescine had little effect on the radical-producing activity of human cells (2.8±0.4 r.u., p < 0.05). This might be due to the direct influence of polycations on the mechanisms of radical generation, as well as increased activity of leukocyte diamine oxidase catalyzing the conversion of diamines into aminoaldehyde, which is accompanied by the release of hydrogen peroxide reacting with luminol. In addition, the enzyme inactivates other compounds, such as histamine leading to formation of a less pronounced clinical picture. Polyamines, particularly cadaverine and putrescine, can be referred to the factors remodeling the metabolic activity of the host leukocytes, which is aimed at maintaining the viability and increasing the number of microorganisms. Conclusion. Thus, cadaverine and putrescine produced by microorganisms, depending on the conditions of the microenvironment, might be evidently considered as mediators of the mild or asymptomatic course of inflammatory diseases, which contributes to underlying persistent potential of bacteria.

About the authors

Anatoliy P. Godovalov

E.A. Vagner Perm State Medical University

Author for correspondence.
Email: AGodovalov@gmail.com
ORCID iD: 0000-0002-5112-2003
SPIN-code: 4482-4378
Scopus Author ID: 632987

PhD (Medicine), Leading Researcher of the Central Scientific Laboratory; Associate Professor, Department of Microbiology and Virology

Russian Federation, Perm

Tamara I. Karpunina

E.A. Vagner Perm State Medical University

Email: karpuninapsma@mail.ru
ORCID iD: 0000-0003-2511-4656
SPIN-code: 2542-8015
Scopus Author ID: 148127

PhD, MD (Biology), Professor, Professor of the Department of Microbiology and Virology

Russian Federation, Perm

I. A. Morozov

E.A. Vagner Perm State Medical University

Email: Lonny8@yandex.ru
ORCID iD: 0000-0003-4233-3711

Student of Medical Faculty

Russian Federation, Perm

References

  1. Бухарин О.В. Адаптивные стратегии взаимодействия возбудителя и хозяина при инфекции // Вестник Российской академии наук. 2018. Т. 88, № 7. С. 637–643. [Bukharin O.V. Adaptive strategies for the interaction of the pathogen and the host during infection. Vestnik Rossijskoj akademii nauk = Bulletin of the Russian Academy of Sciences, 2018, vol. 88, no. 7, pp. 637–643. (In Russ.)] doi: 10.31857/S086958730000087-3
  2. Годовалов А.П., Даниелян Т.Ю., Карпунина Т.И., Вавилов Н.В. Опыт изучения микрофлоры и белков эякулята при разной эхоскопической картине предстательной железы // Инфекция и иммунитет. 2019. Т. 9, № 2. С. 347–353. [Godovalov A.P., Danielyan T.Yu., Karpunina T.I., Vavilov N.V. Experience in studying the microflora and proteins of ejaculate with different echoscopic picture of the prostate gland. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2019, vol. 9, no. 2, pp. 347–353. (In Russ.)] doi: 10.15789/2220-7619-2019-2-347-353
  3. Годовалов А.П., Карпунина Т.И., Нестерова Л.Ю., Морозов И.А. Полиамины как рецептор-независимые факторы агрессии условно-патогенных микроорганизмов // Иммунопатология, аллергология, инфектология. 2019. № 3. С. 91–94. [Godovalov A.P., Karpunina T.I., Nesterova L.Yu., Morozov I.A. Polyamines as receptor-independent factors of aggression of opportunistic microorganisms. Immunopatologiya, allergologiya, infektologiya = Immunopathology, Allergology, Infectology, 2019. no. 3, pp. 91–94. (In Russ.)] doi: 10.14427/jipai.2019.3.91
  4. Морозов И.А., Карпунина Т.И., Годовалов А.П. Кадаверин как регулятор активности про- и эукариотических клеток // Аллергология и иммунология. 2018. Т. 19, № 3. С. 149–150. [Morozov I.A., Karpunina T.I., Godovalov A.P. Cadaverine as a regulator of the activity of pro- and eukaryotic cells. Allergologiya i immunologiya = Allergology and Immunology, 2018, vol. 19, no. 3, pp. 149–150. (In Russ.)
  5. Нестерова Л.Ю., Негорелова Е.В., Ткаченко А.Г. Биогенные полиамины как модуляторы активности Quorum sensing системы и биопленкообразования Vibrio harveyi // Вестник Пермского университета. Серия «Биология». 2019. № 3. C. 300–308. [Nesterova L.Yu., Negorelova E.V., Tkachenko A.G. Biogenic polyamines as modulators of the activity of the Quorum sensing system and biofilm formation of Vibrio harveyi. Vestnik Permskogo universiteta. Seriya “Biologiya” = Bulletin of Perm University. Biology Series, 2019, no. 3, pp. 300–308. (In Russ.)] doi: 10.17072/1994-9952-2019-3-300-308
  6. Ткаченко А.Г. Стрессорные ответы бактериальных клеток как механизм развития толерантности к антибиотикам // Прикладная биохимия и микробиология. 2018. Т. 54, № 2. С. 110–133. [Tkachenko A.G. Stress responses of bacterial cells as a mechanism for the development of tolerance to antibiotics. Prikladnaya biokhimiya i mikrobiologiya = Applied Biochemistry and Microbiology, 2018, vol. 54, no. 2, pp. 110–133. (In Russ.)] doi: 10.7868/S0555109918020022
  7. Bigger J.W. Treatment of staphylococcal infections with penicillin by intermittent sterilization. Lancet, 1944, vol. 244, no. 6320, pp. 497–500. doi: 10.1016/s0140-6736(00)74210-3
  8. Brown S.P., Cornforth D.M., Mideo N. Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control. Trends Microbiol., 2012, vol. 20, no. 7, pp. 336–342. doi: 10.1016/j.tim.2012.04.005
  9. Equi A.M., Brown A.M., Cooper A., Her S.K., Watson A.B., Robins D.J. Oxidation of putrescine and cadaverine derivatives by diamine oxidases. Tetrahedron, 1991, vol. 47, no. 3, pp. 507–518. doi: 10.1016/S0040-4020(01)90506-X
  10. Ferguson J.S., Weis J.J., Martin J.L., Schlesinger L.S. Complement protein C3 binding to mycobacterium tuberculosis is initiated by the classical pathway in human bronchoalveolar lavage fluid. Infect. Immun., 2004, vol. 72, no. 5, pp. 2564–2573. doi: 10.1128/IAI.72.5.2564-2573.2004
  11. Fisher R.A., Gollan B., Helaine S. Persistent bacterial infections and persister cells. Nat. Rev. Microbiol., 2017, vol. 15, no. 8, pp. 453–464. doi: 10.1038/nrmicro.2017.42
  12. Flannagan R.S., Jaumouillé V., Grinstein S. The cell biology of phagocytosis. Annu. Rev. Pathol., 2012, no. 7, pp. 61–98. doi: 10.1146/annurev-pathol-011811-132445
  13. Fujisawa S., Kadoma Y. Kinetic evaluation of polyamines as radical scavengers. Anticancer Res., 2005, vol. 25, no. 2A, pp. 965–969.
  14. Hesterberg R.S., Cleveland J.L., Epling-Burnette P.K. Role of polyamines in immune cell functions. Med. Sci. (Basel), 2018, vol. 6, no. 1: 22. doi: 10.3390/medsci6010022
  15. Houen G., Högdall E.V., Barkholt V., Nørskov L. Lactoferrin: similarity to diamine oxidase and purification by aminohexyl affinity chromatography. Eur. J. Biochem., 1996, vol. 241, no. 1, pp. 303–308. doi: 10.1111/j.1432-1033.1996.0303t.x
  16. Huemer M., Mairpady Shambat S., Brugger S.D., Zinkernagel A.S. Antibiotic resistance and persistence-implications for human health and treatment perspectives. EMBO Rep., 2020, vol. 21, no. 12: e51034. doi: 10.15252/embr.202051034
  17. Igarashi K., Kashiwagi K. Characterization of genes for polyamine modulon. Methods Mol. Biol., 2011, no. 720, pp. 51–65. doi: 10.1007/978-1-61779-034-8_3
  18. Janeway C.A. Jr., Medzhitov R. Innate immune recognition. Annu. Rev. Immunol., 2002, vol. 20, pp. 197–216. doi: 10.1146/annurev.immunol.20.083001.084359
  19. Lohinai Z., Keremi B., Szoko E., Tabi T., Szabo C., Tulassay Z., Levine M. Bacterial lysine decarboxylase influences human dental biofilm lysine content, biofilm accumulation, and subclinical gingival inflammation. J. Periodontol., 2012, vol. 83, no. 8, pp. 1048–1056. doi: 10.1902/jop.2011.110474
  20. Mei Y., Ran L., Ying X., Yuan Z., Xin S. A sequential injection analysis/chemiluminescent plant tissue-based biosensor system for the determination of diamine. Biosens Bioelectron., 2007, vol. 22, no. 6, pp. 871–876. doi: 10.1016/j.bios.2006.03.003
  21. Shah P., Swiatlo E. A multifaceted role for polyamines in bacterial pathogens. Mol. Microbiol., 2008, vol. 68, no. 1, pp. 4–16. doi: 10.1111/j.1365-2958.2008.06126.x.
  22. Shilov J.I., Orlova E.G. Role of adrenergic mechanisms in regulation of phagocytic cell functions in acute stress response. Immunology Letters, 2003, no. 86, pp. 229–233. doi: 10.1016/s0165-2478(03)00027-0
  23. Tabor C.W., Tabor H. Polyamines in microorganisms. Microbiol. Rev., 1985, vol. 49, no. 1, pp. 81–99. doi: 10.1128/mr.49.1.81-99.1985
  24. Teng T.-S., Ji A., Ji X.-Y., Li Y.-Z. Neutrophils and immunity: from bactericidal action to being conquered. J. Immunol. Res., 2017, vol. 2017: 9671604. doi: 10.1155/2017/9671604
  25. Uribe-Querol E., Rosales C. Control of phagocytosis by microbial pathogens. Front. Immunol., 2017, no. 8: 1368. doi: 10.3389/fimmu.2017.01368

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Zymosan (A), cadaverine and putrescine (B) affecting leukocyte radical-production activity

Download (150KB)

Copyright (c) 2022 Godovalov A.P., Karpunina T.I., Morozov I.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».