Gene polymorphism of mannose-binding lectin-associated serine protease (MASP2) in indigenous populations of the Russian Arctic Territories
- Authors: Smolnikova M.V.1, Malinchik M.A.1, Tereschenko S.Y.1
-
Affiliations:
- Research Institute of Medical Problems of the North, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences
- Issue: Vol 12, No 3 (2022)
- Pages: 543-550
- Section: ORIGINAL ARTICLES
- URL: https://journals.rcsi.science/2220-7619/article/view/119105
- DOI: https://doi.org/10.15789/2220-7619-GPO-1712
- ID: 119105
Cite item
Full Text
Abstract
Mannose-binding lectin-associated serine proteases (MASP) are among of the key components in the lectin pathway (LP) of the complement activation. MASP-2 is the most studied agent among specific enzymes activating both mannose-binding lectin (MBL) and ficolins, pattern-recognition proteins involved in the elimination of pathogenic microorganisms through LP complement activation. There are some mutations in MASP2, with the most significant identified as rs72550870 (p.D120G). The homozygous GG rs72550870 is associated with congenital MASP-2 deficiency and characterized by a total lack of serum protease activity, which leads to impaired binding to lectins. This, in turn, results in severe course of infectious diseases with a high risk of adverse outcome. There seem to be some marked populational differences in the genotype and haplotype prevalence in MASP2 gene polymorphisms. To date, no data are available on the genotype distribution for the MASP2 gene in the indigenous populations of the Russian Arctic regions. The aim of the work was to study the prevalence and ethnic specificity in the distribution of allelic variants of MASP2 rs72550870 in the populations of the Taymyr Dolgan-Nenets District of the Krasnoyarsk Territory (Nenets, Dolgans, Nganasans) as well as the city of Krasnoyarsk (Russians). MASP2 genotyping was performed by using real-time PCR. The frequencies of the AG genotype associated with low MASP-2 level was 6.6% for ethnic Russian newborns in the Eastern Siberia. The prevalence of the AG genotype was significantly lower in newborns of the Arctic populations than in the Russians, being 0.3% and 0.9% for the Nenets and the Dolgan-Nganasans, respectively, which is close to the prevalence values identified for Asian and African populations (0%). No homozygous GG rs72550870 associated with congenital MASP-2 deficiency in newborns of the indigenous populations of the Taymyr Dolgan-Nenets region of Krasnoyarsk Territory (Nenets and Dolgan-Nganasans) and ethnic Caucasian subjects of the Krasnoyarsk city was detected. The frequency of the rare allelic variant G rs72550870 in ethnic Russian subjects was 3.3%, being close to the frequencies in the European populations of the world (4.0%), whereas it was 0.5% in the indigenous inhabitants of the Arctic Region. We have suggested that isolated Arctic populations encounter some intracellular infections historically later and, as contrasted with Caucasoid populations, retained a high activity in the lectin pathway of the complement activation established at the early stage of human evolution.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Marina V. Smolnikova
Research Institute of Medical Problems of the North, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences
Author for correspondence.
Email: smarinv@ya.ru
ORCID iD: 0000-0001-9984-2029
PhD (Biology), Leading Researcher, Head of the Molecular Genetic Research Group
Russian Federation, KrasnoyarskM. A. Malinchik
Research Institute of Medical Problems of the North, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences
Email: seapearl1995@gmail.com
ORCID iD: 0000-0002-6350-8616
Junior Researcher
Russian Federation, KrasnoyarskS. Y. Tereschenko
Research Institute of Medical Problems of the North, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences
Email: legise@mail.ru
ORCID iD: 0000-0002-1605-7859
PhD, MD (Medicine), Head of the Clinical department of somatic and mental health of children
Russian Federation, KrasnoyarskReferences
- Романов А., Беляева Т., Красильщикова И. Частота встречаемости полиморфизма+ 230G/A гена MBL у жителей Санкт-Петербурга // Medline.ru. 2006. Т. 7, № 1. С. 372–377. [Romanov A., Belyaeva T., Krasil’shchikova I. Frequency of occurrence of +230G/A polymorphism of the MBL gene in residents of St. Petersburg. Medline.ru, 2006, vol. 7, no. 1, pp. 372–377. (In Russ.)]
- Терещенко С.Ю., Каспаров Э.В., Смольникова М.В., Кувшинова Е.В. Дефицит маннозосвязывающего лектина при заболеваниях респираторного тракта // Пульмонология. 2016. Т. 26, № 6. С. 748–752. [Tereshchenko S.Yu., Kasparov E.V., Smolnikova M.V., Kuvshinova E.V. Mannose-binding lectin deficiency in respiratory diseases. Pulmonologiya = Russian Pulmonology, 2016, vol. 26, no. 6, pp. 748–752. (In Russ.)] doi: 10.18093/0869-0189-2016-26-6-748-752
- Терещенко С.Ю., Смольникова М.В. Врожденные дисфункции паттерн-распознающих рецепторов в патогенезе инвазивной и рецидивирующей пневмококковой инфекции у детей // Инфекция и иммунитет. 2019. Т. 9, № 2. С. 229–238. [Tereshchenko S.Yu., Smolnikova M.V. Congenitally impaired pattern-recognition receptors in pathogenesis of pediatric invasive and recurrent pneumococcal infection. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2019, vol. 9, no. 2, pp. 229–238. (In Russ.)] doi: 10.15789/2220-7619-2019-2-229-238
- Bernig T., Breunis W., Brouwer N., Hutchinson A., Welch R., Roos D., Kuijpers T., Chanock S. An analysis of genetic variation across the MBL2 locus in Dutch Caucasians indicates that 3’ haplotypes could modify circulating levels of mannose-binding lectin. Hum. Genet., 2005, vol. 118, no. 3–4, pp. 404–415. doi: 10.1007/s00439-005-0053-5
- Bjarnadottir H., Arnardottir M., Ludviksson B.R. Frequency and distribution of FCN2 and FCN3 functional variants among MBL2 genotypes. Immunogenetics, 2016, vol. 68, no. 5, pp. 315–325. doi: 10.1007/s00251-016-0903-4
- Bjarnadottir H., Ludviksson B.R. Inherited deficiency of the initiator molecules of the lectin-complement pathway. Laeknabladid, 2010, vol. 96, pp. 611–617. doi: 10.17992/lbl.2010.10.319
- Brodszki N., Frazer-Abel A., Grumach A.S., Kirschfink M., Litzman J., Perez E., Seppänen M.R.J., Sullivan K.E., Jolles S. European Society for Immunodeficiencies (ESID) and European Reference Network on Rare Primary Immunodeficiency, Autoinflammatory and Autoimmune Diseases (ERN RITA) Complement Guideline: deficiencies, diagnosis, and management. J. Clin. Immunol., 2020, vol. 40, no. 4, pp. 576–591. doi: 10.1007/s10875-020-00754-1
- Cedzynski M., Nuytinck L., Atkinson A.P., Swierzko A.St., Zeman K., Szemraj J., Szala A., Turner M.L., Kilpatrick D.C. Extremes of L-ficolin concentration in children with recurrent infections are associated with single nucleotide polymorphisms in the FCN2 gene. Clin. Exp. Immunol., 2007, vol. 150, no. 1, pp. 99–104. doi: 10.1111/j.1365-2249.2007.03471.x
- Chalmers J.D., Mchugh B.J., Doherty C., Smith M.P., Govan J.R., Kilpatrick D.C., Hill A.T. Mannose-binding lectin deficiency and disease severity in non-cystic fibrosis bronchiectasis: a prospective study. Lancet Respir. Med., 2013, vol. 1, no. 3, pp. 224–232. doi: 10.1016/S2213-2600(13)70001-8
- Eisen D.P., Osthoff M. If there is an evolutionary selection pressure for the high frequency of MBL2 polymorphisms, what is it? Clin. Exp. Immunol., 2014, vol. 176, no. 2, pp. 165–171. doi: 10.1111/cei.12241
- Garcia-Laorden M.I., Sole-Violan J., Rodriguez de Castro F., Aspa J., Briones M.L., Garcia-Saavedra A., Rajas O., Blanquer J., Caballero-Hidalgo A., Marcos-Ramos J.A., Hernandez-Lopez J., Rodriguez-Gallego C. Mannose-binding lectin and mannose-binding lectin-associated serine protease 2 in susceptibility, severity, and outcome of pneumonia in adults. J. Allergy Clin. Immunol., 2008, vol. 122, no. 2, pp. 368–374. doi: 10.1016/j.jaci.2008.05.037
- Garred P., Honore C., Ma Y.J., Munthe-Fog L., Hummelshøj T. MBL2, FCN1, FCN2 and FCN3-The genes behind the initiation of the lectin pathway of complement. Mol. Immunol., 2009, vol. 46, no. 14, pp. 2737–2744. doi: 10.1016/j.molimm.2009.05.005
- Hegele R.A., Busch C.P., Young T.K., Connelly P.W., Cao H. Mannose-binding lectin gene variation and cardiovascular disease in Canadian Inuit. Clin. Chem., 1999, vol. 45, no. 8, pt 1, pp. 1283–1285.
- Hummelshoj T., Munthe-Fog L., Madsen H.O., Fujita T., Matsushita M., Garred P. Polymorphisms in the FCN2 gene determine serum variation and function of Ficolin-2. Hum. Mol. Genet., 2005, vol. 14, pp. 1651–1658. doi: 10.1093/hmg/ddi173
- Ip W.K.E., Chan K.H., Law H.K.W., Tso G.H.W., Kong E.K.P., Wong W.H.S., To Y.F., Yung R.W.H., Chow E.Y., Au K.L., Chan E.Y.T., Lim W., Jensenius J.C., Turner M.W., Peiris J.S.M., Lau Y.L. Mannose-binding lectin in severe acute respiratory syndrome coronavirus infection. J. Infect. Dis., 2005, vol. 191, no. 10, pp. 1697–1704. doi: 10.1086/429631
- Madsen H.O., Satz M.L., Hogh B., Garred P. Different molecular events result in low protein levels of mannan-binding lectin in populations from southeast Africa and South America. J. Immunol., 1998, vol. 161, no. 6, pp. 3169–3175.
- Matricardi P.M., Negro R.W.D., Nisin R. The first, holistic immunological model of COVID-19: Implications for prevention, diagnosis, and public health measures. Pediatr. Allergy Immunol., 2020, vol. 31, no. 5, pp. 454–470. doi: 10.1111/pai.13271
- Mishra A., Antony J.S., Sundaravadivel P., Tong H.V., Meyer C.G., Jalli R.D., Velavan T.P., Thangaraj K. Association of ficolin-2 serum levels and FCN2 genetic variants with Indian visceral leishmaniasis. PLoS One, 2015, vol. 10, no. 5: e0125940. doi: 10.1371/journal.pone.0125940
- Munthe-Fog L., Hummelshoj T., Hansen B.E., Koch C., Madsen H.O., Skjodt K., Garred P. The impact of FCN2 polymorphisms and haplotypes on the ficolin-2 serum levels. Scand. J. Immunol., 2007, vol. 65, no. 4, pp. 383–392. doi: 10.1111/j.1365-3083.2007.01915.x
- Notarangelo L., Casanova J.-L., Fischer A., Puck J., Rosen F., Seger R., Geha R. Primary immunodeficiency diseases: an update. J. Allergy Clin. Immunol., 2004, vol. 114, no. 3, pp. 677–687. doi: 10.1016/j.jaci.2004.06.044
- Smolnikova M.V., Freidin M.B., Tereshchenko S.Y. The prevalence of the variants of the L-ficolin gene (FCN2) in the arctic populations of East Siberia. Immunogenetics, 2017, vol. 69, no. 6, pp. 409–413. doi: 10.1007/s00251-017-0984-8
- Stengaard-Pedersen K., Thiel S., Gadjeva M., Møller-Kristensen M., Sørensen R., Jensen L.T., Sjøholm A.G., Fugger L., Jensenius J.C. Inherited deficiency of mannan-binding lectin-associated serine protease 2. N. Engl. J. Med., 2003, vol. 349, no. 6, pp. 554–560. doi: 10.1056/NEJMoa022836
- Tereshchenko S.Y., Smolnikova M.V., Freidin M.B. Mannose-binding lectin gene polymorphisms in the East Siberia and Russian Arctic populations. Immunogenetics, 2020, vol. 72, no. 6–7, pp. 347–354. doi: 10.1007/s00251-020-01175-5
- Thiel S., Kolev M., Degn S., Steffensen R., Hansen A.G., Ruseva M., Jensenius J.C. Polymorphisms in mannan-binding lectin (MBL)-associated serine protease 2 affect stability, binding to MBL, and enzymatic activity. J. Immunol., 2009, vol. 182, pp. 2939–2947. doi: 10.4049/jimmunol.0802053
- Thiel S., Steffensen R., Christensen I.J., Ip W.K., Lau Y.L., Reason I.J.M., Eiberg H., Gadjeva M., Ruseva M., Jensenius J.C. Deficiency of mannan-binding lectin associated serine protease-2 due to missense polymorphisms. Genes Immun., 2007, vol. 8, pp. 154–163. doi: 10.1038/sj.gene.6364373
- Troldborg A., Hansen A., Hansen S.W., Jensenius J.C., Stengaard-Pedersen K., Thiel S. Lectin complement pathway proteins in healthy individuals. Clin. Exp. Immunol., 2017, vol. 188, no. 1, pp. 138–147. doi: 10.1111/cei.12909
Supplementary files
