Resistance factors of klebsiella pneumoniae bacteria during COVID-19 pandemic

Cover Page

Cite item

Full Text

Abstract

Multidrug-resistant K. pneumoniae bacterial strains producing extended range of beta-lactamases or carbapenemases are of serious clinical concern. The aim of the study was to determine the resistance factors of K. pneumoniae strains isolated from the lower respiratory tract of patients diagnosed with community-acquired pneumonia during the COVID-19 pandemic. Materials and methods. The study of resistance to antimicrobial drugs included 138 strains of K. pneumoniae isolated from the sputum of patients treated in infectious diseases monohospitals in the city of Tyumen and the Tyumen region within the period from May 2020 to June 2021. Among the strains examined, 51.4% of them were isolated from SARS-CoV-2 positive patients. The presence of resistance genes was determined by PCR in 71 strains of K. pneumoniae (34 strains from COVID-19-positive and 37 strains from COVID-19-negative patients). Identification of isolated bacterial strains was carried out according to the protein spectra by using a desktop time-of-flight mass spectrometer with matrix laser desorption MALDI-TOF MS (Bruker, Germany). The belonging of the strains to the hypermucoid phenotype was determined using the string test. Sensitivity to antimicrobial drugs was assessed in the disk diffusion method on Muller–Hinton medium. The sensitivity of culture strains to bacteriophage preparations was determined by the drop method (spot-test). In the study, we used “Polyvalent Sextaphage Pyobacteriophage” and “Purified Polyvalent Klebsiella Bacteriophage” (JSC NPO Microgen, Russia). Detection of resistance genes to beta-lactam antibiotics by real-time PCR was carried out using the BakRezista kit (OOO DNA-technology, Russia). Results. The results of the study evidence that K. pneumoniae bacteria isolated from COVID-19-positive and COVID-19-negative patients diagnosed with community-acquired pneumonia displayed a high resistance to antimicrobial drugs and commercial phage-containing drugs. Resistance of K. pneumoniae strains was recorded from 50% (to aminoglycosides and carbapenems) to 90% (to inhibitor-protected penicillins). Sensitivity to bacteriophages was noted on average in no more than 20% of strains. It is important to emphasize that strains isolated from COVID-19-positive patients more often showed a hypermucoid phenotype, suggesting a high bacterial virulence, and also showed greater resistance to all groups of antibacterial drugs examined in the study, which is confirmed by the presence of resistance genes of the ESBL group and carbapenemase. The results of the study suggest that the high level of resistance of K. pneumoniae strains isolated from COVID-19-positive patients is associated with immunosuppression provoked by the SARS-CoV-2 virus, which contributes to their colonization by more virulent strains.

About the authors

Olga N. Kolotova

Tyumen Region Infection Pathology Research Institute

Author for correspondence.
Email: Vakarinaaa@tniikip.rospotrebnadzor.ru
ORCID iD: 0000-0002-0798-5549

Junior Researcher, Bacteriological Laboratory

Russian Federation, Tyumen

L. V. Kataeva

Tyumen Region Infection Pathology Research Institute

Email: info@tniikip.rospotrebnadzor.ru
ORCID iD: 0000-0001-9966-8454

PhD (Medicine), Leading Researcher, Head of the Bacteriogical Laboratory

Russian Federation, Tyumen

I. V. Bakshtanovskaya

Tyumen Region Infection Pathology Research Institute

Email: info@tniikip.rospotrebnadzor.ru
ORCID iD: 0000-0003-1365-7741

PhD (Biology), Scientific Secretary

Russian Federation, Tyumen

T. F. Stepanova

Tyumen Region Infection Pathology Research Institute

Email: info@tniikip.rospotrebnadzor.ru
ORCID iD: 0000-0002-6289-6274

PhD, MD (Medicine), Professor, Director of the Tyumen Region Infection Pathology Research Institute

Russian Federation, Tyumen

K. B. Stepanova

Tyumen Region Infection Pathology Research Institute

Email: info@tniikip.rospotrebnadzor.ru
ORCID iD: 0000-0002-5420-0919

PhD (Medicine), Leading Researcher, Clinical Laboratory

Russian Federation, Tyumen

References

  1. Акимкин В.Г., Кузин С.Н., Шипулина О.Ю., Яцышина С.Б., Тиванова Е.В., Каленская А.В., Соловьева И.В., Вершинина М.А., Квасова О.А., Плоскирева А.А., Мамошина М.В., Елькина М.А., Андреева Е.Е., Иваненко А.В., Микаилова О.М. Эпидемиологическое значение определения РНК SARS-CoV-2 среди различных групп населения Москвы и Московской области в период эпидемии COVID-19 // Журнал микробиологии, эпидемиологии и иммунобиологии. 2020. Т. 97, № 3. С. 197–201. [Akimkin V.G., Kuzin S.N., Shipulina O.Yu., Yatsyshina S.B., Tivanova E.V., Kalenskaya A.V., Solovieva I.V., Vershinina M.A., Kvasova O.A., Ploskireva A.A., Mamoshina M.V., Elkina M.A., Andreeva E.E., Ivanenko A.V., Mikailova O.M. Epidemiological significance of detection of SARS-CoV-2 RNA among different groups of population of Moscow and Moscow Region during the COVID-19 outbreak. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2020, vol. 97, no. 3, pp. 197–201. (In Russ.)] doi: 10.36233/0372-9311-2020-97-3-1
  2. Гординская Н.А., Бруснигина Н.Ф., Алексеева А.Е., Солнцев Л.А., Савочкина Ю.А., Сабирова Е.В., Абрамова Н.В., Карасева Г.Н. Молекулярная характеристика антибиотикорезистентных штаммов Klebsiella pneumoniae, выделенных в травматологических стационарах // Клиническая микробиология и антимикробная химиотерапия. 2017. T. 19, № 3. С. 243–246. [Gordinskaya N.A., Brusnigina N.F., Alekseeva A.E., Solntzev L.A., Savochkina Yu.A., Sabirova E.V., Abramova N.V., Karaseva G.N. Molecular characteristics of antibiotic-resistant Klebsiella pneumoniae strains isolated in trauma hospitals. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya = Clinical Microbiology and Antimicrobial Chemotherapy, 2017, vol. 19, no. 3, pp. 243–246. (In Russ.)]
  3. Зайцев А.А., Синопальников А.И. «Трудная» пневмония // Терапевтический архив. 2021. Т. 93, № 3. С. 300–310. [Zaicev A.A., Sinopalnikov A.I. “Difficult” pneumonia. Terapevticheskii arkhiv = Terapevticheskiy Arkhiv, 2021, vol. 93, no. 3, pp. 300–310. (In Russ.)] doi: 10.26442/00403660.2021.03.200734
  4. Козлова Н.С., Баранцевич Н.Е., Баранцевич Е.П. Чувствительность к антибиотикам штаммов Klebsiella pneumoniae, выделенных в многопрофильном стационаре // Инфекция и иммунитет. 2018. Т. 8, № 1. С. 79–84. [Kozlova N.S., Barantsevich N.E., Barantsevich E.P. Susceptibility to antibiotics in Klebsiella pneumoniae strains isolated in a multidisciplinary medical centre. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2018, vol. 8, no. 1, pp. 79–84. (In Russ.)] doi: 10.15789/2220-7619-2018-1-79-84
  5. Лахин Р.Е., Жирнова Е.А., Грачев И.Н. Внебольничная и нозокоминальная пневмония: семиотика поражения легких, микробиологический спектр и чувствительность возбудителей к антибиотикам // Военно-медицинский журнал. 2019. № 4. С. 35–41. [Lakhin R.E., Zhirnova E.A., Grachev I.N. Community-acquired and nosocomial pneumonia: semiotics of lung damage, microbiological spectrum and sensitivity of pathogens to antibiotics. Voenno-meditsinskii zhurnal = Military Medical Journal, 2019, no. 4, pp. 35–41. (In Russ.)]
  6. Первухин С.А., Стаценко И.А., Иванова Е.Ю., Пальмаш А.В., Витковская И.В., Жидкова О.В. Антибиотикорезистентность грамотрицательных возбудителей нозокомиальной пневмонии у пациентов отделения реанимации и интенсивной терапии // Клиническая микробиология и антимикробная химиотерапия. 2019. Т. 21, № 1. С. 62–68. [Pervukhin S.A., Statzenko I.A., Ivanova E.Yu., Palmash A.V., Vitkovskaya I.V., Zhidkova O.V. Antimicrobial resistance of Gram-negative pathogens of nosocomial pneumonia in intensive care unit patients. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya = Clinical Microbiology and Antimicrobial Chemotherapy, 2019, vol. 21, no. 1, pp. 62–68. (In Russ.)] doi: 10.36488/cmac.2019.1.62-68
  7. Скачкова Т.С., Шипулина О.Ю., Шипулин Г.А., Шеленков А.А., Янушевич Ю.Г., Михайлова Ю.В., Замятин М.Н., Гусаров В.Г., Петрова Н.В., Лашенкова Н.Н., Фомина В.С., Шагин Д.А. Изучение генетического разнообразия штаммов Klebsiella pneumoniae, выделенных в многопрофильном медицинском центре г. Москвы, с помощью секвенирования нового поколения // Клиническая микробиология и антимикробная химиотерапия. 2019. Т. 21, № 1. С. 69–74. [Skachkova T.S., Shipulina O.Yu., Shipulin G.A., Shelenkov A.A., Yanushevich Yu.G., Mikhaylova Yu.V., Zamyatin M.N., Gusarov V.G., Petrova N.V., Lashenkova N.N., Fomina V.S., Shagin D.A. Characterization of genetic diversity of the Klebsiella pneumoniae strains in a Moscow tertiary care center using next-generation sequencing. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya = Clinical Microbiology and Antimicrobial Chemotherapy, 2019, vol. 21, no. 1, pp. 69–74. (In Russ.)] doi: 10.36488/cmac.2019.1.69-74
  8. Фесенко О.В., Швайко С.Н. Пневмонии, вызванные Klebsiella pneumoniae (фридлендеровские пневмонии) // Практическая пульмонология. 2019. № 1. С. 22–31. [Fesenko O.V., Shvaiko S.N. Pneumonia caused by Klebsiella pneumoniae (Friedlander’s pneumonia). Prakticheskaya pul’monologiya = Practical pulmonology, 2019, no. 1, pp. 22–31. (In Russ.)]
  9. Хаертынов Х.С., Анохин В.А., Ризванов А.А., Давидюк Ю.Н., Халиуллина С.В., Любин С.А., Казакова Ф.М., Сатрутдинов М.А., Фатоват М.Г. Вирулентность и антибиотикорезистентность изолятов Klebsiella pneumoniae у новорожденных с локализованными и генерализованными формами клебсиеллезной инфекции // Российский вестник перинатологии и педиатрии. 2018. Т. 63, № 5. С. 139–146. [Khaertynov Kh.S., Anohin V.A., Rizvanov A.A., Davidyuk Yu.N., Khaliullina S.V., Lyubin S.A., Kazakova F.M., Satrutdinov M.A., Fattahov M.G. Virulence and antibiotic resistance of isolates of Klebsiella pneumoniae in newborns with localized and generalized forms of infection. Rossiiskii vestnik perinatologii i pediatrii = Russian Bulletin of Perinatology and Pediatrics, 2018, vol. 63, no. 5, pp. 140–146. (In Russ.)] doi: 10.21508/1027-4065-2018-63-5-140-146
  10. Чеботарь И.В., Бочарова Ю.А., Подопригора И.В., Шагин Д.А. Почему Klebsiella pneumoniae становится лидирующим оппортунистическим патогеном // Клиническая микробиология и антимикробная химиотерапия. 2020. Т. 22, № 1. С. 4–19. [Chebotar I.V., Bocharova Yu.A., Podoprigora I.V., Shagin D.A. The reasons why Klebsiella pneumoniae becomes a leading opportunistic pathogen. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya = Clinical Microbiology and Antimicrobial Chemotherapy, 2020, vol. 22, no. 1, pp. 4–19. (In Russ.)] doi: 10.36488/cmac.2020.1.4-19
  11. Hasani A., Soltani E., Ahangarzadeh Rezaee M., Pirzadeh T., Ahangar Oskouee M., Hasani A., Gholizadeh P., Noie Oskouie A., Binesh E. Serotyping of Klebsiella pneumoniae and its relation with capsule-associated virulence genes, antimicrobial resistance pattern, and clinical infections: a descriptive study in medical practice. Infect. Drug Resist., 2020, no. 13, pp. 1971–1980. doi: 10.2147/IDR.S243984
  12. Liu C., Guo J. Hypervirulent Klebsiella pneumoniae (hypermucoviscous and aerobactin positive) infection over 6 years in the elderly in China: antimicrobial resistance patterns, molecular epidemiology and risk factor. Ann. Clin. Microbiol. Antimicrob., 2019, vol. 18, no. 4. doi: 10.1186/s12941-018-0302-9
  13. Martin R.M., Bachman M.A. Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Front. Cell Infect. Microbiol., 2018, vol. 8, no. 4. doi: 10.3389/fcimb.2018.00004
  14. Su K., Zhou X., Luo M., Xu X., Liu P., Li X., Xue J., Chen S., Xu W., Li Y., Qiu J. Genome-wide identification of genes regulated by RcsA, RcsB, and RcsAB phosphorelay regulators in Klebsiella pneumoniae NTUH-2044. Microb. Pathog., 2018, no. 123, pp. 36–41. doi: 10.1016/j.Micpath.2018.06.036
  15. Tay M.Z., Poh C.M., Renia L., MacAry P.A., Ng L.F.P. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol., 2020, vol. 20, pp. 363–374. doi: 10.1038/s41577-020-0311-8

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Antibiotic resistance of K. pneumoniae strains (%)

Download (118KB)

Copyright (c) 2022 Kolotova O.N., Kataeva L.V., Bakshtanovskaya I.V., Stepanova T.F., Stepanova K.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».