Evaluation of serum levels of IL-6 and adiponectin in COVID-19 patients and their relationship with disease severity
- Authors: Norouzian M.1, Sharifi-Sarasiabi K.1, Najafi-Asl M.1, Hassani Azad M.1, Estabraghnia Babaki H.1
-
Affiliations:
- Hormozgan University of Medical Sciences
- Issue: Vol 12, No 3 (2022)
- Pages: 511-518
- Section: ORIGINAL ARTICLES
- URL: https://journals.rcsi.science/2220-7619/article/view/119078
- DOI: https://doi.org/10.15789/2220-7619-EOS-1783
- ID: 119078
Cite item
Full Text
Abstract
Background. The SARS-CoV-2 pandemic has prompted researchers around the world to identify risk factors associated with disease severity and mortality. Results suggest that COVID-19 mortality might be due to a ‘cytokine storm’ involving IL-6, and that obesity can be considered a risk factor for COVID-19 prevalence, severity, and mortality. The current study aimed to evaluate the serum levels of IL-6 and adiponectin in patients and their relationship with disease progression. Materials and methods. ELISA was used to assess the levels of IL-6 and adiponectin in serum samples from a control group and from patients with COVID-19 at the time of admission to ICU or non-ICU wards. The results were analyzed using the Mann–Whitney and Spearman tests. Results. Mean serum levels of adiponectin in patients admitted to ICU (10.18±15.4 ng/ml) were significantly higher than patients admitted to non-ICU wards (3.14±3 ng/ml, p = 0.001). Mean serum IL-6 levels showed a similar pattern, however the difference was not statistically significant (p = 0.18). In addition, a significant direct correlation was observed between adiponectin expression and IL-6 (R = 0.2, p = 0.03). Conclusion. The results of this study show that serum levels of adiponectin in COVID-19 patients with severe lung involvement were significantly higher than those with less lung involvement. This finding is of high importance mainly due to the critical role of the lungs in adiponectin signaling, and as a result, adiponectin disorders may be associated with pulmonary complications in COVID-19 patients.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Marzieh Norouzian
Hormozgan University of Medical Sciences
Author for correspondence.
Email: marzieh.norouzi@gmail.com
Assistant Professor of Medical Immunology, Department of Laboratory Sciences, School of Allied Medical Sciences
Iran, Islamic Republic of, Bandar AbbasKhojasteh Sharifi-Sarasiabi
Hormozgan University of Medical Sciences
Email: sharifisarasiabi@gmail.com
Infectious and Tropical Diseases Research Center, Hormozgan Health Institute
Iran, Islamic Republic of, Bandar AbbasMajid Najafi-Asl
Hormozgan University of Medical Sciences
Email: najafiasl2015@gmail.com
Department of Laboratory Sciences, School of Allied Medical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Infectious and Tropical Diseases Research Center, Hormozgan Health Institute
Iran, Islamic Republic of, Bandar AbbasM. Hassani Azad
Hormozgan University of Medical Sciences
Email: mehdihassaniazad@gmail.com
Infectious and Tropical Diseases Research Center, Hormozgan Health Institute
Iran, Islamic Republic of, Bandar AbbasH. Estabraghnia Babaki
Hormozgan University of Medical Sciences
Email: h.estabragh@gmail.com
Department of Internal Medicine, Shahid Mohammadi Hospital, Faculty of Medicine
Iran, Islamic Republic of, Bandar AbbasReferences
- Ajuwon K.M., Spurlock M.E. Adiponectin inhibits LPS-induced NF-κB activation and IL-6 production and increases PPARγ2 expression in adipocytes. Am. Physiol J. Regul. Integr. Comp. Physiol., 2005, vol. 288, no. 5, pp. R1220–R1225. doi: 10.1152/ajpregu.00397.2004
- Baud D., Qi X., Nielsen-Saines K., Musso D., Pomar L., Favre G. Real estimates of mortality following COVID-19 infection. Lancet Infect. Dis., 2020, vol. 20, no. 7: 773. doi: 10.1016/S1473-3099(20)30195-X
- Bianco A., Mazzarella G., Turchiarelli V., Nigro E., Corbi G., Scudiero O., Sofia M., Daniele A. Adiponectin: an attractive marker for metabolic disorders in Chronic Obstructive Pulmonary Disease (COPD). Nutrients, 2013, vol. 5, no. 10, pp. 4115–4125. doi: 10.3390/nu5104115
- Blot M., David M., Nguyen M., Bourredjem A., Binquet C., Piroth L. Are adipokines the missing link between obesity, immune response, and outcomes in severe COVID-19? Int. J. Obes. (Lond.), 2021, vol. 45, no. 9, pp. 2126–2131. doi: 10.1038/s41366-021-00868-5
- Chen J.S., Alfajaro M.M., Chow R.D., Wei J., Filler R.B., Eisenbarth S.C., Wilen C.B. Non-steroidal anti-inflammatory drugs dampen the cytokine and antibody response to SARS-CoV-2 infection. J. Virol., 2021, vol. 95, no. 7: e00014-21. doi: 10.1128/JVI.00014-21
- Chiang C.H., Lai J.S., Hung S.H., Lee L.T., Sheu J.C., Huang K.C. Serum adiponectin levels are associated with hepatitis B viral load in overweight to obese hepatitis B virus carriers. Obesity, 2013, vol. 21, no. 2, pp. 291–296. doi: 10.1002/oby.20000
- Choi H.M., Doss H.M., Kim K.S. Multifaceted physiological roles of adiponectin in inflammation and diseases. Int. J. Mol. Sci., 2020, vol. 21, no. 4. doi: 10.3390/ijms21041219
- Daniele A., De Rosa A., Nigro E., Scudiero O., Capasso M., Masullo M., De Laurentiis G., Oriani G., Sofia M., Bianco A. Adiponectin oligomerization state and adiponectin receptors airway expression in chronic obstructive pulmonary disease. Int. J. Biochem. Cell Biol., 2012, vol. 44, no. 3, pp. 563–569. doi: 10.1016/j.biocel.2011.12.016
- Dieplinger B., Gegenhuber A., Kaar G., Poelz W., Haltmayer M., Mueller T. Prognostic value of established and novel biomarkers in patients with shortness of breath attending an emergency department. Clin. Biochem., 2010, vol. 43, no. 9, pp. 714–719. doi: 10.1016/j.clinbiochem.2010.02.002
- Ehling A., Schäffler A., Herfarth H., Tarner I.H., Anders S., Distler O., Paul G., Distler J., Gay S., Schölmerich J. The potential of adiponectin in driving arthritis. J. Immunol., 2006, vol. 176, no. 7, pp. 4468–4478. doi: 10.4049/jimmunol.176.7.4468
- Furuta M., Tamai M., Hanabusa T., Yamamoto Y., Nanjo K., Sanke T. Serum adiponectin is associated with fasting serum C-peptide in non-obese diabetic patients. Diabetes Res. Clin. Pract., 2006, vol. 72, no. 3, pp. 302–307. doi: 10.1016/j.diabres.2005.10.026
- Guan W.J., Ni Z.Y., Hu Y., Liang W.H., Ou C.Q., He J.X., Liu L., Shan H., Lei C.L., Hui D.S.C., Du B., Li L.J., Zeng G., Yuen K.Y., Chen R.C., Tang C.L., Wang T., Chen P.Y., Xiang J., Li S.Y., Wang J.L., Liang Z.J., Peng Y.X., Wei L., Liu Y., Hu Y.H., Peng P., Wang J.M., Liu J.Y., Chen Z., Li G., Zheng Z.J., Qiu S.Q., Luo J., Ye C.J., Zhu S.Y., Zhong N.S.; China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med., 2020, vol. 382, no. 18, pp. 1708–1720. doi: 10.1056/NEJMoa2002032
- Hadjadj S., Aubert R., Fumeron F., Pean F., Tichet J., Roussel R., Marre M. Increased plasma adiponectin concentrations are associated with microangiopathy in type 1 diabetic subjects. Diabetologia, 2005, vol. 48, no. 6, pp. 1088–1092. doi: 10.1007/s00125-005-1747-x
- Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, vol. 395, no. 10223, pp. 497–506. doi: 10.1016/S0140-6736(20)30183-5
- Hug C., Wang J., Ahmad N.S., Bogan J.S., Tsao T.-S., Lodish H.F. T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc. Natl Acad. Sci., 2004, vol. 101, no. 28, pp. 10308–10313. doi: 10.1073/pnas.0403382101
- Jordan R.E., Adab P., Cheng K. COVID-19: risk factors for severe disease and death. BMJ, 2020, vol. 368: m1198. doi: 10.1136/bmj.m1198
- Krakoff J., Funahashi T., Stehouwer C.D., Schalkwijk C.G., Tanaka S., Matsuzawa Y., Kobes S., Tataranni P.A., Hanson R.L., Knowler W.C. Inflammatory markers, adiponectin, and risk of type 2 diabetes in the Pima Indian. Diabetes Care, 2003, vol. 26, no. 6, pp. 1745–1751. doi: 10.2337/diacare.26.6.1745
- Malhotra A., Hillman D. Obesity and the lung: 3. Obesity, respiration and intensive care. Thorax, 2008, vol. 63, no. 10, pp. 925–931. doi: 10.1136/thx.2007.086835
- Mantzoros C.S., Li T., Manson J.E., Meigs J.B., Hu F.B. Circulating adiponectin levels are associated with better glycemic control, more favorable lipid profile, and reduced inflammation in women with type 2 diabetes. J. Clin. Endocrinol. Metab., 2005, vol. 90, no. 8, pp. 4542–4548. doi: 10.1210/jc.2005-0372
- Masaki T., Chiba S., Tatsukawa H., Yasuda T., Noguchi H., Seike M., Yoshimatsu H. Adiponectin protects LPS-induced liver injury through modulation of TNFα in KK-Ay obese mice. Hepatology, 2004, vol. 40, no. 1, pp. 177–184. doi: 10.1002/hep.20282
- Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet, 2020, vol. 395, no. 10229, pp. 1033–1034. doi: 10.1016/S0140-6736(20)30628-0
- Nigro E., Scudiero O., Sarnataro D., Mazzarella G., Sofia M., Bianco A., Daniele A. Adiponectin affects lung epithelial A549 cell viability counteracting TNFa and IL-1β toxicity through AdipoR1. Int. J. Biochem. Cell Biol., 2013, vol. 45, no. 6, pp. 1145–1153. doi: 10.1016/j.biocel.2013.03.003
- Ohashi K., Ouchi N., Matsuzawa Y. Anti-inflammatory and anti-atherogenic properties of adiponectin. Biochimie, 2012, vol. 94, no. 10, pp. 2137–2142. doi: 10.1016/j.biochi.2012.06.008
- Ohashi K., Shibata R., Murohara T., Ouchi N. Role of anti-inflammatory adipokines in obesity-related diseases. Trends Endocrinol. Metab., 2014, vol. 25, no. 7, pp. 348–355. 10.1016/j.tem.2014.03.009
- Otero M., Lago R., Gomez R., Lago F., Dieguez C., Gomez-Reino J.J., Gualillo O. Changes in fat-derived hormones plasma concentrations: adiponectin, leptin, resistin, and visfatin in rheumatoid arthritis subjects. Ann. Rheum. Dis., 2006, vol. 65, no. 9, pp. 1198–1201. doi: 10.1136/ard.2005.046540
- Pajvani U.B., Hawkins M., Combs T.P., Rajala M.W., Doebber T., Berger J.P., Wagner J.A., Wu M., Knopps A., Xiang A.H. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J. Biol. Chem., 2004, vol. 279, no. 13, pp. 12152–12162. doi: 10.1074/jbc.M311113200
- Pemmari A., Tuure L., Hämäläinen M., Leppänen T., Vuolteenaho K., Moilanen T., Moilanen E. Comprehensive effects of ibuprofen on gene expression in chondrocytes as determined by RNA-Seq. Osteoarthritis Cartilage, 2019, vol. 27, p. S378. doi: 10.1016/j.joca.2019.02.375
- Petrakis D., Margină D., Tsarouhas K., Tekos F., Stan M., Nikitovic D., Kouretas D., Spandidos D.A., Tsatsakis A. Obesity — a risk factor for increased COVID-19 prevalence, severity and lethality. Mol. Med. Rep., 2020, vol. 22, no. 1. pp. 9–19. doi: 10.3892/mmr.2020.11127
- Polito R., Nigro E., Elce A., Monaco M.L., Iacotucci P., Carnovale V., Comegna M., Gelzo M., Zarrilli F., Corso G. Adiponectin expression is modulated by long-term physical activity in adult patients affected by cystic fibrosis. Mediators Inflamm., 2019, vol. 2019: 2153934. doi: 10.1155/2019/2153934
- Ruan Q., Yang K., Wang W., Jiang L., Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med., 2020, vol. 46, no. 5, pp. 846–848. doi: 10.1007/s00134-020-05991-x
- Sada K.-E., Yamasaki Y., Maruyama M., Sugiyama H., Yamamura M., Maeshima Y., Makino H. Altered levels of adipocytokines in association with insulin resistance in patients with systemic lupus erythematosus. J. Rheumatol., 2006, vol. 33, no. 8, pp. 1545–1552.
- Schäffler A., Ehling A., Neumann E., Herfarth H., Tarner I., Schölmerich J., Müller-Ladner U., Gay S. Adipocytokines in synovial fluid. JAMA, 2003, vol. 290, no. 13, pp. 1709–1710. doi: 10.1001/jama.290.13.1709-c
- Schnabel R., Messow C.M., Lubos E., Espinola-Klein C., Rupprecht H.J., Bickel C., Sinning C., Tzikas S., Keller T., Genth-Zotz S., Lackner K.J., Münzel T.F., Blankenberg S. Association of adiponectin with adverse outcome in coronary artery disease patients: results from the AtheroGene study. Eur. Heart J., 2008, vol. 29, no. 5, pp. 649–657. doi: 10.1093/eurheartj/ehn009
- Simonnet A., Chetboun M., Poissy J., Raverdy V., Noulette J., Duhamel A., Labreuche J., Mathieu D., Pattou F., Jourdain M. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity, 2020, vol. 28, no. 7. pp. 1195–1199. doi: 10.1002/oby.22831
- Sood A., Dominic E., Qualls C., Steffes M.W., Thyagarajan B., Smith L.J., Lewis C.E., Jacobs D.Jr R. Serum adiponectin is associated with adverse outcomes of asthma in men but not in women. Front. Pharmacol., 2011, vol. 2: 55. doi: 10.3389/fphar.2011.00055
- Takemura Y., Ouchi N., Shibata R., Aprahamian T., Kirber M.T., Summer R.S., Kihara S., Walsh K. Adiponectin modulates inflammatory reactions via calreticulin receptor-dependent clearance of early apoptotic bodies. J. Clin. Invest., 2007, vol. 117, no. 2, pp. 375–386. doi: 10.1172/JCI29709
- Tang C.-H., Chiu Y.-C., Tan T.-W., Yang R.-S., Fu W.-M. Adiponectin enhances IL-6 production in human synovial fibroblast via an AdipoR1 receptor, AMPK, p38, and NF-κB pathway. J. Immunol., 2007, vol. 179, no. 8, pp. 5483–5492. doi: 10.4049/jimmunol.179.8.5483
- Tiftikci A., Atug O., Yilmaz Y., Eren F., Ozdemir F.T., Yapali S., Ozdogan O., Celikel C.A., Imeryuz N., Tozun N. Serum levels of adipokines in patients with chronic HCV infection: relationship with steatosis and fibrosis. Arch. Med. Res., 2009, vol. 40, no. 4, pp. 294–298. doi: 10.1186/1471-230X-14-27
- Tsuboi I., Tanaka H., Nakao M., Shichijo S., Itoh K. Nonsteroidal anti-inflammatory drugs differentially regulate cytokine production in human lymphocytes: up-regulation of TNF, IFN-gamma and IL-2, in contrast to down-regulation of IL-6 production. Cytokine, 1995, vol. 7, no. 4, pp. 372–379. doi: 10.1006/CYTO.1995.0047
- Vaduganathan M., Vardeny O., Michel T., McMurray J.J., Pfeffer M.A., Solomon S.D. Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19. New Engl. J. Med., 2020, vol. 382, no. 17, pp. 1653–1659. doi: 10.1056/NEJMsr2005760
- Walkey A.J., Rice T.W., Konter J., Ouchi N., Shibata R., Walsh K., de Boisblanc B.P., Summer R. Plasma adiponectin and mortality in critically ill subjects with acute respiratory failure. Crit. Care Med., 2010, vol. 38, no. 12, pp. 2329–2334. doi: 10.1097/CCM.0b013e3181fa0561
- Wang Y., Lam K.S., Yau M.-H., Xu A. Post-translational modifications of adiponectin: mechanisms and functional implications. Biochem. J., 2008, vol. 409, no. 3, pp. 623–633. doi: 10.1042/BJ20071492
- Wolf A.M., Wolf D., Rumpold H., Enrich B., Tilg H. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem. Biophys. Res. Commun., 2004, vol. 323, no. 2, pp. 630–635. doi: 10.1016/j.bbrc.2004.08.145
- Wozniak S.E., Gee L.L., Wachtel M.S., Frezza E.E. Adipose tissue: the new endocrine organ? A review article. Dig. Dis. Sci., 2009, vol. 54, no. 9, pp. 1847–1856. doi: 10.1007/s10620-008-0585-3
- Wulster-Radcliffe M.C., Ajuwon K.M., Wang J., Christian J.A., Spurlock M.E. Adiponectin differentially regulates cytokines in porcine macrophages. Biochem. Biophys. Res. Commun., 2004, vol. 316, no. 3, pp. 924–929. doi: 10.1016/j.bbrc.2004.02.130
- Yamamoto K., Kiyohara T., Murayama Y., Kihara S., Okamoto Y., Funahashi T., Ito T., Nezu R., Tsutsui S., Miyagawa J. Production of adiponectin, an anti-inflammatory protein, in mesenteric adipose tissue in Crohn’s disease. Gut, 2005, vol. 54, no. 6, pp. 789–796. doi: 10.1136/gut.2004.046516
- Yamauchi T., Nio Y., Maki T., Kobayashi M., Takazawa T., Iwabu M., Okada-Iwabu M., Kawamoto S., Kubota N., Kubota T. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nature Med., 2007, vol. 13, no. 3, pp. 332–339. doi: 10.1038/nm1557
- Zhi G., Xin W., Ying W., Guohong X., Shuying L. “Obesity paradox” in acute respiratory distress syndrome: asystematic review and meta-analysis. PLoS One, 2016, vol. 11, no. 9: e0163677. doi: 10.1371/journal.pone.0163677
Supplementary files
