Evolutionary aspects of gastrointestinal tract microbiome-host interaction underlying gastrointestinal barrier integrity

Cover Page

Cite item

Full Text

Abstract

In the host sustenance and homeostasis, the microbiome is a key component in the functional system. Throughout ontogenetic development, microbiome including that of the gastrointestinal tract (GIT) is the vital factor that ensures not only host functioning, but also its interaction with environment. To uncover the mechanisms underlying GIT microbiome showing a decisive influence on host organism, a systematic approach is needed, because diverse microorganisms are predominantly localized in different parts of the GIT. Recently, a new interdisciplinary direction of science, nanobioinformatics that has been extensively developed considers “gene networks” as the major object of study representing a coordinated group of genes that functionally account for formation and phenotypic “disclosure” of various host traits. Here, an important place should be provided to the genetically determined level of the gastrointestinal tract microbiome, its interaction at the level of the host food systems. There have been increasing evidence indicating that the microbiome is directly involved in the pathogenesis of host diseases showing a multi-layered interaction with host metabolic and immune systems. At the same time, the microbial community is unevenly distributed throughout the gastrointestinal tract, and its different portions are variously active while interacting with the host immune system. The “architecture” of interaction between the microbiome and host cells is extremely complex, and the interaction of individual cells, at the same time, varies greatly. Bacteria colonizing the crypts of the small intestine regulate enterocyte proliferation by affecting DNA replication and gene expression, while bacteria at the tip of the intestinal villi mediate gene expression responsible for metabolism and immune response. Enterocytes and Paneth cells, in turn, regulate the vital activity of the community of microorganisms through the production of polysaccharides (carbohydrates) and antibacterial factors on their surface. Thus, the integrity of the gastrointestinal barrier (GIB) is maintained, which protects the body from infections and inflammation, while violation of its integrity leads to a number of diseases. It has been shown that depending on the dominance of certain types of bacteria the microbiome can maintain or disrupt GIB integrity. The structural and functional GIB integrity is important for body homeostasis. To date, at least 50 proteins have been characterized as being involved in the structural and functional integrability of tight junctions between gastrointestinal tract epithelial cells. The current review comprehensively discusses such issues and presents original research carried out at various facilities of translational biomedicine.

About the authors

S. I. Loskutov

All-Russian Research Institute for Food Additives — Branch of V.M. Gorbatov Federal Research Center for Food Systems of RAS

Author for correspondence.
Email: lislosk@mail.ru

PhD (Agriculture), Senior Researcher, Laboratory of Biotechnology and Bioengineering

 
Russian Federation, St. Petersburg

S. N. Proshin

Herzen University

Email: lislosk@mail.ru

PhD, MD (Medicine), Professor, Department of Medicine and Valeology

Russian Federation, St. Petersburg

D. S. Ryabukhin

All-Russian Research Institute for Food Additives — Branch of V.M. Gorbatov Federal Research Center for Food Systems of RAS

Email: lislosk@mail.ru

PhD (Chemistry), Senior Researcher

Russian Federation, St. Petersburg

References

  1. Abhyankar W.R., Zheng L., Brul S., de Koster C.G., de Koning L.J. Vegetative cell and spore proteomes of Clostridioides difficile show finite differences and reveal potential protein markers. J. Proteome Res., 2019, vol. 18, no. 11, pp. 3967–3976. doi: 10.1021/acs.jproteome.9b00413
  2. Barko P.C., McMichael M.A., Swanson K.S., Williams D.A. The gastrointestinal microbiome: a review. J. Vet. Intern. Med., 2018, vol. 32, pp. 9–25. doi: 10.1111/jvim.14875
  3. Cani P.D., Delzenne N.M. Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota. Curr. Opin. Pharmacol., 2009, vol. 9, no. 6, pp. 737–743. doi: 10.1016/j.coph.2009.06.016
  4. Cani P.D., Delzenne N.M. Involvement of the gut microbiota in the development of low grade inflammation associated with obesity: focus on this neglected partner. Acta Gastroenterol. Belg., 2010, vol. 73, pp. 267–269
  5. Cecil R.L., Nicholls E.E., Stainsby W.J. Bacteriology of the blood and joints in rheumatic fever. J. Exp. Med., 1929, vol. 50, pp. 617–642. doi: 10.1084/jem.50.5.617
  6. Clark A., Mach N. Exercise-induced stress behavior, gut microbiota-brain axis and diet: a systematic review for athletes. J. Int. Soc. Sports Nutr., 2016, vol. 13: 43. doi: 10.1186/s12970-016-0155-6
  7. Circu M.L., Aw T.Y. Intestinal redox biology and oxidative stress. Semin. Cell Dev. Biol., 2012, vol. 23, pp. 729–737. doi: 10.1016/ j.semcdb.2012.03.014
  8. Code C.F. Histamine and gastric secretion. Ed. WolstenholmeG., O’Connor C. Little Brown & Co, 1956, pp. 189–219.
  9. Conroy M.J., Bullough P.A., Merrick M., Avent N.D. Modelling the human rhesus proteins: implications for structure and function. Br. J. Haematol., 2005, vol. 131, pp. 543–551. doi: 10.1111/j.1365-2141.2005.05786.x
  10. Delzenne N.M., Neyrinck A.M., Backhed F., Cani P.D. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat. Rev. Endocrinol., 2011, vol. 7, pp. 639–646. doi: 10.1038/nrendo.2011.126
  11. Eisen J.A. A phylogenomic study of the MutS family of proteins. Nucleic Acids Res., 1998, vol. 26, no. 18, pp. 4291–4300. doi: 10.1093/nar/26.18.4291
  12. Ercolini A.M., Miller S.D. The role of infections in autoimmune disease. Clin. Exp. Immunol., 2009, vol. 155, pp. 1–15. doi: 10.1111/j.1365-2249.2008.03834.x
  13. Faith J.J., McNulty N.P., Rey F.E., Gordon J.I. Predicting a human gut microbiota’s response to diet in gnotobiotic mice. Science, 2011, vol. 333,no. 6038, pp. 101–104. doi: 10.1126/science.1206025
  14. Ferrier L. Significance of increased human colonic permeability in response to corticotrophin-releasing hormone (CRH). Gut, 2008, vol. 57, pp. 7–9. doi: 10.1136/gut.2007.129841
  15. Freestone P.P., Sandrini S.M., Haigh R.D., Lyte M. Microbial endocrinology: how stress influences susceptibility to infection. Trends Microbiol., 2008, vol. 16, no. 2, pp. 55–64. doi: 10.1016/j.tim.2007.11.005
  16. Gao W., Howden B.P., Stinear T.P. Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen. Curr. Opin. Microbiol., 2018, vol. 41, pp. 76–82. doi: 10.1016/j.mib.2017.11.030
  17. Gareau M.G., Sherman P.M., Walker W.A. Probiotics and the gut microbiota in intestinal health and disease. Nat. Rev. Gastroenterol. Hepatol., 2010, vol. 7, pp. 503–514. doi: 10.1038/nrgastro.2010.117
  18. Gareau M.G., Silva M.A., Perdue M.H. Pathophysiological mechanisms of stressinduced intestinal damage. Curr. Mol. Med., 2008, vol. 8, pp. 274–281. doi: 10.2174/156652408784533760
  19. Gazzarrini S., Lejay L., Gojon A., Ninnemann O., Frommer W.B., von Wiren N. Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell, 1999, vol. 11, pp. 937–947. doi: 10.1105/tpc.11.5.937
  20. Gerbe F., van Es J.H., Makrini L., Brulin B., Mellitzer G., Robine S., Romagnolo B., Shroyer N.F., Bourgaux J.-F., Pignodel C., Clevers H., Jay P. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium. J. Cell Biol., 2011, vol. 192, pp. 767–780. doi: 10.1083/jcb.201010127
  21. Gravitz L. Microbiome: the critters within. Nature, 2012, vol. 485, pp. S12–13. doi: 10.1038/485S12a
  22. Hackette S.L., Skye G.E., Burton C., Segel I.H. Characterization of an ammonium transport system in filamentous fungi with methylammonium-14C as the substrate. J. Biol. Chem., 1970, vol. 245, pp. 4241–4250. doi: 10.1016/S0021-9258(19)63786-5
  23. Hazenberg M.P., Herder W.W. de, Visser T.J. Hydrolysis of iodothyronine conjugates by intestinal bacteria. FEMS Microbiol. Rev., 1988, vol. 4, pp. 9–16. doi: 10.1111/j.1574-6968.1988.tb02709.x-i1
  24. Herder W.W. de, Hazenberg M.P., Pennock-Schroder A.M., Hennemann G., Visser T.J. Rapid and bacteria-dependent in vitro hydrolysis of iodothyronine-conjugates by intestinal contents of humans and rats. Med. Biol., 1986, vol. 64, no. 1, pp. 31–35
  25. Jeffrey M.P., MacPherson C.W., Mathieu O., Tompkins T.A., Green-Johnson J.M. Secretome-mediated interactions with intestinal epithelial cells: a role for secretome components from Lactobacillus rhamnosus R0011 in the attenuation of Salmonella enterica Serovar Typhimurium secretome and TNF--induced proinflammatory responses. J. Immunol., 2020, vol. 204, no. 9, pp. 2523–2534. doi: 10.4049/jimmunol.1901440
  26. Ji Q., Hashimi S., Liu Z., Zhang J., Chen Y., Huang C.-H. CeRh1 (rhr-1) is a dominant Rhesus gene essential for embryonic development and hypodermal function in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA, 2006, vol. 103, no. 15, pp. 5881–5886. doi: 0.1073/pnas.0600901103
  27. Khademi S., O’Connell J., Remis J., Robles-Colmenares Y., Miercke L.J., Stroud R.M. Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 Å. Science, 2004, vol. 305, pp. 1587–1594. doi: 10.1126/science.1101952
  28. Knepper M.A. NH4+ transport in the kidney. Kidney Int. Suppl., 1991, vol. 33, pp. S95–S102.
  29. Koch M., Wrighta K.E., Ottob O., Herbigb M., Salinasc N.D., Toliac N.H., Satchwelld T.J., Guckb J., Brookse N.J., Bauma J. Plasmodium falciparum erythrocyte-binding antigen 175 triggers a biophysical change in the red blood cell that facilitates invasion. Proc. Natl. Acad. Sci. USA, 2017, vol. 114, no. 16, pp. 4225–4230. doi: 10.1073/pnas.1620843114
  30. Konturek P.C., Konturek S.J., Sito E., Kwiecien N., Obtulowicz W., Bielanski W., Hahn E.G. Luminal alpha methyl histamine stimulates gastric secretion in duodenal ulcer patients via releasing gastrin. Eur. J. Pharmacol., 2001, vol. 301, pp. 181–192. doi: 10.1016/S0014-2999(01)00720-8
  31. Lauter F.R., Ninnemann O., Bucher M., Riesmeier J.W., Frommer W.B. Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato. Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 8139–8144. doi: 10.1073/pnas.93.15.8139
  32. Lesouhaitier O., Clamens T., Rosay T., Desriac F., Louis M., Rodrigues S., Gannesen A., Plakunov V.K., Bouffartigues E., Tahrioui A., Bazire A., Dufour A., Cornelis P., Chevalier S., Feuilloley M.G. Host peptidic hormones affecting bacterial biofilm formation and virulence. J. Innate Immun., 2019, vol. 11, no. 3, pp. 227–241. doi: 10.1159/000493926
  33. Li R., Li Y., Li C., Zheng D., Chen P. Gut microbiota and endocrine disorder. Adv. Exp. Med. Biol., 2020, vol. 1238, pp. 143–164. doi: 10.1007/978-981-15-2385-4_9
  34. Merrick M., Javelle A., Durand A., Severi E., Thornton J., Avent N.D., Conroy M.J., Bullough P.A. The Escherichia coli AmtB protein as a model system for understanding ammonium transport by Amt and Rh proteins. Transfus. Clin. Biol., 2006, vol. 13, pp. 97–102. doi: 10.1016/j.tracli.2006.02.015
  35. Miljkovic M., Marinkovic P., Novovic K., Jovcic B., Terzic-Vidojevic A., Kojic M. AggLr, a novel aggregation factor in Lactococcus raffinolactis BGTRK10-1: its role in surface adhesion. Biofouling, 2018, vol. 34, no. 6, pp. 685–698. doi: 10.1080/08927014.2018.1481956
  36. Ochola-Oyier L.I., Okombo J., Wagatua N., Ochieng J., Tetteh K.K., Fegan G., Bejon P., Marsh K. Comparison of allele frequencies of Plasmodium falciparum merozoite antigens in malaria infections sampled in different years in a Kenyan population. Malar. J., 2016, vol. 15, no. 1: 261. doi: 10.1186/s12936-016-1304-8
  37. Oliveira E.P. de, Burini R.C., Jeukendrup A. Gastrointestinal complaints during exercise: Prevalence, etiology, and nutritional recommendations. Sports Med., 2014, vol. 44, pp. 79–85. doi: 10.1007/s40279-014-0153-2
  38. Olszak T., An D., Zeissig S., Vera M.P., Richter J., Franke A., Glickman J.N., Siebert R., Baron R.M., Kasper D.L., Blumberg R.S. Microbial exposure duringearly life has persistent effects on natural killer T cell function. Science, 2012, vol. 336, pp. 489–493. doi: 10.1126/science.1219328
  39. Paul A.S., Egan E.S., Duraisingh M.T. Host-parasite interactions that guide red blood cell invasion by malaria parasites. Curr. Opin. Hematol., 2015, vol. 22, no. 3, pp. 220–226. doi: 10.1097/MOH.0000000000000135
  40. Pavlov I.P. The work of the digestive glands. London: Charles Griffin & Co. Ltd., 1902. 266 p.
  41. Pelaseyed T., Bergström J.H., Gustafsson J.K., Ermund A., Birchenough G.M., Schütte A., van der Post S., Svensson F., Rodríguez-Piñeiro A.M., Nyström E.E., Wising C., Johansson M.E., Hansson G.C. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol. Rev., 2014, vol. 260, pp. 8–20. doi: 10.1111/imr.12182
  42. Popielski L. -imidiazolylaethylamin und die Organextrakte. Pflug. Arch. Ges. Physiol., 1920, vol. 178, pp. 237–259. doi: 10.1007/BF01722025
  43. Proctor L.M., Creasy H.H., Fettweis J.M., Lloyd-Price J., Mahurkar A., Zhou W., Buck G.A., Snyder M.P., Strauss J.F., Weinstock G.M., White O., Huttenhower C. The integrative human microbiome project. Nature, 2019, vol. 569, no. 7758, pp. 641–648. doi: 10.1038/s41586-019-1238-8
  44. Rajagopala S.V., Vashee S., Oldfield L.M., Suzuki Y., Venter J.C., Telenti A., Nelson K.E. The human microbiome and cancer. Cancer Prev. Res. (Phila), 2017, vol. 10, no. 4, pp. 226–234. doi: 10.1158/1940-6207.CAPR-16-0249
  45. Saier M.H., Eng B.H., Fard S., Garg J., Haggerty D.A., Hutchinson W.J., Jack D.L., Lai E.C., Liu H.J., Nusinew D.P., Omar A.M., Pao S.S., Paulsen I.T., Quan J.A., Sliwinski M., Tseng T.-T., Wachi S., Young G.B. Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim. Biophys. Acta, 1999, vol. 1422, iss. 1, pp. 1–56. doi: 10.1016/s0304-4157(98)00023-9
  46. Sarkodie E.K., Zhou S., Baidoo S.A., Chu W. Influences of stress hormones on microbial infections. Microb. Pathog., 2019, vol. 131, pp. 270–276. doi: 10.1016/j.micpath.2019.04.013
  47. Shan B., Ai Z., Zeng S., Song Y., Song J., Zeng Q., Liao Z., Wang T., Huang C., Su D. Gut microbiome-derived lactate promotes to anxiety-like behaviors through GPR81 receptor-mediated lipid metabolism pathway. Psychoneuroendocrinology, 2020, vol. 117: 104699. doi: 10.1016/j.psyneuen.2020.104699
  48. Shen J., Obin M.S., Zhao L. The gut microbiota, obesity and insulin resistance. Mol. Aspects Med., 2013, vol. 34, no. 1, pp. 39–58. doi: 10.1016/j.mam.2012.11.001
  49. Siciliano R.A., Mazzeo M.F. Molecular mechanisms of probiotic action: a proteomic perspective. Curr. Opin. Microbiol., 2012, vol. 15, pp. 390–396. doi: 10.1016/j.mib.2012.03.006
  50. Sommer F., Backhed F. The gut microbiota engages different signaling pathways to induce Duox2 expression in the ileum and colon epithelium. Mucosal Immunol., 2015, vol. 8, pp. 372–379. doi: 10.1038/mi.2014.74
  51. Strausberg R.L., Feingold E.A., Grouse L.H., Derge J.G., Klausner R.D., Collins F.S., Wagner L., Shenmen C.M., Schuler G.D., Altschul S.F., Zeeberg B., Buetow K.H., Schaefer C.F., Bhat N.K., Hopkins R.F., Jordan H., Moore T., Max S.I., Wang J., Hsieh F., Diatchenko L., Marusina K., Farmer A.A., Rubin G.M., Hong L., Stapleton M., Soares M.B., Bonaldo M.F., Casavant T.L., Scheetz T.E., Brownstein M.J., Usdin T.B., Toshiyuki S., Carninci P., Prange C., Raha S.S., Loquellano N.A., Peters G.J., Abramson R.D., Mullahy S.J., Bosak S.A., McEwan P.J., McKernan K.J., Malek J.A., Gunaratne P.H., Richards S., Worley K.C., Hale S., Garcia A.M., Gay L.J., Hulyk S.W., Villalon D.K., Muzny D.M., Sodergren E.J., Lu X., Gibbs R.A., Fahey J., Helton E., Ketteman M., Madan A., Rodrigues S., Sanchez A., Whiting M., Madan A., Young A.C., Shevchenko Y., Bouffard G.G., Blakesley R.W., Touchman J.W., Green E.D., Dickson M.C., Rodriguez A.C., Grimwood J., Schmutz J., Myers R.M., Butterfield Y.S., Krzywinski M.I., Skalska U., Smailus D.E., Schnerch A., Schein J.E., Jones S.J., Marra M.A. Mammalian Gene Collection Program Team. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no. 26, pp. 16899–16903. doi: 10.1073/pnas.242603899
  52. Togo A.H., Diop A., Bittar F., Maraninchi M., Valero R., Armstrong N., Dubourg G., Labas N., Richez M., Delerce J., Levasseur A., Fournier P.E., Raoult D., Million M. Description of Mediterraneibactermassiliensis, gen. nov., sp. nov., a new genus isolated from the gut microbiota of an obese patient and reclassification of Ruminococcusfaecis, Ruminococcuslactaris, Ruminococcus torques, Ruminococcusgnavus and Clostridium glycyrrhizinilyticum as Mediterraneibacterfaecis comb. nov., Mediterraneibacterlactaris comb. nov., Mediterraneibacter torques comb. nov., Mediterraneibactergnavus comb. nov. and Mediterraneibacterglycyrrhizinilyticus comb. nov. Antonie Van Leeuwenhoek, 2018, vol. 111, no. 11, pp. 2107–2128. doi: 10.1007/s10482-018-1104-y
  53. Triboulet H., Coyon A. Le rhumatisme articulaire aigu en bacteriologie. Paris: Librairie J.-B. Bailliere et Fils, 1900. 100 p.
  54. Wallon C., Yang P.C., Keita A.V., Ericson A.C., McKay D.M., Sherman P.M., Perdue M.H., Söderholm J.D. Corticotropin-releasing hormone (CRH) regulates macromolecular permeability via mast cells in normal human colonic biopsies in vitro. Gut, 2008, vol. 57, no. 1, pp. 50–58. doi: 10.1136/gut.2006.117549
  55. Wang F., Meng W., Wang B., Qiao L. Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Lett., 2014, vol. 345, no. 2, pp. 196–202. doi: 10.1016/j.canlet.2013.08.016
  56. Wang R.X., Lee J.S., Campbell E.L., Colgan S.P. Microbiota-derived butyrate dynamically regulates intestinal homeostasis through regulation of actin-associated protein synaptopodin. Proc. Natl. Acad. Sci. USA, 2020, vol. 117, no. 21, pp. 11648–11647. doi: 10.1073/pnas.1917597117
  57. Warren R.J., Marshall B.J. Unidentified curved bacilli in gastric epithelium in active chronic gastritis. Lancet, 1983, vol. 321, no. 8336, pp. 1273–1275. doi: 10.1016/S0140-6736(83)92719-8
  58. Wells J.M., Rossi O., Meijerink M., van Baarlen P. Epithelial crosstalk at the microbiota–mucosal interface. Proc. Natl. Acad. Sci. USA, 2011, vol. 108, pp. 4607–4614. doi: 10.1073/pnas.1000092107
  59. Weng Y., Chen T., Ren J., Lu D., Liu X., Lin S., Xu C., Lou J., Chen X., Tang L. The association between extracellular matrix metalloproteinase inducer polymorphisms and coronary heart disease: a potential way to predict disease. DNA Cell Biol., 2020, vol. 39, no. 2, pp. 244–254. doi: 10.1089/dna.2019.5015
  60. Yin Q., Srivastava K., Gebremedhin A., Makuria A.T., Flegel W.A. Long-range haplotype analysis of the malaria parasite receptor gene ACKR1 in an East-African population. Hum. Genome Var., 2018, vol. 5, pp. 26. doi: 10.1038/s41439-018-0024-8
  61. Yunck R., Cho H., Bernhardt T.G. Identification of MltG as a potential terminase for peptidoglycan polymerization in bacteria. Mol. Microbiol., 2016, vol. 99, no. 4, pp. 700–718. doi: 10.1111/mmi.13258
  62. Zoetendal E.G., Raes J., van den Bogert B., Arumugam M., Booijink C.C.G.M., Troost F.J., Bork P., Wels M., de Vos W.M., Kleerebezem M. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J., 2012, vol. 6, pp.1415–1426. doi: 10.1038/ismej.2011.212
  63. Zuhl M., Schneider S., Lanphere K., Conn C., Dokladny K., Moseley P. Exercise regulation of intestinal tight junction proteins. Br. J. Sports Med., 2014, vol. 48, no. 12, pp. 980–986. doi: 10.1136/bjsports-2012-091585

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Loskutov S.I., Proshin S.N., Ryabukhin D.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies