Metabolic biological markers for diagnosing and monitoring the course of tuberculosis

Cover Page

Cite item

Full Text

Abstract

The international biomedical community has been currently facing a need to find a simple and most accessible type of analysis that helps to diagnose tuberculosis (TB) with the maximum reliability even before the onset of clinical manifestations. Tuberculosis results in more deaths than any other pathogen, second only to pneumonia caused by the SARS-CoV-2 virus, but the majority of infected people remain asymptomatic. In addition, it is important to develop methods to distinguish various forms of tuberculosis infection course at early stages and to reliably stratify patients into appropriate groups (persons with a rapidly progressing infection, chronic course, latent infection carriers). Immunometabolism investigates a relationship between bioenergetic pathways and specific functions of immune cells that has recently become increasingly important in scientific research. The host anti-mycobacteria immune response in tuberculosis is regulated by a number of metabolic networks that can interact both cooperatively and antagonistically, influencing an outcome of the disease. The balance between inflammatory and immune reactions limits the spread of mycobacteria in vivo and protects from developing tuberculosis. Cytokines are essential for host defense, but if uncontrolled, some mediators may contribute to developing disease and pathology. Differences in plasma levels of metabolites between individuals with advanced infection, LTBI and healthy individuals can be detected long before the onset of the major related clinical signs. Changes in amino acid and cortisol level may be detected as early as 12 months before the onset of the disease and become more prominent at verifying clinical diagnosis. Assessing serum level of certain amino acids and their ratios may be used as additional diagnostic markers of active pulmonary TB. Metabolites, including serum fatty acids, amino acids and lipids may contribute to detecting active TB. Metabolic profiles indicate about increased indolamine 2.3-dioxygenase 1 (IDO1) activity, decreased phospholipase activity, increased adenosine metabolite level, and fibrous lesions in active vs. latent infection. TB treatment can be adjusted based on individual patient metabolism and biomarker profiles. Thus, exploring immunometabolism in tuberculosis is necessary for development of new therapeutic strategies.

About the authors

M. V. Korotetskaya

Central Research Institute of Tuberculosis; Lomonosov Moscow State University

Author for correspondence.
Email: mkorotetskaya@gmail.com

PhD (Biology), Senior Researcher, Laboratory of Immunogenetics

Russian Federation, Moscow; Moscow

E. I. Rubakova

Central Research Institute of Tuberculosis

Email: rubakova@mail.ru

PhD (Biology), Senior Researcher, Laboratory of Immunogenetics, Department of Immunology

Russian Federation, Moscow

References

  1. Adu-Gyamfi C.G., Snyman T., Makhathini L., Otwombe K., Darboe F., Penn-Nicholson A., Fisher M., Savulescu D., Hoffmann C., Chaisson R., Martinson N., Scriba T.J., George J.A., Suchard M.S. Diagnostic accuracy of plasma kynurenine/tryptophan ratio, measured by enzyme-linked immunosorbent assay, for pulmonary tuberculosis. Int. J. Infect. Dis., 2020, vol. 99, pp. 441–448. doi: 10.1016/j.ijid.2020.08.028
  2. Almeida A.S., Lago P.M., Boechat N., Huard R.C., Lazzarini L.C., Santos A.R., Nociari M., Zhu H., Perez-Sweeney B.M., Bang H., Ni Q., Huang J., Gibson A.L., Flores V.C., Pecanha L.R., Kritski A.L., Lapa e Silva J.R., Ho J.L. Tuberculosis is associated with a down-modulatory lung immune response that impairs Th1-type immunity. J. Immunol., 2009, vol. 183, no. 1, pp. 718–731. doi: 10.4049/jimmunol.0801212
  3. Apt A.S., Logunova N.N., Kondratieva T.K. Host genetics in susceptibility to and severity of mycobacterial diseases. Tuberculosis (Edinb.), 2017, vol. 106, pp. 1–8. doi: 10.1016/j.tube.2017.05.004
  4. Bafica A., Scanga C.A., Serhan C., Machado F., White S., Sher A., Aliberti J. Host control of Mycobacterium tuberculosis is regulated by 5-lipoxygenase-dependent lipoxin production. J. Clin. Invest., 2005, vol. 115, no. 6, pp. 1601–1606. doi: 10.1172/JCI23949
  5. Behar S.M., Divangahi M., Remold H.G. Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy? Nat. Rev. Microbiol., 2010, vol. 8, no. 9, pp. 668–674. doi: 10.1038/nrmicro2387
  6. Behr M.A., Wilson M.A., Gill W.P., Salamon H., Schoolnik G.K., Rane S., Small P.M. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science, 1999, vol. 284, no. 5419, pp. 1520–1523. doi: 10.1126/science.284.5419.1520
  7. Blumenthal A., Nagalingam G., Huch J.H., Walker L., Guillemin G.J., Smythe G.A., Ehrt S., Britton W.J., Saunders B.M. M. tuberculosis induces potent activation of IDO-1, but this is not essential for the immunological control of infection. PLoS One, 2012, vol. 7, no. 5: e37314. doi: 10.1371/journal.pone.0037314
  8. Byrne S.T., Denkin S.M., Zhang Y. Aspirin and ibuprofen enhance pyrazinamide treatment of murine tuberculosis. J. Antimicrob. Chemother., 2007, vol. 59, no. 2, pp. 313–316. doi: 10.1093/jac/dkl486
  9. Ca J., Bm M., Pinnelli V.B., Kandi V., As S., Mathew H.A., Gundreddy H., Afreen F., Vadakedath S. The association of pulmonary tuberculosis, abnormal glucose tolerance, and type 2 diabetes mellitus: a hospital-based cross-sectional study. Cureus, 2021, vol. 13, no. 11: e19758. doi: 10.7759/cureus.19758
  10. Cai Y., Yang Q., Tang Y., Zhang M., Liu H., Zhang G., Deng Q., Huang J., Gao Z., Zhou B., Feng C.G., Chen X. Increased complement C1q level marks active disease in human tuberculosis. PLoS One, 2014, vol. 9, no. 3: e92340. doi: 10.1371/journal.pone.0092340
  11. Calder P.C. Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochim. Biophys. Acta, 2015, vol. 1851, no. 4, pp. 469–484. doi: 10.1016/j.bbalip.2014.08.010
  12. Chen M., Divangahi M., Gan H., Shin D.S., Hong S., Lee D.M., Serhan C.N., Behar S.M., Remold H.G. Lipid mediators in innate immunity against tuberculosis: opposing roles of PGE2 and LXA4 in the induction of macrophage death. J. Exp. Med., 2008, vol. 205, no. 12, pp. 2791–2801. doi: 10.1084/jem.20080767
  13. Chendi B.H., Snyders C.I., Tonby K., Jenum S., Kidd M., Walzl G., Chegou N.N., Dyrhol-Riise A.M. A plasma 5-marker host biosignature identifies tuberculosis in high and low endemic countries. Front. Immunol., 2021, vol. 12: 608846. doi: 10.3389/fimmu.2021.608846
  14. Cho Y., Park Y., Sim B., Kim J., Lee H., Cho S.N., Kang Y.A., Lee S.G. Identification of serum biomarkers for active pulmonary tuberculosis using a targeted metabolomics approach. Sci. Rep., 2020, vol. 10, no. 1: 3825. doi: 10.1038/s41598-020-60669-0
  15. Conde R., Laires R., Gonçalves L.G., Rizvi A., Barroso C., Villar M., Macedo R., Simões M.J., Gaddam S., Lamosa P., Puchades-Carrasco L., Pineda-Lucena A., Patel A.B., Mande S.C., Banerjee S., Matzapetakis M., Coelho A.V. Discovery of serum biomarkers for diagnosis of tuberculosis by NMR metabolomics including cross-validation with a second cohort. Biomed. J., 2022, vol. 45, iss. 4, pp. 654–664. doi: 10.1016/j.bj.2021.07.006
  16. Cooper A.M. Cell-mediated immune responses in tuberculosis. Annu. Rev. Immunol., 2009, vol. 27, pp. 393–422. doi: 10.1146/annurev.immunol.021908.132703
  17. Cooper A.M., Magram J., Ferrante J., Orme I.M. Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with mycobacterium tuberculosis. J. Exp. Med., 1997, vol. 186, no. 1, pp. 39–45. doi: 10.1084/jem.186.1.39
  18. Cooper A.M., Mayer-Barber K.D., Sher A. Role of innate cytokines in mycobacterial infection. Mucosal Immunol., 2011, vol. 4, no. 3, pp. 252–260. doi: 10.1038/mi.2011.13
  19. Corbel M., Theret N., Caulet-Maugendre S., Germain N., Lagente V., Clement B., Boichot E. Repeated endotoxin exposure induces interstitial fibrosis associated with enhanced gelatinase (MMP-2 and MMP-9) activity. Inflamm. Res., 2001, vol. 50, no. 3, pp. 129–135. doi: 10.1007/s000110050736
  20. Coussens A., Timms P.M., Boucher B.J., Venton T.R., Ashcroft A.T., Skolimowska K.H., Newton S.M., Wilkinson K.A., Davidson R.N., Griffiths C.J., Wilkinson R.J., Martineau A.R. 1alpha,25-dihydroxyvitamin D3 inhibits matrix metalloproteinases induced by Mycobacterium tuberculosis infection. Immunology, 2009, vol. 127, no. 4, pp. 539–548. doi: 10.1111/j.1365-2567.2008.03024.x
  21. Cumming B.M., Pacl H.T., Steyn A.J.C. Relevance of the Warburg effect in tuberculosis for host-directed therapy. Front. Cell Infect. Microbiol., 2020, vol. 10: 576596. doi: 10.3389/fcimb.2020.576596
  22. Dey B., Bishai W.R. Crosstalk between Mycobacterium tuberculosis and the host cell. Semin Immunol., 2014, vol. 26, no. 6, pp. 486–496. doi: 10.1016/j.smim.2014.09.002
  23. Ding Y., Raterink R.J., Marín-Juez R., Veneman W.J., Egbers K., van den Eeden S., Haks M.C., Joosten S.A., Ottenhoff T.H.M., Harms A.C., Alia A., Hankemeier T., Spaink H.P. Tuberculosis causes highly conserved metabolic changes in human patients, mycobacteria-infected mice and zebrafish larvae. Sci. Rep., 2020, vol. 10, no. 1: 11635. doi: 10.1038/s41598-020-68443-y
  24. Dorhoi A., Yeremeev V., Nouailles G., Weiner J. 3rd, Jörg S., Heinemann E., Oberbeck-Müller D., Knaul J.K., Vogelzang A., Reece S.T., Hahnke K., Mollenkopf H.J., Brinkmann V., Kaufmann S.H. Type I IFN signaling triggers immunopathology in tuberculosis-susceptible mice by modulating lung phagocyte dynamics. Eur. J. Immunol., 2014, vol. 44, no. 8, pp. 2380–2393. doi: 10.1002/eji.201344219
  25. Dutta N.K., Annadurai S., Mazumdar K., Dastidar S.G., Kristiansen J.E., Molnar J., Martins M., Amaral L. Potential management of resistant microbial infections with a novel non-antibiotic: the anti-inflammatory drug diclofenac sodium. Int. J. Antimicrob. Agents, 2007, vol. 30, no. 3, pp. 242–249. doi: 10.1016/j.ijantimicag.2007.04.018
  26. Dutta N.K., Karakousis P.C. Latent tuberculosis infection: myths, models, and molecular mechanisms. Microbiol. Mol. Biol. Rev., 2014, vol. 78, no. 3, pp. 343–371. doi: 10.1128/MMBR.00010-14
  27. Ehlers S., Schaible U.E. The granuloma in tuberculosis: dynamics of a host-pathogen collusion. Front. Immunol., 2013, vol. 3: 411. doi: 10.3389/fimmu.2012.00411
  28. Elkington P.T., Ugarte-Gil C.A., Friedland J.S. Matrix metalloproteinases in tuberculosis. Eur. Respir. J., 2011, vol. 38, no. 2, pp. 456–464. doi: 10.1183/09031936.00015411
  29. Flores J., Cancino J.C., Chavez-Galan L. Lipoarabinomannan as a point-of-care assay for diagnosis of tuberculosis: how far are we to use it? Front. Microbiol., 2021, vol. 12: 638047. doi: 10.3389/fmicb.2021.638047
  30. Flynn J.L., Chan J., Triebold K.J., Dalton D.K., Stewart T.A., Bloom B.R. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J. Exp. Med., 1993, vol. 178, no. 6, pp. 2249–2254. doi: 10.1084/jem.178.6.2249
  31. Flynn J.L., Goldstein M.M., Chan J., Triebold K.J., Pfeffer K., Lowenstein C.J., Schreiber R., Mak T.W., Bloom B.R. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity, 1995, vol. 2, no. 6, pp. 561–572. doi: 10.1016/1074-7613(95)90001-2
  32. Ganguly N., Siddiqui I., Sharma P. Role of M. tuberculosis RD-1 region encoded secretory proteins in protective response and virulence. Tuberculosis (Edinb.), 2008, vol. 88, no. 6, pp. 510–517. doi: 10.1016/j.tube.2008.05.002
  33. Gey Van Pittius N.C., Gamieldien J., Hide W., Brown G.D., Siezen R.J., Beyers A.D. The ESAT-6 gene cluster of Mycobacterium tuberculosis and other high G+C Gram-positive bacteria. Genome Biol., 2001, vol. 2, no. 10: RESEARCH0044. doi: 10.1186/gb-2001-2-10-research0044
  34. Guggino G., Orlando V., Cutrera S., La Manna M.P., Di Liberto D., Vanini V., Petruccioli E., Dieli F., Goletti D., Caccamo N. Granzyme A as a potential biomarker of Mycobacterium tuberculosis infection and disease. Immunol. Lett., 2015, vol. 166, no. 2, pp. 87–91. doi: 10.1016/j.imlet.2015.05.019
  35. Hamasur B., Bruchfeld J., Haile M., Pawlowski A., Bjorvatn B., Källenius G., Svenson S.B. Rapid diagnosis of tuberculosis by detection of mycobacterial lipoarabinomannan in urine. J. Microbiol. Methods, 2001, vol. 45, no. 1, pp. 41–52. doi: 10.1016/s0167-7012(01)00239-1
  36. Hayashi S., Takeuchi M., Hatsuda K., Ogata K., Kurata M., Nakayama T., Ohishi Y., Nakamura H. The impact of nutrition and glucose intolerance on the development of tuberculosis in Japan. Int. J. Tuberc. Lung Dis., 2014, vol. 18, no. 1, pp. 84–88. doi: 10.5588/ijtld.13.0495
  37. Hunter R.L. Pathology of post primary tuberculosis of the lung: an illustrated critical review. Tuberculosis (Edinb.), 2011, vol. 91, no. 6, pp. 497–509. doi: 10.1016/j.tube.2011.03.007
  38. Juffermans N.P., Florquin S., Camoglio L., Verbon A., Kolk A.H., Speelman P., van Deventer S.J., van der Poll T. Interleukin-1 signaling is essential for host defense during murine pulmonary tuberculosis. J. Infect. Dis., 2000, vol. 182, no. 3, pp. 902–908. doi: 10.1086/315771
  39. Kapina M.A., Shepelkova G.S., Avdeenko V.G., Guseva A.N., Kondratieva T.K., Evstifeev V.V., Apt A.S. Interleukin-11 drives early lung inflammation during Mycobacterium tuberculosis infection in genetically susceptible mice. PLoS One, 2011, vol. 6, no. 7: e21878. doi: 10.1371/journal.pone.0021878
  40. Karim A.F., Sande O.J., Tomechko S.E., Ding X., Li M., Maxwell S., Ewing R.M., Harding C.V., Rojas R.E., Chance M.R., Boom W.H. Proteomics and network analyses reveal inhibition of Akt-mTOR signaling in CD4+ T cells by Mycobacterium tuberculosis mannose-capped lipoarabinomannan. Proteomics, 2017, vol. 17, no. 22: 1700233. doi: 10.1002/pmic.201700233
  41. Karinch A.M., Pan M., Lin C.M., Strange R., Souba W.W. Glutamine metabolism in sepsis and infection. J. Nutr., 2001, vol. 131 (9 Suppl), pp. 2535S–2538S; discussion 2550S–2551S. doi: 10.1093/jn/131.9.2535S
  42. Keane J., Remold H.G., Kornfeld H. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J. Immunol., 2000, vol. 164, no. 4, pp. 2016–20. doi: 10.4049/jimmunol.164.4.2016
  43. Kroesen V.M., Gröschel M.I., Martinson N., Zumla A., Maeurer M., van der Werf T.S., Vilaplana C. Non-steroidal anti-inflammatory drugs as host-directed therapy for tuberculosis: a systematic review. Front. Immunol., 2017, vol. 8: 772. doi: 10.3389/fimmu.2017.00772
  44. Krug S., Parveen S., Bishai W.R. Host-directed therapies: modulating inflammation to treat tuberculosis. Front. Immunol., 2021, vol. 12: 660916. doi: 10.3389/fimmu.2021.660916
  45. Kübler A., Luna B., Larsson C., Ammerman N.C., Andrade B.B., Orandle M., Bock K.W., Xu Z., Bagci U., Mollura D.J., Marshall J., Burns J., Winglee K., Ahidjo B.A., Cheung L.S., Klunk M., Jain S.K., Kumar N.P., Babu S., Sher A., Friedland J.S., Elkington P.T., Bishai W.R. Mycobacterium tuberculosis dysregulates MMP/TIMP balance to drive rapid cavitation and unrestrained bacterial proliferation. J. Pathol., 2015, vol. 235, no. 3, pp. 431–444. doi: 10.1002/path.4432
  46. Lewinsohn D.M., Grotzke J.E., Heinzel A.S., Zhu L., Ovendale P.J., Johnson M., Alderson M.R. Secreted proteins from Mycobacterium tuberculosis gain access to the cytosolic MHC class-I antigen-processing pathway. J. Immunol., 2006, vol. 177, no. 1, pp. 437–442. doi: 10.4049/jimmunol.177.1.437
  47. Linge I., Tsareva A., Kondratieva E., Dyatlov A., Hidalgo J., Zvartsev R., Apt A. Pleiotropic Effect of IL-6 produced by B-lymphocytes during early phases of adaptive immune responses against TB infection. Front. Immunol., 2022, vol. 13: 750068. doi: 10.3389/fimmu.2022.750068
  48. Logunova N., Korotetskaya M., Apt A. Analysis of gene expression in the lung tissue in mice congenic as per H2-line complex with various severity of tuberculous infection course. Tuberculosis and Lung Diseases, 2015, vol. 12, pp. 44–49.
  49. Lubbers R., Sutherland J.S., Goletti D., de Paus R.A., van Moorsel C.H.M., Veltkamp M., Vestjens S.M.T., Bos W.J.W., Petrone L., Del Nonno F., Bajema I.M., Dijkman K., Verreck F.A.W., Walzl G., Gelderman K.A., Groeneveld G.H., Geluk A., Ottenhoff T.H.M., Joosten S.A., Trouw L.A. Complement component C1q as serum biomarker to detect active tuberculosis. Front. Immunol., 2018, vol. 9: 2427. doi: 10.3389/fimmu.2018.02427
  50. Maurya R., Bhattacharya P., Dey R., Nakhasi H.L. Leptin functions in infectious diseases. Front. Immunol., 2018, vol. 9: 2741. doi: 10.3389/fimmu.2018.02741
  51. Mayer-Barber K.D., Andrade B.B., Barber D.L., Hieny S., Feng C.G., Caspar P., Oland S., Gordon S., Sher A. Innate and adaptive interferons suppress IL-1 and IL-1 production by distinct pulmonary myeloid subsets during Mycobacterium tuberculosis infection. Immunity, 2011, vol. 35, no. 6, pp. 1023–1034. doi: 10.1016/j.immuni.2011.12.002
  52. Mayer-Barber K.D., Andrade B.B., Oland S.D., Amaral E.P., Barber D.L., Gonzales J., Derrick S.C., Shi R., Kumar N.P., Wei W., Yuan X., Zhang G., Cai Y., Babu S., Catalfamo M., Salazar A.M., Via L.E., Barry C.E. 3rd, Sher A. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature, 2014, vol. 511, no. 7507, pp. 99–103. doi: 10.1038/nature13489
  53. Mayer-Barber K.D., Sher A. Cytokine and lipid mediator networks in tuberculosis. Immunol. Rev., 2015, vol. 264, no. 1, pp. 264–275. doi: 10.1111/imr.12249
  54. Mehrotra P., Jamwal S.V., Saquib N., Sinha N., Siddiqui Z., Manivel V., Chatterjee S., Rao K.V. Pathogenicity of Mycobacterium tuberculosis is expressed by regulating metabolic thresholds of the host macrophage. PLoS Pathog., 2014, vol. 10, no. 7: e1004265. doi: 10.1371/journal.ppat.1004265
  55. Nienaber A., Baumgartner J., Dolman R.C., Ozturk M., Zandberg L., Hayford F.E.A., Brombacher F., Blaauw R., Parihar S.P., Smuts C.M., Malan L. Omega-3 fatty acid and iron supplementation alone, but not in combination, lower inflammation and anemia of infection in Mycobacterium tuberculosis-infected mice. Nutrients, 2020, vol. 12, no. 9: 2897. doi: 10.3390/nu12092897
  56. Nienaber A., Hayford F.E.A., Variava E., Martinson N., Malan L. The manipulation of the lipid mediator metabolism as adjunct host-directed therapy in tuberculosis. Front. Immunol., 2021, vol. 12: 623941. doi: 10.3389/fimmu.2021.623941
  57. Novikov A., Cardone M., Thompson R., Shenderov K., Kirschman K.D., Mayer-Barber K.D., Myers T.G., Rabin R.L., Trinchieri G., Sher A., Feng C.G. Mycobacterium tuberculosis triggers host type I IFN signaling to regulate IL-1 production in human macrophages. J. Immunol., 2011, vol. 187, no. 5, pp. 2540–2547. doi: 10.4049/jimmunol.1100926
  58. O’Garra A., Redford P.S., McNab F.W., Bloom C.I., Wilkinson R.J., Berry M.P. The immune response in tuberculosis. Annu. Rev. Immunol. 2013, vol. 31, pp. 475–527. doi: 10.1146/annurev-immunol-032712-095939
  59. Oliveira G.P., de Abreu M.G., Pelosi P., Rocco P.R. Exogenous glutamine in respiratory diseases: myth or reality? Nutrients, 2016, vol. 8, no. 2: 76. doi: 10.3390/nu8020076
  60. Ong C.W., Elkington P.T., Friedland J.S. Tuberculosis, pulmonary cavitation, and matrix metalloproteinases. Am. J. Respir. Crit. Care Med., 2014, vol. 190, no. 1, pp. 9–18. doi: 10.1164/rccm.201311-2106PP
  61. Osawa T., Watanabe M., Morimoto K., Okumura M., Yoshiyama T., Ogata H., Goto H., Kudoh S., Ohta K., Sasaki Y. Serum procalcitonin levels predict mortality risk in patients with pulmonary tuberculosis: a single-center prospective observational study. J. Infect. Dis., 2020, vol. 222, no. 10, pp. 1651–1654. doi: 10.1093/infdis/jiaa275
  62. Pathak S.K., Basu S., Basu K.K., Banerjee A., Pathak S., Bhattacharyya A., Kaisho T., Kundu M., Basu J. Direct extracellular interaction between the early secreted antigen ESAT-6 of Mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages. Nat. Immunol., 2007, vol. 8, no. 6, pp. 610–618. doi: 10.1038/ni1468
  63. Palčeková Z., Gilleron M., Angala S.K., Belardinelli J.M., McNeil M., Bermudez L.E., Jackson M. Polysaccharide succinylation enhances the intracellular survival of Mycobacterium abscessus. ACS Infect. Dis., 2020, vol. 6, no. 8, pp. 2235–2248. doi: 10.1021/acsinfecdis.0c00361
  64. Pavlicek R.L., Fine-Coulson K., Gupta T., Quinn F.D., Posey J.E., Willby M., Castro-Garza J., Karls R.K. Rv3351c, a Mycobacterium tuberculosis gene that affects bacterial growth and alveolar epithelial cell viability. Can. J. Microbiol., 2015, vol. 61, no. 12, pp. 938–947. doi: 10.1139/cjm-2015-0528
  65. Rasmussen T.A., Søgaard O.S., Camara C., Andersen P.L., Wejse C. Serum procalcitonin in pulmonary tuberculosis. Int. J. Tuberc. Lung Dis., 2011, vol. 15, no. 2, pp. 251–256.
  66. Ritter K., Rousseau J., Hölscher C. The role of gp130 cytokines in tuberculosis. Cells, 2020, vol. 9, no. 12: 2695. doi: 10.3390/cells9122695
  67. Rodrigues T.S., Conti B.J., Fraga-Silva T.F.C., Almeida F., Bonato V.L.D. Interplay between alveolar epithelial and dendritic cells and Mycobacterium tuberculosis. J. Leukoc. Biol., 2020, vol. 108, no. 4, pp. 1139–1156. doi: 10.1002/JLB.4MR0520-112R
  68. Russell D.G. Who puts the tubercle in tuberculosis? Nat. Rev. Microbiol., 2007, vol. 5, no. 1, pp. 39–47. doi: 10.1038/nrmicro1538
  69. Sada E., Aguilar D., Torres M., Herrera T. Detection of lipoarabinomannan as a diagnostic test for tuberculosis. J. Clin. Microbiol., 1992, vol. 30, no. 9, pp. 2415–2418. doi: 10.1128/jcm.30.9.2415-2418.1992
  70. Sande O.J., Karim A.F., Li Q., Ding X., Harding C.V., Rojas R.E., Boom W.H. Mannose-capped lipoarabinomannan from Mycobacterium tuberculosis induces CD4+ T cell anergy via GRAIL. J. Immunol., 2016, vol. 196, no. 2, pp. 691–702. doi: 10.4049/jimmunol.1500710
  71. Selvaraj P., Jawahar M.S., Rajeswari D.N., Alagarasu K., Vidyarani M., Narayanan P.R. Role of mannose binding lectin gene variants on its protein levels and macrophage phagocytosis with live Mycobacterium tuberculosis in pulmonary tuberculosis. FEMS Immunol. Med. Microbiol., 2006, vol. 46, no. 3, pp. 433–437. doi: 10.1111/j.1574-695X.2006.00053.x
  72. Shi L., Eugenin E.A., Subbian S. Immunometabolism in tuberculosis. Front. Immunol., 2016, vol. 7: 150. doi: 10.3389/fimmu.2016.00150
  73. Singh V., Donini S., Pacitto A., Sala C., Hartkoorn R.C., Dhar N., Keri G., Ascher D.B., Mondésert G., Vocat A., Lupien A., Sommer R., Vermet H., Lagrange S., Buechler J., Warner D.F., McKinney J.D., Pato J., Cole S.T., Blundell T.L., Rizzi M., Mizrahi V. The inosine monophosphate dehydrogenase, guaB2, is a vulnerable new bactericidal drug target for tuberculosis. ACS Infect. Dis., 2017, vol. 3, no. 1, pp. 5–17. doi: 10.1021/acsinfecdis.6b00102
  74. Singh V., Kaur C., Chaudhary V.K., Rao K.V., Chatterjee S. M. tuberculosis secretory protein ESAT-6 induces metabolic flux perturbations to drive foamy macrophage differentiation. Sci. Rep., 2015, vol. 5: 12906. doi: 10.1038/srep12906
  75. Søborg C., Madsen H.O., Andersen A.B., Lillebaek T., Kok-Jensen A., Garred P. Mannose-binding lectin polymorphisms in clinical tuberculosis. J. Infect. Dis., 2003, vol. 188, no. 5, pp. 777–782. doi: 10.1086/377183
  76. Stanley S.A., Raghavan S., Hwang W.W., Cox J.S. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc. Natl. Acad. Sci. USA, 2003, vol. 100, no. 22, pp. 13001–13006. doi: 10.1073/pnas.2235593100
  77. Suzuki Y., Miwa S., Akamatsu T., Suzuki M., Fujie M., Nakamura Y., Inui N., Hayakawa H., Chida K., Suda T. Indoleamine 2,3-dioxygenase in the pathogenesis of tuberculous pleurisy. Int. J. Tuberc. Lung Dis., 2013, vol. 17, no. 11, pp. 1501–1506. doi: 10.5588/ijtld.13.0082
  78. Suzuki Y., Suda T., Asada K., Miwa S., Suzuki M., Fujie M., Furuhashi K., Nakamura Y., Inui N., Shirai T., Hayakawa H., Nakamura H., Chida K. Serum indoleamine 2,3-dioxygenase activity predicts prognosis of pulmonary tuberculosis. Clin. Vaccine Immunol., 2012, vol. 19, no. 3, pp. 436–442. doi: 10.1128/CVI.05402-11
  79. Tobin D.M., Roca F.J., Oh S.F., McFarland R., Vickery T.W., Ray J.P., Ko D.C., Zou Y., Bang N.D., Chau T.T., Vary J.C., Hawn T.R., Dunstan S.J., Farrar J.J., Thwaites G.E., King M.C., Serhan C.N., Ramakrishnan L. Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell, 2012, vol. 148, no. 3, pp. 434–446. doi: 10.1016/ j.cell.2011.12.023
  80. Tonby K., Wergeland I., Lieske N.V., Kvale D., Tasken K., Dyrhol-Riise A.M. The COX-inhibitor indomethacin reduces Th1 effector and T regulatory cells in vitro in Mycobacterium tuberculosis infection. BMC Infect. Dis., 2016, vol. 16, no. 1: 599. doi: 10.1186/s12879-016-1938-8
  81. Weiner J. 3rd, Maertzdorf J., Sutherland J.S., Duffy F.J., Thompson E., Suliman S., McEwen G., Thiel B., Parida S.K., Zyla J., Hanekom W.A., Mohney R.P., Boom W.H., Mayanja-Kizza H., Howe R., Dockrell H.M., Ottenhoff T.H.M., Scriba T.J., Zak D.E., Walzl G., Kaufmann S.H.E.; GC6-74 consortium. Metabolite changes in blood predict the onset of tuberculosis. Nat. Commun., 2018, vol. 9, no. 1: 5208. doi: 10.1038/s41467-018-07635-7
  82. Weiner J. 3rd, Parida S.K., Maertzdorf J., Black G.F., Repsilber D., Telaar A., Mohney R.P., Arndt-Sullivan C., Ganoza C.A., Faé K.C., Walzl G., Kaufmann S.H. Biomarkers of inflammation, immunosuppression and stress with active disease are revealed by metabolomic profiling of tuberculosis patients. PLoS One, 2012, vol. 7, no. 7: e40221. doi: 10.1371/journal.pone.0040221
  83. Yamada H., Mizumo S., Horai R., Iwakura Y., Sugawara I. Protective role of interleukin-1 in mycobacterial infection in IL-1 alpha/beta double-knockout mice. Lab. Invest., 2000, vol. 80, no. 5, pp. 759–767. doi: 10.1038/labinvest.3780079

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Korotetskaya M.V., Rubakova E.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies