Characterizing A “N-CoV-2-IgG PS” diagnostic kit to quantify SARS-CoV-2 nucleocapsid protein-specific human IgG antibodies

Cover Page

Cite item

Full Text

Abstract

Confirming detected SARS-CoV-2-specific antibodies is necessary to reveal immune response in COVID-19 convalescent subjects as well as to conduct population studies by screening for specific antibodies to assess rate of COVID-19 prevalence. With this purpose St. Petersburg Pasteur Institute was the first in Russia to develop the ELISA kit for the quantitative determination of human IgG to the SARS-CoV-2 nucleocapsid (N-CoV-2-IgG PS). Arbitrary units (AU/ml) were used to assess the level of antibodies. The data shown in AU/ml were recalculated later to the international units (BAU/ml) in accordance with established the First WHO International Standard for anti-SARS-CoV-2 human Immunoglobulin. Comparing the data of the N-CoV-2-IgG PS calibration curve with those of the First WHO International Standard for anti-SARS-CoV-2 human Immunoglobulin revealed a complete inter-assay association (r = 0.999, R2 = 0.997) allowing to find that 1BAU/ml = 5.97 AU/ml. The aim of the study was to characterize the “SARS-CoV-2 protein N Human IgG Quantitative ELISA Kit” (N-CoV-2-IgG PS), compare quantitative and qualitative data of ELISA kits, assess a correlation between the binding antibodies to SARS-CoV-2 N proteins and the neutralizing antibodies against SARS-CoV-2. The data of correlation analysis of the 83 COVID-19 convalescent blood plasma samples a significant relationship between the antibodies quantitative values and titers SARS-CoV-2-specific antibody (r = 0.8436, R2 = 0.7802) as well as a moderate relationship between antibody concentration and positivity index (r = 0.6648, R2 = 0.3307), assessed by Chaddock scale. Comparing concentration of N-protein binding antibodies with neutralizing antibody titers level uncovered data consistency obtained by quantitative and virus microneutralization assays (r = 0.7310, R2 = 0.6527) used in parallel to analyze 80 blood plasma samples obtained from COVID-19 patients and convalescents. AUC under the ROC curve comprised 0.701 (P < 0.0001) evidencing about a satisfactory informative value for “N-CoV-2-IgG PS” compared with microneutralization assay. In addition, the efficacy of the “N-CoV-2-IgG PS” was 95%, while the positive and negative prognostic value was 97% and 87%, respectively. The data obtained confirmed a correlation between N-protein binding antibody level and neutralizing antibody titer. Checking inter-assay agreement evidenced about acceptance for informativeness and efficacy of using “N-CoV-2-IgG PS”, thereby confirming an opportunity to apply the Kit to screen for SARS-CoV-2 N protein-specific IgG antibody level and assess seroprevalence in diverse population cohorts.

About the authors

Elena V. Zueva

St. Petersburg Pasteur Institute

Author for correspondence.
Email: elenazueva9@gmail.com

PhD (Biology), Senior Researcher, Laboratory of Molecular Immunology

Russian Federation, 14, Mira str., St. Petersburg, 197101

Nikolai N. Belyaev

St. Petersburg Pasteur Institute

Email: nikobel@gmail.com

PhD, MD (Biology), Senior Researcher, Department of New Technologies

Russian Federation, 14, Mira str., St. Petersburg, 197101

Vyacheslav N. Verbov

St. Petersburg Pasteur Institute

Email: verbov@pasteurorg.ru

PhD (Chemistry), Head of the Laboratory of Biological Products, Head of the Department of New Technologies

Russian Federation, 14, Mira str., St. Petersburg, 197101

Ivan V. Likhachev

St. Petersburg Pasteur Institute

Email: liv-dnt@mail.ru

Junior Researcher, Laboratory of Biological Products

Russian Federation, 14, Mira str., St. Petersburg, 197101

Igor A. Bachinin

St. Petersburg Pasteur Institute

Email: bachinini@mail.ru

Pilot Industrial Production Technologist

Russian Federation, 14, Mira str., St. Petersburg, 197101

Irina V. Khamitova

St. Petersburg Pasteur Institute

Email: div-o@mail.ru

PhD (Biology), Head of the Central Сlinical Diagnostic Laboratory

Russian Federation, 14, Mira str., St. Petersburg, 197101

Zoya R. Korobova

St. Petersburg Pasteur Institute; Pavlov First St. Petersburg State Medical University

Email: zoia-korobova@yandex.ru

Investigator (Biologist), Laboratory of Molecular Immunology, Senior Laboratory Assistant, Department of Immunology

Russian Federation, 14, Mira str., St. Petersburg, 197101; St. Petersburg

Natalya A. Arsentieva

St. Petersburg Pasteur Institute

Email: arsentieva_n.a@bk.ru

PhD (Biology), Senior Researcher, Laboratory of Molecular Immunology

Russian Federation, 14, Mira str., St. Petersburg, 197101

Areg A. Totolian

St. Petersburg Pasteur Institute; Pavlov First St. Petersburg State Medical University

Email: totolian@spbraaci.ru

Member, PhD, MD (Medicine), Professor, Director, Head of the Department of Immunology

Russian Federation, 14, Mira str., St. Petersburg, 197101; St. Petersburg

References

  1. ГОСТ Р 51352-2013. Медицинские изделия для диагностики ин витро. Методы испытаний. Дата введения 2015-01-01. [GOST R 51352-2013 In vitro diagnostic medical devices. Test methods. Date of introduction 2015-01-01. (In Russ.)] URL: https://docs.cntd.ru/document/1200108445
  2. Попова А.Ю., Тарасенко А.А., Смоленский В.Ю., Егорова С.А., Смирнов В.С., Дашкевич А.М., Светогор Т.Н., Глинская И.Н., Скуранович А.Л., Миличкина А.М., Дронина А.М., Самойлович Э.О., Хамитова И.В., Семейко Г.В., Амвросьева Т.В., Шмелева Н.П., Рубаник Л.В., Есманчик О.П., Карабан И.А., Дробышевская В.Г., Садовникова Г.В., Шилович М.В., Подушкина Е.А., Кирейчук В.В., Петрова О.А., Бондаренко С.В., Салажкова И.Ф., Ткач Л.М., Шепелевич Л.П., Автухова Н.Л., Иванов В.А., Бабило А.С., Навышная М.В., Беляев Н.Н., Зуева Е.В., Волосарь Л.А., Вербов В.Н., Лихачев И.В., Загорская Т.О., Морозова Н.Ф., Коробова З.Р., Губанова А.В., Тотолян Арег А. Коллективный иммунитет к SARS-CoV-2 населения Республики Беларусь в условиях пандемии COVID-19 // Инфекция и иммунитет. 2021. Т. 11, № 5. C. 887–904. [Popova A.Yu., Tarasenko A.A., Smolenskiy V.Yu., Egorova S.A., Smirnov V.S., Dashkevich A.M., Svetogor T.N., Glinskaya I.N., Skuranovich A.L., Milichkina A.M., Dronina A.M., Samoilovich E.O., Khamitova I.V., Semeiko G.V., Amvrosyeva T.V., Shmeleva N.P., Rubanik L.V., Esmanchik O.P., Karaban I.A., Drobyshevskaya V.G., Sadovnikova G.V., Shilovich M.V., Podushkina E.A., Kireichuk V.V., Petrova O.A., Bondarenko S.V., Salazhkova I.F., Tkach L.M., Shepelevich L.P., Avtukhova N.L., Ivanov V.A., Babilo A.S., Navyshnaya M.V., Belyaev N.N., Zueva E.V., Volosar L.A., Verbov V.N., Likhachev I.V., Zagorskaya T.O., Morozova N.F., Korobova Z.R., Gubanova A.V., Totolian Areg A. Herd immunity to SARS-CoV-2 among the population of the Republic of Belarus amid the COVID-19 pandemic. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2021, vol. 11, no. 5, pp. 887–904. (In Russ.)] doi: 10.15789/2220-7619-HIT-1798
  3. Jääskeläinen A.J., Kuivanen S., Kekäläinen E., Ahava M.J., Loginov R., Kallio-Kokko H., Vapalahti O., Jarva H., Kurkela S., Lappalainen M. Performance of six SARS-CoV-2 immunoassays in comparison with microneutralisation. J. Clin. Virol., 2020, vol. 129: 104512. doi: 10.1016/j.jcv.2020.104512
  4. James J., Rhodes S., Ross C.S., Skinner P., Smith S.P., Shipley R., Warren C.J., Goharriz H., McElhinney L.M., Temperton N., Wright E., Fooks A.R., Clark T.W., Brookes S.M., Brown I.H., Banyard A.C. Comparison of serological assays for the detection of SARS-CoV-2 antibodies. Viruses, 2021, vol. 13, no. 4: 713. doi: 10.3390/v13040713
  5. Klasse P.J. Neutralization of virus infectivity by antibodies: old problems in new perspectives. Adv. Biol., 2014, vol. 2014: 157895. doi: 10.1155/2014/157895
  6. Kristiansen P.A., Page M., Bernasconi V., Mattiuzzo G., Dull P., Makar K., Plotkin S., Knezevic I. WHO International Standard for anti-SARS-CoV-2 immunoglobulin. Lancet, 2021, vol. 397, no. 10282, pp. 1347–1348. doi: 10.1016/S0140-6736(21)00527-4
  7. McAndrews K.M., Dowlatshahi D.P., Dai J., Becker L.M., Hensel J., Snowden L.M., Leveille J.M., Brunner M.R., Holden K.W., Hopkins N.S., Harris A.M., Kumpati J., Whitt M.A., Lee J.J., Ostrosky-Zeichner L.L., Papanna R., LeBleu V.S., Allison J.P., Kalluri R. Heterogeneous antibodies against SARS-CoV-2 spike receptor binding domain and nucleocapsid with implications for COVID-19 immunity. JCI Insight, 2020, vol. 5, no. 18: e142386. doi: 10.1172/jci.insight.142386
  8. NIBSC. Medicines and Healthcare products Regulatory Agency. WHO International Standard. First WHO International Standard for anti-SARS-CoV-2 immunoglobulin. 2021. URL: https://www.nibsc.org/documents/ifu/20-136.pdf
  9. NIBSC. Medicines and Healthcare products Regulatory Agency. Working Standard. Working reagent for anti-SARS-CoV-2 immunoglobulin NIBSC code: 21/234 (Version 2.0, Dated 20/08/2021). URL: https://www.nibsc.org/documents/ifu/21-234.pdf
  10. Popova A.Yu., Kasymov O.T., Smolenski V.Y., Smirnov V.S., Egorova S.A., Nurmatov Z.S., Milichkina A.M., Suranbaeva G.S., Kuchuk T.E., Khamitova I.V., Zueva E.V., Ivanov V.A., Nuridinova Z.N., Derkenbaeva A.A., Drobyshevskaya V.G., Sattarova G.Z., Kaliev M.T., Gubanova A.V., Zhimbaeva O.B., Razumovskaya A.P., Verbov V.N., Likhachev I.V., Krasnov A.V., Totolian A.A. SARS-CoV-2 herd immunity of the Kyrgyz population in 2021. Med. Microbiol. Immunol., 2022, vol. 211, no. 4, pp. 195–210. doi: 10.1007/s00430-022-00744-7
  11. Shrivastava A., Gupta V.B. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci., 2011, vol. 2, iss. 1, pp. 21–25. doi: 10.4103/2229-5186.79345
  12. Smirnov V.S., Lyalina L.V., Milichkina A.M., Khamitova I.V., Zueva E.V., Ivanov V.A., Zaguzov V.S., Totolian A.A. Longitudinal randomized cohort study of SARS-CoV-2 antibody seroprevalence in the St. Petersburg population. Viruses, 2022, vol. 14, no. 5: 913. doi: 10.3390/v14050913
  13. Walker G.J., Naing Z., Ospina Stella A., Yeang M., Caguicla J., Ramachandran V., Isaacs S.R., Agapiou D., Bull R.A., Stelzer-Braid S., Daly J., Gosbell I.B., Hoad V.C., Irving D.O., Pink J.M., Turville S., Kelleher A.D., Rawlinson W.D. SARS coronavirus-2 microneutralisation and commercial serological assays correlated closely for some but not all enzyme immunoassays. Viruses, 2021, vol. 13, no. 2: 247. doi: 10.1016/j.jcv.2020.104512
  14. WHO Director — General’s opening remarks at the media briefing on COVID-19 — 11 March 2020. URL: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
  15. Wohlgemuth N., Whitt K., Cherry S., Kirkpatrick Roubidoux E., Lin C.Y., Allison K.J., Gowen A., Freiden P., Allen E.K.; St. Jude Investigative Team, Gaur A.H., Estepp J.H., Tang L., Mori T., Hijano D.R., Hakim H., McGargill M.A., Krammer F., Whitt M.A., Wolf J., Thomas P.G., Schultz-Cherry S. An assessment of serological assays for SARS-CoV-2 as surrogates for authentic virus neutralization. Microbiol. Spectr., 2021, vol. 9, no. 2: e0105921. doi: 10.1128/Spectrum.01059-21

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. A. 4-Parameter Logistic Regression Calibration Curve. B. The correlation plot between AU/ml and BAU/ml of the Calibrator

Download (102KB)
3. Figure 2. Correlation between binding antibody concentration (BAU/ml) measured by «N-CoV-2-IgG PS» ELISA Kit and A) antibody titer magnitude evaluated by “SARS-CoV-2 Human IgG Qualitative ELISA Kit”, B) positivity index magnitude assessed by qualitative ELISA kit, C) neutralizing antibody titers analyzed by the SARS-CoV-2 virus microneutralization. Note. Spearman’s correlation coefficients with 95% confidence intervals for each analysis were: А) r = 0.8424 (0.7632–0.8967) p < 0.0001; B) r = 0.6648 (0.5196–0.7727) p < 0.0001; C) r = 0.7410 (0.6177–0.8288) p < 0.0001.

Download (94KB)
4. Figure 3. ROC-curves for A) antibody titers evaluated in “SARS-CoV-2 Human IgG Qualitative ELISA Kit” relative to antibody concentration assessed by quantitative kit “N-CoV-2-IgG PS” and B) the antibodies concentration of the quantitative kit “N-CoV-2-IgG PS” relative to neutralizing antibody titers. Note. The dotted line intersection corresponds to the cut off level.

Download (77KB)

Copyright (c) 2022 Zueva E.V., Belyaev N.N., Verbov V.N., Likhachev I.V., Bachinin I.A., Khamitova I.V., Korobova Z.R., Arsentieva N.A., Totolian A. .

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies