Antimicrobial activity of aqueous dispersions of silver nanoparticles against pathogens of purulent-inflammatory diseases

Cover Page

Cite item

Full Text

Abstract

Currently, metal nanostructures are widely used in medical, microbiological, and veterinary practice. Silver nanoparticles are especially promising as antimicrobial agents, becauseno published data regarding antimicrobial resistance are available. Whiledeveloping preparations based on metal nanoparticles, an important remainingissue is the choice of a stabilizer, introduction of which during the synthesis ensures the preservation of structures at the nanoscale range, and, consequently, relevant main characteristics, including biocidal properties. The object of the study was to investigate silver nanoparticle aqueous dispersions stabilized by natural and synthetic polymeric compounds. Routine strains of Gram-positive and Gram-negative bacteria were used as experimental models: S. aureus 209 P, Escherichia coli ATCC 25922, Proteus mirabilis ATCC 3177 (O-form), Klebsiella pneumoniae ATCC 31488, obtained from the Scientific Centre for Expert Evaluation of Medicinal Products. The antimicrobial activity of diverse variants of silver nanoparticle aqueous dispersions was assessed by serial dilution platingon dense nutrient medium. In this work, we examined no effect of silver nanoparticles without stabilizers, because their absence led to rapid agglomeration of nanostructures and loss of nanoscale characteristics. The highest sensitivity of Gram-positive and Gram-negative bacteria was foundto the action of ansilver nanoparticle aqueous dispersions stabilized by polyazolidinammoniumand modified with iodine hydrate ions. Drug working concentrations ranging from 0.5 to 3% had a bactericidal effect against pathogens of purulent-inflammatory diseases, and the minimum working concentration of 0.125% led to decreased colony-forming units by 20–57% for diverse bacterial strains. Silver nanoparticles stabilized with sodium dodecyl sulfate showed high efficiency against the studied test strainsprobably due to the high toxicity of the stabilizer used as was previously established during a comprehensive safety assessment using biotest objects and cell cultures. In this regard, its use as a component of antimicrobial preparations is not preferred. The results of the studies showed that among the variants of silver nanoparticle aqueous dispersions, preparations stabilized with polyvinyl alcohol and polyazolidinammonium modified with iodine hydrate ions are the most promising for use in biomedical practice, because they demonstrate a high level of antibacterial activity against both Gram-positive and Gram-negative bacteria as causative agents of purulent-inflammatory diseases and a low toxicity level. This allows us to recommend them as safe and effective antimicrobial components indisinfectants, as well as antiseptic preparations for prevention and treatment of skin and soft tissue infectious diseases.

About the authors

Olga V. Nechaeva

Yuri Gagarin State Technical University of Saratov

Email: olgav.nechaeva@rambler.ru
ORCID iD: 0000-0003-3331-1051
SPIN-code: 9984-9594

PhD, MD (Biology), Professor of the Department of Ecology and Technosphere Safety

Russian Federation, Saratov

Tatiana A. Shulgina

Saratov State Medical University named after V.I. Razumovsky, Scientific Research Institute of Traumatology, Orthopedics and Neurosurgery

Email: tshylgina2012@yandex.ru
ORCID iD: 0000-0003-2393-6402
SPIN-code: 4148-3558

Biologist

Russian Federation, Saratov

Ksenia V. Zubova

Saratov State University

Email: zubovaksushechka@mail.ru
ORCID iD: 0000-0002-9406-080X
SPIN-code: 2858-5323

Graduate Students, Department of Microbiology and Plant Physiology

Russian Federation, Saratov

Elena V. Glinskaya

Saratov State University

Email: elenavg-2007@yandex.ru
ORCID iD: 0000-0002-1675-5438
SPIN-code: 2724-1359

PhD (Biology), Associate Professor, Department of Microbiology and Plant Physiology, Biological Faculty

Russian Federation, Saratov

Natalia V. Bespalova

Yuri Gagarin State Technical University of Saratov

Email: n.v.bespalova.sstu@gmail.ru
ORCID iD: 0000-0003-3733-3119
SPIN-code: 1676-8226

PhD (Physics and Mathematics), Associate Professor, Department of Information Security of Automated Systems

Russian Federation, Saratov

Nikolay I. Darin

LLC “M9”

Email: nickel@nmt-9.com
ORCID iD: 0000-0002-7009-3308
SPIN-code: 1708-6649

Technical Drector

Russian Federation, Tolyatti

Elena I. Tichomirova

Yuri Gagarin State Technical University of Saratov

Email: tichomirova_ei@mail.ru
ORCID iD: 0000-0001-6030-7344
SPIN-code: 7673-8480

PhD, MD (Biology), Professor, Head of the Department of Ecology and Technosphere Safety

Russian Federation, Saratov

Anna G. Afinogenova

St. Petersburg Pasteur Institute

Author for correspondence.
Email: spbtestcenter@mail.ru
ORCID iD: 0000-0001-8175-0708
SPIN-code: 9188-3533

PhD, MD (Biology), Leading Researcher, Head of Laboratory Testing Centre

Russian Federation, 14, Mira str., St. Petersburg, 197101

References

  1. Александрова В.А., Футорянская А.М., Садыкова В.С. Синтез и антибактериальная активность наночастиц серебра, стабилизированных сукцинамидом хитозана // Прикладная биохимия и микробиология. 2020. T. 56, № 5. С. 497–502. [Aleksandrova V.A., Futoryanskaya A.M., Sadykova V.S. Synthesis and antibacterial activity of silver nanoparticles stabilized with chitosan succinamide. Prikladnaya biokhimiya i mikrobiologiya = Applied Biochemistry and Microbiology, 2020, vol. 56, no. 5, pp. 497–502. (In Russ.)] doi: 10.31857/S0555109920050025
  2. Валуева С.В., Боровикова Л.Н. Влияние природы биологически активного стабилизатора на спектральные и размерные характеристики гибридных селенсодержащих наносистем // Журнал физической химии. 2019. T. 93, № 1. С. 113–118. [Valueva S.V., Borovikova L.N. Influence of the nature of a biologically active stabilizer on the spectral and dimensional characteristics of hybrid selenium-containing nanosystems. Zhurnal fizicheskoi khimii = Journal of Physical Chemistry, 2019, vol. 93, no. 1, pp. 113–118. (In Russ.)] doi: 10.1134/S0044453719010308
  3. Валуева С.В., Назарова О.В., Вылегжанина М.Э., Боровикова Л.Н., Золотова Ю.И., Панарин Е.Ф. Медьсодержащие наносистемы на основе высокомолекулярных гидрофильных стабилизаторов // Доклады академии наук. 2019. Т. 489, № 3. С. 254–257. [Valueva S.V., Nazarova O.V., Vylegzhanina M.E., Borovikova L.N., ZolotovaYu.I., Panarin E.F., Copper-containing nanosystems based on high-molecular hydrophilic stabilizers. Doklady akademii nauk = Reports of the Academy of Sciences, 2019, vol. 489, no. 3, pp. 254–257. (In Russ.)] doi: 10.31857/S0869-56524893254-257
  4. Габриелян Л.С., Трчунян А.А. Антибактериальные свойства наночастиц серебра и мембранотропные механизмы иx действия // Журнал Белорусского государственного университета. Биология. 2020. № 3. С. 64–71. [Gabrielyan L.S., Trchunyan A.A. Antibacterial properties of silver nanoparticles and membranotropic mechanisms of their action. Zhurnal Belorusskogo gosudarstvennogo universiteta. Biologiya = Journal of the Belarusian State University. Biology, 2020, no. 3, pp. 64–71. (In Russ.)] doi: 10.33581/2521-1722-2020-3-64-71
  5. Дьяченко C.B., Кондрашкова И.С., Жерновой А.И. Исследование седиментации ферромагнитных наночастиц в магнитной жидкости методом ЯМР // Журнал технической физики. 2017. Т. 87, Вып. 10. С. 1596–1598. [Dyachenko S.V., Kondrashkova I.S., Zhernovoy A.I. Investigation of the sedimentation of ferromagnetic nanoparticles in a magnetic fluid by NMR. Zhurnal tekhnicheskoi fiziki = Journal of Technical Physics, 2017, vol. 87, iss. 10, pp. 1596–1598. (In Russ.)] doi: 10.21883/JTF.2017.10.45007.2213
  6. Егорова С.А., Кулешов К.В., Кафтырева Л.А., Матвеева З.Н. Чувствительность к антибиотикам, механизмы резистентности и филогенетическая структура популяции S. typhi, выделенных в 2005–2018 гг. в Российской Федерации // Инфекция и иммунитет. 2020. T. 10, № 1. С. 99–110. [Egorova S.A., Kuleshov K.V., Kaftyreva L.A., Matveeva Z.N. The antimicrobial susceptibility, resistance mechanisms and phylogenetic structure of S. typhi isolated in 2005–2018 in the Russian Federation. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2020, vol. 10, no. 1, pp. 99–110. (In Russ.)] doi: 10.15789/10.15789/2220-7619-ASM-1171
  7. Козлова Н.С., Баранцевич Н.Е., Баранцевич Е.П. Чувствительность к антибиотикам Klebsiella pheumoniae, выделенных в многопрофильном стационаре // Инфекция и иммунитет. 2018. T. 8, № 1. С. 79–84. [Kozlova N.S., Barantsevich N.E., Barantsevich E.P. Susceptibility to antibiotics in Klebsiella pneumoniae strains isolated in a multidisciplinary medical centre. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2018, vol. 8, no. 1, pp. 79–84. (In Russ.)] doi: 10.15789/2220-7619-2018-1-79-84
  8. Мазитова Г.Т., Киенская К.И., Буторова И.А. Зависимость антимикробной активности нанодисперсий оксида цинка от формы и размера частиц // Журнал прикладной химии. 2020. Т. 93, Вып. 6. С. 823–827. [Mazitova G.T., Kienskaya K.I., Butorova I.A. Dependence of the antimicrobial activity of zinc oxide nanodispersions on the shape and size of particles. Zhurnal prikladnoi khimii = Journal of Applied Chemistry, 2020, vol. 93, iss. 6, pp. 823–827. (In Russ.)]
  9. Мелешко А.А., Афиногенова А.Г., Афиногенов Г.Е., Спиридонова А.А., Толстой В.П. Антибактериальные неорганические агенты: эффективность использования многокомпонентных систем // Инфекция и иммунитет. 2020. Т. 10, № 4. С. 639–654. [MeleshkoА.A., Afinogenova A.G., Afinogenov G.E., Spiridonova A.A., Tolstoy V.P. Аntibacterial inorganic agents: efficiency of using multicomponent systems. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2020, vol. 10, no. 4, pp. 639–654. (In Russ.)] doi: 10.15789/2220-7619-AIA-1512
  10. Определение чувствительности микроорганизмов к антибактериальным препаратам.МУК 4.2.1890-04. Москва: Издательский отдел Федерального центра Госсанэпиднадзора Минздрава РФ, 2004. [Determination of the sensitivity of microorganisms to antibacterial drugs. MUK 4.2.1890-04. Moscow: Publishing Department of the Federal Center for Sanitary and Epidemiological Surveillance of the Ministry of Health of the Russian Federation, 2004. (In Russ.)]
  11. Панин А.Н., Комаров А.А., Куликовский А.В., Макаров Д.А. Проблема резистентности к антибиотикам возбудителей болезней, общих для человека и животных // Ветеринария, зоотехния и биотехнология. 2017. № 5. С. 18–24. [Panin A.N., Komarov A.A., Kulikovskiy A.V., Makarov D.A. The problem of resistance to antibiotics of pathogens common to humans and animals. Veterinariya, zootekhniya i biotekhnologiya = Veterinary, Zootechnics and Biotechnology, 2017, no. 5, pp. 18–24. (In Russ.)]
  12. Петрицкая Е.Н., Рогаткин Д.А., Русанова Е.В. Сравнительная характеристика антибактериального действия препаратов серебра и наносеребра in vitro // Альманах клинической медицины. 2016. Т. 44, № 2. С. 221–226. [Petritskaya E.N., Rogatkin D.A., Rusanova E.V. Comparative characteristics of the antibacterial action of silver and nanosilver preparations in vitro. Al’manakh klinicheskoi meditsiny = Almanac of Clinical Medicine, 2016, vol. 44, no. 2, pp. 221–226 (In Russ.)] doi: 10.18786/2072-0505-2016-44-2-221-226
  13. Сазыкин И.С., Хмелевцова Л.Е., Селиверстова Е.Ю., Сазыкина М.А. Влияние антибиотиков, использующихся в животноводстве, на распространение лекарственной устойчивости бактерий (обзор) // Прикладная биохимия и микробиология. 2021. Т. 57, № 1. С. 24–35. [Sazykin I.S., Khmelevtsova L.E., Seliverstova E.Yu., Sazykina M.A. Influence of antibiotics used in animal husbandry on the spread of bacterial drug resistance (review). Prikladnaya biokhimiya i mikrobiologiya = Applied Biochemistry and Microbiology, 2021, vol. 57, no. 1, pp. 24–35. (In Russ.)] doi: 10.31857/S0555109921010335
  14. Сухина М.А., Шелыгин Ю.А., Пиядина А.Ю., Фельдман Н.Б., Ананян М.А., Луценко С.В., Фролов С.А. Исследование ингибирующего и разрушающего действия препарата наночастиц серебра на биопленки, сформированные клинически значимыми микроорганизмами // Колопроктология. 2019. Т. 18, № 3 (69). С. 56–70. [Sukhina M.A., Shelygin Yu.A., Piyadina A.Yu., Feldman N.B., Ananyan M.A., Lutsenko S.V., Frolov S.A. Study of the inhibitory and destructive effect of a silver nanoparticle preparation on biofilms formed by clinically significant microorganisms. Koloproktologiya = Coloproctology, 2019, vol. 18, no. 3 (69), pp. 56–70. (In Russ.)] doi: 10.33878/2073-7556-2019-18-3-56-70
  15. Удегова Е.С., Гильдеева К.А., Рукосуева Т.В., Сьед Б. Антибактериальный эффект наночастиц металлов на антибиотикорезистентные штаммы бактерий // Инфекция и иммунитет. 2021. Т. 11, № 4. С. 771–776. [Udegova E.S., Gildeeva K.A., Rukosueva T.V., Baker S. Metal nanoparticle antibacterial effect оn antibiotic-resistant strains of bacteria. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2021, vol. 11, no. 4, pp. 771–776. (In Russ.)] doi: 10.15789/2220-7619-MNA-1359
  16. Шульгина Т.А., Зубова К.В., Глинская Е.В., Нечаева О.В., Беспалова Н.В. Сравнительная характеристика антимикробной активности водных дисперсий наночастиц серебра и золота, стабилизированных природными и синтетическими полимерами // Обзоры по клинической фармакологии и лекарственной терапии. 2021. Т. 19, № 4. С. 405–411. [Shulgina T.A., Zubova K.V., Glinskaya E.V., Nechaeva O.V., Bespalova N.V. Comparative characteristics of the antimicrobial activity of aqueous dispersions of silver and gold nanoparticles stabilized by natural and synthetic polymers. Obzory po klinicheskoi farmakologii i lekarstvennoi terapii = Reviews of Clinical Pharmacology and Drug Therapy, 2021, vol. 19, no. 4, pp. 405–411. (In Russ.)] doi: 10.17816/RCF194405-411
  17. Шульгина Т.А., Нечаева О.В., Глинская Е.В., Торгашова А.С., Зубова К.В. Оценка влияния наночастиц серебра, стабилизированных полимерными соединениями, на выживаемость штаммов Staphylococcus aureus // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2019. Т. 19, Вып. 3. С. 331–336. [Shulgina T.A., Nechaeva O.V., Glinskaya E.V., Torgashova A.S., Zubova K.V. Evaluation of the effect of silver nanoparticles stabilized by polymeric compounds on the survival of Staphylococcus aureus strains. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Khimiya. Biologiya. Ekologiya = Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2019, vol. 19, iss. 3, pp. 331–336. (In Russ.)] doi: 10.18500/1816-9775-2019-19-3-331-337
  18. Шурыгина И.А., Шурыгин М.Г. Перспективы применения наночастиц металлов для целей регенеративной медицины // Сибирское медицинское обозрение. 2018. Т. 4. С. 31–37. [Shurygina I.A., Shurygin M.G. Prospects for the use of metal nanoparticles for the purposes of regenerative medicine. Sibirskoe meditsinskoe obozrenie = Siberian Medical Review, 2018, vol. 4, pp. 31–37. (In Russ.)]
  19. Hamida R.S., Abdelmeguid N.E., Ali M.A., Bin-Meferij M.M., Khalil M.I. Synthesis of silver nanoparticles using a novel Cyanobacteria desertifilum sp. extract: their antibacterial and cytotoxicity effects. Int. J. Nanomedicine, 2020, vol. 15, pp. 49–63. doi: 10.2147/IJN.S238575
  20. Hasan C.M., Dutta D., Nguyen A.N.T. Revisiting antibiotic resistance: mechanistic foundations to evolutionary outlook. Antibiotics, 2021, no. 11: 40. doi: 10.3390/antibiotics11010040
  21. Kyriakidis I., Vasileiou E., Pana Z.D., Tragiannidis A. Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens, 2021, vol. 10, no. 3: 373. doi: 10.3390/pathogens10030373
  22. Kwon J.N., Powderly W.G. The post-antibiotic era is here. Science, 2021, vol. 373, iss. 6554, p. 471. doi: 10.1126/science.abl5997
  23. Lee S.H., Jun B.H. Silver nanoparticles: synthesis and application for nanomedicine. Int. J. Mol. Sci., 2019, vol. 20, no. 4, p. 865. doi: 10.3390/ijms20040865
  24. Liao S., Zhang Y., Pan X., Dai G., Wu G., Chen L., Zhu F., Liu Q., Jiang C., Cheng Z., Wang L. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int. J. Nanomedicine, 2019, vol. 14, pp. 1469–1487. doi: 10.2147/IJN.S191340
  25. Liu J., Wang Y., Ma J., Peng Y., Wang A. A review on bidirectional analogies between the photocatalysis and antibacterial properties of ZnO. J Alloys Compd., 2019, vol. 783, pp. 898–918. doi: 10.1016/j.jallcom.2018.12.330
  26. Liu X., Shao X., Liu Z., Deng L., Shan K., Shi X., He Y., Jacob J.A. Nanotoxic effects of silver nanoparticles on normal HEK-293 cells in comparison to cancerous HELA cell line. Int. J. Nanomedicine, 2021, vol. 16, pp. 753–761. doi: 10.2147/IJN.S289008
  27. Ma C., Yang Z., Wang W., Hao X., Zhang M., Zhu S., Chen S. Fabrication of Ag-Cu2O/PANI nanocomposites for visiblelight photocatalysis triggering super antibacterial activity. J. Mater. Chem., 2020, vol. 8, pp. 2888–2898. doi: 10.1039/ C9TC05891E
  28. Mirjalili A., Zamanian A., Hadavi M.M. TiO2 nanotubes-polydopamine-silver composites for long-term antibacterial pro perties: preparation and characterization. Biomedical Engineering: Applications, Basis and Communications, 2019, vol. 31, no. 3, pp. 1950023-1–1950023-9. doi: 10.4015/S1016237219500236
  29. Pareek V., Gupta R., Panwar J. Do physico-chemical properties of silver nanoparticles decide their interaction with biological media and bactericidal action? A review. Mater. Sci. Eng. C Mater. Biol. Appl., 2018, no. 90, pp. 739–749. doi: 10.1016/j.msec.2018.04.093
  30. Sánchez-Lуpez E., Gomes D., Esteruelas G., Bonilla L., Lopez-Machado A.L., Galindo R., Cano A., Espina M., Ettcheto M., Camins A., Silva A.M., Durazzo A., Santini A., Garcia M.L., Souto E.B. Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials, 2020, vol. 10, no. 2, pp. 292–331. doi: 10.3390/nano10020292
  31. Shulgina T.A., Nechaeva О.V., Tikhomirova E.I., Bespalova N.V., Ushakova O.V. Photodynamic aspects of antimicrobic action of silvernanoparticles on Staphylococcus aureus strains. Optical and Nano-Technologies for Biology and Medicine: proc. of Saratov Fall Meeting 2018, vol. 11065, p. 1106518. doi: 10.1117/12.2522957
  32. Shulgina T., Nechaeva O., Torgashova A., Darin N. Using the method of biotesting to assess the toxicity of waste medical and biological practices containing nanomaterials. IOP Conf. Ser.: Earth Environ. Sci., vol. 337: 012012. doi: 10.1088/1755-1315/337/1/012012
  33. Vallet-Regí M., González B., Izquierdo-BarbaI. Nanomaterials as promising alternative in the infection treatment. Int. J. Mol. Sci., 2019, vol. 20, no. 15: 3806. doi: 10.3390/ijms20153806
  34. Verkhovskii R., Kozlova A., Atkin V., Kamyshinsky R., Shulgina T., Nechaeva О. Physical properties andcytotoxicity of silvernanoparticles under differentpolymeric stabilizers. Heliyon, 2019, vol. 5, iss. 3: e01305. doi: 10.1016/j.heliyon.2019.e01305
  35. Yang Z., Ma C., Wang W., Zhang M., Hao X., Chen S. Fabrication of Cu2O-Ag nanocomposites with enhanced durability and bactericidal activity. J. Colloid Interface Sci., 2019, vol. 557, pp. 156–167. doi: 10.1016/j.jcis.2019.09.015
  36. Yao S., Feng X., Lu J., Zheng Y., Wang X., Volinsky A.A., Wang L.N. Antibacterial activity and inflammation inhibition of ZnO nanoparticles embedded TiO2 nanotubes. Nanotechnology, 2018, vol. 29, no. 24, pp. 1–29. doi: 10.1088/1361-6528/aabac1
  37. Zhao R., Lv M., Li Y., Sun M., Kong W., Wang L., Song S., Fan C., Jia L., Qiu S., Sun Y., Song H., Hao R. Stable nanocomposite based on PEGylated and silver nanoparticles loaded graphene oxide for long-term antibacterial activity. ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 18, pp. 15328–15341. doi: 10.1021/acsami.7b03987

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Antimicrobial activity of carboxymethyl cellulose-stabilized silver nanoparticle aqueous dispersion (М±m, p ≤ 0.05)

Download (84KB)
3. Figure 2. Antimicrobial activity of ansodium oleate-stabilized silver nanoparticle aqueous dispersion (М±m, p ≤ 0.05)

Download (84KB)
4. Figure 3. Antimicrobial activity of aqueous dispersion of silver nanoparticles stabilized by polyvinyl alcohol, sodium dodecyl sulfate and iodine hydrate ion-modified polyazolidylammonium (М±m, p ≤ 0.05)

Download (116KB)

Copyright (c) 2022 Nechaeva O.V., Shulgina T.A., Zubova K.V., Glinskaya E.V., Bespalova N.V., Darin N.I., Tichomirova E.I., Afinogenova A.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies