Rhino- and RS-viruses in the COVID-19 pandemic

Cover Page

Cite item

Full Text

Abstract

Acute respiratory viral infections are distributed across the globe and are the most numerous human diseases caused by several hundreds of diverse viruses. Human rhinovirus is one of the most common respiratory pathogens worldwide, causing more than half of all acute respiratory viral infection cases. Seasonal human coronaviruses account for 10–15% of common cold cases; respiratory syncytial (RS) virus is the most common cause of respiratory hospitalization in infants; influenza viruses, adenoviruses, human parainfluenza virus, metapneumoviruses, and some other pathogens are also widespread. It is believed that viral common colds are mostly self-limited, causing mild infections that usually resolve within 8–10 days. However, the role of common seasonal respiratory viruses in total respiratory morbidity should not be underestimated. It turned out that during extraordinary conditions of pandemics, they behave differently. This was clearly demonstrated in the last 2009 influenza pandemic. Whereas some viruses lost relevance under the burden of a new aggressive pandemic strain, others, e.g., rhinovirus, continued to fight for existence and not only circulated along with the pandemic pathogen, but delayed its spread in some cases. For instance, the data from some European countries pointed out that the circulation of the H1N1pdm09 influenza A pandemic virus was interrupted by the annual rhinovirus outbreak. Ten years after the H1N1pdm09 influenza pandemic, a new virus outbreak emerged — the COVID-19 pandemic has begun. This pandemic, caused by the SARS-CoV-2 virus, has disrupted well-established pathogenetic and epidemiological relationships. The level of circulation of many respiratory pathogens has changed dramatically. For instance, global influenza activity has been at a much lower level than expected for the second year from now. In many regions of the world, the flu season has not been started yet. But what is interesting is that rhinoviruses together with RS-virus again showed their unique ability to compete with highly pathogenic and aggressive pathogens. Along with profoundly reduced circulation of many other seasonal respiratory viruses, rhinovirus, and RS-virus are the most frequently detected viruses. In this review, we have brought together the main biological characteristics of such genetically distinct viruses such as rhinovirus, influenza A virus, RS-virus, and SARS-CoV-2. We focused on their main similarities and discrepancies in the attempt to understand why they behave so differently in extreme pandemic conditions as well as what allows rhinoviruses and RS-viruses to coexist with SARS-CoV-2, which in turn almost fully replaced the influenza virus.

About the authors

Irina V. Kiseleva

Institute of Experimental Medicine; St. Petersburg University

Author for correspondence.
Email: irina.v.kiseleva@mail.ru
ORCID iD: 0000-0002-3892-9873

PhD, MD (Biology), Professor, Head of the Laboratory of General Virology, Professor, Department of Fundamental Problems of Medicine and Medical technologies

Russian Federation, 12, Academician Pavlov str., St. Petersburg, 197376; St. Petersburg

Andrew D. Ksenafontov

Smorodintsev Research Institute of Influenza

Email: ksenandrey@yandex.ru
ORCID iD: 0000-0002-4532-6210

PhD Student

Russian Federation, St. Petersburg

References

  1. Aboubakr H.A., Sharafeldin T.A., Goyal S.M. Stability of SARS-CoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: a review. Transbound. Emerg. Dis., 2021, vol. 68, no. 2, pp. 296–312. doi: 10.1111/tbed.13707
  2. Anderson R.M., Fraser C., Ghani A.C., Donnelly C.A., Riley S., Ferguson N.M., Leung G.M., Lam T.H., Hedley A.J. Epidemiology, transmission dynamics and control of SARS: the 2002–2003 epidemic. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2004, vol. 359, no. 1447, pp. 1091–1105. doi: 10.1098/rstb.2004.1490
  3. Ånestad G., Nordbø S.A. Does rhinovirus inhibit influenza A(H1N1) pandemic? Tidsskr. Nor. Laegeforen., 2010, vol. 130, no. 19, pp. 1932–1934. doi: 10.4045/tidsskr.10.0660
  4. Ånestad G., Nordbø S.A. Virus interference. Did rhinoviruses activity hamper the progress of the 2009 influenza A (H1N1) pandemic in Norway? Med. Hypotheses, 2011, vol. 77, no. 6, pp. 1132–1134. doi: 10.1016/j.mehy.2011.09.021
  5. Arden K.E., Mackay I.M. Newly identified human rhinoviruses: molecular methods heat up the cold viruses. Rev. Med. Virol., 2010, vol. 20, no. 3, pp. 156–176. doi: 10.1002/rmv.644
  6. Barreto-Vieira D.F., da Silva M.A.N., Garcia C.C.,Miranda M.D., Matos A.D.R., Caetano B.C., Resende P.C., Motta F.C., Siqueira M.M., Girard-Dias W., Archanjo B.S., Barth O.M. Morphology and morphogenesis of SARS-CoV-2 in Vero-E6 cells. Mem. Inst. Oswaldo. Cruz., 2021, vol. 116: e200443. doi: 10.1590/0074-02760200443
  7. Beeching N.J., Fletcher T.E., Beadsworth M.B.J. COVID-19: testing times. BMJ, 2020, vol. 369, no. m1403, pp. 1–2. doi: 10.1136/bmj.m1403
  8. Berlin D.A., Gulick R.M., Martinez F.J., Severe COVID-19. N. Engl. J. Med., 2020, vol.383, no. 25, pp. 2451–2460. doi: 10.1056/NEJMcp2009575
  9. Breen M., Nogales A., Baker S.F., Martínez-Sobrido L. Replication-competent influenza A viruses expressing reporter genes. Viruses, 2016, vol. 8, no. 7, pp. 179. doi: 10.3390/v8070179
  10. Calderaro A., De Conto F., Buttrini M., Piccolo G., Montecchin S., Maccari C., Martinelli M., Di Maio A., Ferraglia F., Pinardi F., Montagna P., Arcangeletti M.C., Chezzi C. Human respiratory viruses, including SARS-CoV-2, circulating in the winter season 2019–2020 in Parma, Northern Italy. Int. J. Infect. Dis., 2020, vol. 102, pp. 79–84. doi: 10.1016/j.ijid.2020.09.1473
  11. Carod-Artal F.J., Neurological complications of coronavirus and COVID-19. Rev. Neurol., 2020, vol. 70, no. 9, pp. 311–322. doi: 10.33588/rn.7009.2020179
  12. Casalegno J.S., Ottmann M., Bouscambert-Duchamp M., Valette M., Morfin F., Lina B. Impact of the 2009 influenza A(H1N1) pandemic wave on the pattern of hibernal respiratory virus epidemics, France, 2009. Euro Surveill., 2010, vol. 15, no. 6: 19485.
  13. Casalegno J.S., Ottmann M., Duchamp M.B., Escuret V., Billaud G., Frobert E., Morfin F., Lina B. Rhinoviruses delayed the circulation of the pandemic influenza A (H1N1) 2009 virus in France. Clin. Microbiol. Infect., 2010, vol. 16, no. 4, pp. 326–329. doi: 10.1111/j.14690691.2010.03167.x
  14. Charles C.H., Yelmene M., Luo G.X. Recent advances in rhinovirus therapeutics. Curr. Drug Targets Infect. Disord., 2004, vol. 4, no. 4, pp. 331–337. doi: 10.2174/1568005043340551
  15. Cheung T.K., Poon L.L. Biology of influenza a virus. Ann. N.Y. Acad. Sci., 2007, vol. 1102, pp. 1–25. doi: 10.1196/annals.1408.001
  16. Cimolai N. Complicating infections associated with common endemic human respiratory coronaviruses. Health Secur., 2021, vol. 19, no. 2, pp. 195–208. doi: 10.1089/hs.2020.0067
  17. Collins P.L., Fearns R., Graham B.S. Respiratory syncytial virus: virology, reverse genetics, and pathogenesis of disease. Curr. Top Microbiol. Immunol., 2013, vol. 372, pp. 3–38. doi: 10.1007/978-3-642-38919-1_1
  18. Cowton V.M., McGivern D.R., Fearns R. Unravelling the complexities of respiratory syncytial virus RNA synthesis. J. Gen. Virol., 2006, vol. 87, no. 7, pp. 1805–1821. doi: 10.1099/vir.0.81786-0
  19. De Vlugt C., Sikora D., Pelchat M. Insight into influenza: a virus cap-snatching. Viruses, 2018, vol. 10, no. 11: 641. doi: 10.3390/v10110641
  20. Dee K., Goldfarb D.M., Haney J., Amat J.A.R., Herder V., Stewart M., Szemiel A.M., Baguelin M., Murcia P.R. Human rhinovirus infection blocks SARS-CoV-2 replication within the respiratory epithelium: implications for COVID-19 epidemiology. J. Infect. Dis., 2021, vol. 224, no. 1, pp. 31–38. doi: 10.1093/infdis/jiab147
  21. Dehbandi R., Zazouli M.A. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe. 2020, vol. 1, no. 4: e145. doi: 10.1016/s2666-5247(20)30093-8
  22. Dou D., Revol R., Östbye H., Wang H., Daniels R. Influenza A virus cell entry, replication, virion assembly and movement. Front Immunol., 2018, vol. 9: 1581. doi: 10.3389/fimmu.2018.01581
  23. Dreschers S., Dumitru C.A., Adams C., Gulbins E. The cold case: are rhinoviruses perfectly adapted pathogens? Cell Mol. Life. Sci., 2007, vol. 64, no. 2, pp. 181–191. doi: 10.1007/s00018-006-6266-5
  24. Drysdale S.B., Mejias A., Ramilo O. Rhinovirus — not just the common cold. J. Infect., 2017, vol. 74, no. 1, pp. 41–46. doi: 10.1016/s0163-4453(17)30190-1
  25. Eccles R. Understanding the symptoms of the common cold and influenza. Lancet Infect. Dis., vol. 2005, no. 5, pp. 718–725. doi: 10.1016/s1473-3099(05)70270-x
  26. Eslami H., Jalili M. The role of environmental factors to transmission of SARS-CoV-2 (COVID-19). AMB Express, 2020, vol. 10, no. 92. doi: 10.1186/s13568-020-01028-0
  27. Fendrick A.M., Monto A.S., Nightengale B., Sarnes M. The economic burden of non-influenza-related viral respiratory tract infection in the United States. Arch. Intern. Med., 2003, vol. 163, no. 4, pp. 487–494. doi: 10.1001/archinte.163.4.487
  28. Firquet S., Beaujard S., Lobert P.E., Sané F., Caloone D., Izard D., Hober D. Survival of enveloped and non-enveloped viruses on inanimate surfaces. Microbes Environ., 2015, vol. 30, no. 2, pp. 140–144. doi: 10.1264/jsme2.ME14145
  29. Geller C., Varbanov M., Duval R.E. Human coronaviruses: insights into environmental resistance and its influence on the development of new antiseptic strategies. Viruses 2012, vol. 4, no. 11, pp. 3044–3068. doi: 10.3390/v4113044
  30. Gorbalenya A.E., Baker S.C., Baric R.S., de Groot R.J., Drosten C., Gulyaeva A.A., Haagmans B.L., Lauber C., Leontovich A.M., Neuman D.W., Penzar D., Perlman S., Poon L.L.M., Samborskiy D.V., Sidorov I.A., Sola I., Ziebuhr J. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol., 2020, vol. 5, no. 4, pp. 536–544. doi: 10.1038/s41564-020-0695-z
  31. Hall C.B., Walsh E.E., Schnabel K.C., Long C.E., McConnochie K.M., Hildreth S.W., Anderson L.J. Occurrence of groups A and B of respiratory syncytial virus over 15 years: associated epidemiologic and clinical characteristics in hospitalized and ambulatory children. J. Infect. Dis., 1990, vol. 162, no. 6, pp. 1283–1290. doi: 10.1093/infdis/162.6.1283
  32. Hanff T.C., Mohareb A.M., Giri J., Cohen J.B., Chirinos J.A. Thrombosis in COVID-19. Am. J. Hematol., 2020, vol. 95, no. 12, pp. 1578–1589. doi: 10.1002/ajh.25982
  33. Harrison A.G., Lin T., Wang P. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol., 2020, vol. 41, no. 12, pp. 1100–1115. doi: 10.1016/j.it.2020.10.004
  34. Hasöksüz M., Kiliç S., Saraç F. Coronaviruses and SARS-CoV-2. Turk. J. Med. Sci., 2020, vol. 50, no. SI-1, pp. 549–556. doi: 10.3906/sag-2004-127
  35. Hemalatha M., Kiran U., Kuncha S.K., Kopperi H., Gokulan C.G., Mohan S.V., Mishra R.K. Surveillance of SARS-CoV-2 spread using wastewater-based epidemiology: comprehensive study. Sci. Total Environ., 2021, vol. 768, pp. 144704. doi: 10.1016/ j.scitotenv.2020.144704
  36. Hendley J.O., Wenzel R.P., Gwaltney J.M. Jr. Transmission of rhinovirus colds by self-inoculation. N. Engl. J. Med., 1973, vol. 288, no. 26, pp. 1361–1364. doi: 10.1056/nejm197306282882601
  37. Henwoo A.F. Coronavirus disinfection in histopathology. J. Histotechnol., 2020, vol. 43, no. 2, pp. 102–104. doi: 10.1080/01478885.2020.1734718
  38. Hirose R., Ikegaya H., Naito Y., Watanabe N., Yoshida T., Bandou R., Daidoji T., Itoh Y., Nakaya T. Survival of SARS-CoV-2 and influenza virus on the human skin: Importance of hand hygiene in COVID-19. Clin. Infect. Dis., 2020: ciaa1517. doi: 10.1093/cid/ciaa1517
  39. Hirsh S., Hindiyeh M., Kolet L., Regev L., Sherbany H., Yaary K., Mendelson E., Mandelboim M. Epidemiological changes of respiratory syncytial virus (RSV) infections in Israel. PLoS One, 2014, vol. 9, no. 3: e90515. doi: 10.1371/journal.pone.0090515
  40. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., Müller M.A., Drosten C., Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, vol. 181, no. 2, pp. 271–280.e8. doi: 10.1016/j.cell.2020.02.052
  41. Hrebík D., Füzik T., Gondová M., Šmerdová L., Adamopoulos A., Šedo O., Zdráhal Z., Plevka P. ICAM-1 induced rearrangements of capsid and genome prime rhinovirus 14 for activation and uncoating. Proc. Natl. Acad. Sci. USA, 2021, vol. 118, no. 19: e2024251118. doi: 10.1073/pnas.2024251118
  42. Hui D.S., I. Azhar E., Madani T.A., Ntoumi F., Kock R., Dar O., Ippolito G., McHugh T.D., Memish Z.A., Drosten C., Zumla A., Petersen E. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health — the latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis., 2020, vol. 91, pp. 264–266. doi: 10.1016/j.ijid.2020.01.009
  43. ICTV. Virus taxonomy. Classification and nomenclature of viruses. Ninth Report of the International Committee on taxonomy of viruses; 9th ed. Eds. King A.M.Q., Adams M.J., Carstens E.B., Lefkowitz E.J. Academic Press: London, 2012. URL: https://www.academia.edu/8097730/Ninth_Report_of_the_International_Committee_on_Taxonomy_of_Viruses
  44. ICTV. Virus taxonomy: 2020 Release. URL: https://talk.ictvonline.org/taxonomy
  45. Jacobs S.E., Lamson D.M., St. George K., Walsh T.J. Human rhinoviruses. Clin. Microbiol. Rev., 2013, vol. 26, no. 1, pp. 135. doi: 10.1128/CMR.00077-12
  46. Jartti T., Jartti L., Peltola V., Waris M., Ruuskanen O. Identification of respiratory viruses in asymptomatic subjects: asymptomatic respiratory viral infections. Pediatr. Infect. Dis. J., 2008, vol. 27, no. 12, pp. 1103–1107. doi: 10.1097/INF.0b013e31817e695d
  47. Karron R.A., Wright P.F., Crowe J.E. Jr., Clements-Mann M.L., Thompson J., Makhene M., Casey R., Murphy B.R. Evaluation of two live, cold-passaged, temperature-sensitive respiratory syncytial virus vaccines in chimpanzees and in human adults, infants, and children. J. Infect. Dis., 1997, vol. 176, no. 6, pp. 1428–1436. doi: 10.1086/514138
  48. Kim D., Quinn J., Pinsky B., Shah N.H., Brown I. Rates of co-nfection between SARS-CoV-2 and other respiratory pathogens. JAMA, 2020, vol. 323, no. 20, pp. 2085–2086. doi: 10.1001/jama.2020.6266
  49. Kiseleva I., Grigorieva E., Larionova N., Al Farroukh M., Rudenko L. COVID-19 in light of seasonal respiratory infections. Biology (Basel), 2020, vol. 9, no. 9: 240. doi: 10.3390/biology9090240
  50. Kiseleva I., Larionova N. Influenza: a century of research. Eds. Kiseleva I., Larionova N. Bentham Science Publishers Ltd.: Sharjah, UAE, 2021, 202 p. doi: 10.2174/97816810884401210101
  51. Kiseleva I., Larionova N., Kuznetsov V., Rudenko L. Phenotypic characteristics of novel swine-origin influenza A/California/07/2009 (H1N1) virus. Influenza Other Respir. Viruses, 2010, vol. 4, no. 1, pp. 1–5. doi: 10.1111/j.1750-2659.2009.00118.x
  52. Kiseleva I., Rekstin A., Al Farroukh M., Bazhenova E., Katelnikova A., Puchkova L., Rudenko L. Non-mouse-adapted H1N1pdm09 virus as a model for influenza research. Viruses, 2020, vol. 12, no. 6: 590. doi: 10.3390/v12060590.
  53. Kiseleva I., Su Q., Toner T.J., Szymkowiak C., Kwan W.S., Rudenko L., Shaw A.R., Youil R. Cell-based assay for the determination of temperature sensitive and cold adapted phenotypes of influenza viruses. J. Virol. Methods, 2004, vol. 116, no. 1, pp. 71–78. doi: 10.1016/j.jviromet.2003.10.012
  54. Koonin E.V., Gorbalenya A.E., Chumakov K.M. Tentative identification of RNA-dependent RNA polymerases of dsRNA viruses and their relationship to positive strand RNA viral polymerases. FEBS Lett., 1989, vol. 252, no. 1–2, pp. 42–46. doi: 10.1016/0014-5793(89)80886-5
  55. Kormuth K.A., Lin K., Qian Z., Myerburg M.M., Marr L.C., Lakdawala S.S., Environmental persistence of influenza viruses is dependent upon virus type and host origin. mSphere, 2019, vol. 4, no. 4: e00552-19. doi: 10.1128/mSphere.00552-19
  56. Kramer A., Schwebke I., Kampf G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis., 2006, vol. 6: 130. doi: 10.1186/1471-2334-6-130
  57. Krammer F., Smith G.J.D., Fouchier R.A.M., Peiris M., Kedzierska K., Doherty P.C., Palese P., Shaw M.L., Treanor J., Webster R.G., García-Sastre A. Influenza. Nat. Rev. Dis. Primers, 2018, vol. 4, no. 1: 3. doi: 10.1038/s41572-018-0002-y
  58. Kumari P., Rothan H.A., Natekar J.P., Stone S., Pathak H., Strate P.G., Arora K., Brinton M.A., Kumar M. Neuroinvasion and encephalitis following intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice. Viruses, 2021, vol. 13, no. 1: 132. doi: 10.3390/v13010132
  59. Lamarre A., Talbot P.J. Effect of pH and temperature on the infectivity of human coronavirus 229E. Can J. Microbiol., 1989, vol. 35, no. 10, pp. 972–974. doi: 10.1139/m89-160
  60. Laporte M., Raeymaekers V., Van Berwaer R., Vandeput J., Marchand-Casas I., Thibaut H.J., Van Looveren D., Martens K., Hoffmann M., Maes P., Pöhlmann S., Naesens L., Stevaert A. The SARS-CoV-2 and other human coronavirus spike proteins are fine-tuned towards temperature and proteases of the human airways. PLoS Pathog., 2021, vol. 17, no. 4: e1009500. doi: 10.1371/journal.ppat.1009500
  61. Laurie K.L., Rockman S. Which influenza viruses will emerge following the SARS-CoV-2 pandemic? Influenza Other Respir. Viruses, 2021, vol. 15, no. 5, pp. 573–576. doi: 10.1111/irv.12866
  62. Leotte J., Trombetta H., Faggion H.Z., Almeida B.M., Nogueira M.B., Vidal L.R., Raboni S.M. Impact and seasonality of human rhinovirus infection in hospitalized patients for two consecutive years. J. Pediatr. (Rio J.), 2017, vol. 93, no. 3, pp. 294–300. doi: 10.1016/j.jped.2016.07.004
  63. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., Wang W., Song H., Huang B., Zhu N., Bi Y., Ma X., Zhan F., Wang L., Hu T., Zhou H., Hu Z., Zhou W., Zhao L., Chen J., Meng Y., Wang J., Lin Y., Yuan J., Xie Z., Ma J., Liu W.J., Wang D., Xu W., Holmes E.C., Gao G.F., Wu G., Chen W., Shi W., Tan W. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020, vol. 395, no. 10224, pp. 565–574. doi: 10.1016/s0140-6736(20)30251-8
  64. Mahl M.C., Sadler C. Virus survival on inanimate surfaces. Can. J. Microbiol., 1975, vol. 21, no. 6, pp. 819–823. doi: 10.1139/m75-121
  65. Malik Y.A. Properties of coronavirus and SARS-CoV-2. Malays J. Pathol., 2020, vol. 42, no. 1, pp. 3–11.
  66. Mandal A. COVID-19 pandemic is “one big wave” says WHO. 2020. URL: https://www.news-medical.net/news/20200730/COVID-19-pandemic-is-one-big-wave-says-WHO.aspx
  67. McIntyre C.L., Knowles N.J., Simmonds P. Proposals for the classification of human rhinovirus species A, B and C into genotypically assigned types. J. Gen. Virol., 2013, vol. 94, no. 8, pp. 1791–1806. doi: 10.1099/vir.0.053686-0
  68. Mohan S.V., Hemalatha M., Kopperi H., Ranjith I., Kumar A.K. SARS-CoV-2 in environmental perspective: occurrence, persistence, surveillance, inactivation and challenges. Chem. Eng. J., 2021, vol. 405, pp. 126893. doi: 10.1016/j.cej.2020.126893
  69. Murray, P.R. Baron, E. Jorgenson, J.H. Pfaller, M. Yolken, R.H. Manual of clinical microbiology. Ed. Murray P.R.; 9th ed. USA: ASM Press, 2003, vol. 1, 1482 p.
  70. Nickbakhsh S., Ho A., Marques D.F.P., McMenamin J., Gunson R.N., Murcia P.R. Epidemiology of seasonal coronaviruses: Establishing the context for COVID-19 emergence. J. Infect. Dis., 2020, vol. 222, no. 1, pp. 17–25. doi: 10.1093/infdis/jiaa185
  71. Nickbakhsh S., Mair C., Matthews L., Reeve R., Johnson P.C.D., Thorburn F., von Wissmann B., Reynolds A., McMenamin J., Gunson R.N., Murcia P.R. Virus–virus interactions impact the population dynamics of influenza and the common cold. Proc. Natl. Acad. Sci. USA, 2019, vol. 116, no. 52, pp. 27142–27150. doi: 10.1073/pnas.1911083116
  72. Nowak M.D., Sordillo E. M., Gitman M.R., PanizMondolfi A.E. Co-infection in SARS-CoV-2 infected patients: where are influenza virus and rhinovirus/enterovirus? J. Med. Virol., 2020, vol. 92, no. 10, pp. 1699–1700. doi: 10.1002/jmv.25953
  73. Oliveira A.C., Ishimaru D., Gonçalves R.B., Smith T.J., Mason P., Sá-Carvalho D., Silva J.L. Low temperature and pressure stability of picornaviruses: implications for virus uncoating. Biophys. J., 1999, vol. 76, no. 3, pp. 1270–1279. doi: 10.1016/S0006-3495(99)77290-5
  74. Ortega H., Nickle D., Carter L. Rhinovirus and asthma: challenges and opportunities. Rev. Med. Virol., 2020, vol. 31, no. 4: e2193. doi: 10.1002/rmv.2193
  75. Otter J.A., Donskey C., Yezli S., Douthwaite S., Goldenberg S.D., Weber D.J. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination. J. Hosp. Infect., 2016, vol. 92, no. 3, pp. 235–250. doi: 10.1016/j.jhin.2015.08.027.
  76. PAHO. Flu Net home page. 2010–2021. URL: http://ais.paho.org/phip/viz/ed_flu.asp
  77. Papadopoulos N.G., Bates P.J., Bardin P.G., Papi A., Leir S.H., Fraenkel D.J., Meyer J., Lackie P.M., Sanderson G., Holgate S.T., Johnston S.L. Rhinoviruses infect the lower airways. J. Infect. Dis., 2000, vol. 181, no. 6, pp. 1875–1884. doi: 10.1086/315513
  78. Papadopoulos N.G., Sanderson G., Hunter J., Johnston S.L. Rhinoviruses replicate effectively at lower airway temperatures. J. Med. Virol., 1999, vol. 58, no. 1, pp. 100–104. doi: 10.1002/(sici)1096-9071(199905)58:1<100::aid-jmv16>3.0.co2-d
  79. Pappas D.E., Hendley J.O. The common cold and decongestant therapy. Pediatr. Rev., 2011, vol. 32, no. 2, pp. 47–54. doi: 10.1542/pir.32-2-47
  80. Pappas D.E., Hendley J.O., Hayden F.G., Winther B. Symptom profile of common colds in school-aged children. Pediatr. Infect. Dis. J., 2008, vol. 27, no. 1, pp. 8–11. doi: 10.1097/INF.0b013e31814847d9
  81. Pérez L., Carrasco L. Entry of poliovirus into cells does not require a low-pH step. J. Virol., 1993, vol. 67, no. 8, pp. 4543–4548. doi: 10.1128/jvi.67.8.4543-4548.1993
  82. Poole S., Brendish N.J., Clark T.W. SARS-CoV-2 has displaced other seasonal respiratory viruses: results from a prospective cohort study. J. Infect., 2020, vol. 81, no. 6, pp. 966–972. doi: 10.1016/j.jinf.2020.11.010
  83. Roebuck M.O. Rhinoviruses in Britain 1963–1973. J. Hyg., 1976, vol. 76, no. 1, pp. 137–146. doi: 10.1017/s0022172400055029
  84. Rose E.B., WheatleyA., Langley G., Gerber S., Haynes A. Respiratory syncytial virus seasonality — United States, 2014–2017. MMWR Morb. Mortal Wkly. Rep., 2018, vol. 67, no. 2, pp. 71–76. doi: 10.15585/mmwr.mm6702a4
  85. Sagripanti J.L., Lytle C.D. Inactivation of influenza virus by solar radiation. Photochem. Photobiol., 2007, vol. 83, no. 5, pp. 1278–1282. doi: 10.1111/j.1751-1097.2007.00177.x
  86. Sajjan U., Wang Q., Zhao Y., Gruenert D.C., Hershenson M.B. Rhinovirus disrupts the barrier function of polarized airway epithelial cells. Am. J. Respir. Crit. Care Med., 2008, vol. 178, no. 12, pp. 1271–1281. doi: 10.1164/rccm.200801-136OC
  87. Sakudo A., Onodera T., Tanaka Y. Inactivation of viruses. In: Sterilization and disinfection by plasma: sterilization mechanisms, biological and medical applications (medical devices and equipment); 1st ed. Eds. Sakudo A., Shintani H. N.Y.: Nova Science Publishers: United States, 2010, pp. 49–60.
  88. Savolainen C., Blomqvist S., Hovi T. Human rhinoviruses. Paediatr. Respir. Rev., 2003, vol. 4, no. 2, pp. 91–98. doi: 10.1016/s1526-0542(03)00030-7
  89. Shang J., Wan Y., Luo C., Ye G., Geng Q., Auerbach A., Li F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA, 2020, vol. 117, no. 21, pp. 11727–11734. doi: 10.1073/pnas.2003138117
  90. Sow F.B., Gallup J.M., Krishnan S., Patera A.C., Suzich J., Ackermann M.R. Respiratory syncytial virus infection is associated with an altered innate immunity and a heightened pro-inflammatory response in the lungs of preterm lambs. Respir. Res., 2011, vol. 12, no. 1, pp. 106. doi: 10.1186/1465-9921-12-106
  91. Stobart C.C., Nosek J.M., Moore M.L. Rhinovirus biology, antigenic diversity, and advancements in the design of a human rhinovirus vaccine. Front. Microbiol., 2017, vol. 8: 2412. doi: 10.3389/fmicb.2017.02412
  92. Strauss J.H., Strauss E.G. Minus-strand RNA viruses. In: Viruses and human disease; 2nd ed. Eds. Strauss J.H., Strauss E.G. London: Academic Press, 2008, pp. 137–191. doi: 10.1016/B978-0-12-373741-0.50007-6
  93. Strauss J.H., Strauss E.G. Overview of viruses and virus infection. In: Viruses and human disease; 2nd ed. Eds. Strauss J.H., Strauss E.G. London: Academic Press, 2008, pp. 1–33. doi: 10.1016/B978-0-12-373741-0.50004-0
  94. Strauss J.H., Strauss E.G. Plus-strand RNA viruses. In Viruses and human disease; 2nd ed. Eds. Strauss J.H., Strauss E.G. London: Academic Press, 2008, pp. 63–136. doi: 10.1016/B978-0-12-373741-0.50006-4
  95. To K.K.W., Yip C.C.Y., Yuen K.Y. Rhinovirus — from bench to bedside. J. Formos. Med. Assoc., 2017, vol. 116, no. 7, pp. 496–504. doi: 10.1016/j.jfma.2017.04.009
  96. Troeger C., Blacker B.F., Khalil I.A., Rao P.C., Cao S., Zimsen S.R.M., Albertson S., Stanaway J.D., Deshpande A., Farag T., Forouzanfar M.H., Abebe Z., Adetifa I.M.O., Adhikari T.B., Akibu M., Al Lami F.H., Al-Eyadhy A., Alvis-Guzman N., Amare A.T., Amoako Y.A., Antonio C.A.T., Aremu O., Asfaw E.T., Asgedom S.W., Atey T.M., Attia E.F., E.Avokpaho F.G.A., Ayele H.T., Ayuk T.B., Balakrishnan K., Barac A., Bassat Q., Behzadifar M., Behzadifar M., Bhaumik S., Bhutta Z.A., Bijani A., Brauer M., Brown A., Camargos P.A.M., Castañeda-Orjuela C.A., Colombara D., Conti S., Dadi A.F., Dandona L., Dandona R., Do H.P., Dubljanin E., Edessa D., Elkout H., Endries A.Y., Fijabi D.O., Foreman K.J., Fullman N., Garcia-Basteiro A.L., Gessner B.D., Gething P.W., Gupta R., Gupta T., Hailu G.B., Hassen H.Y., Hedayati M.T., Heidari M., Hibstu D.T., Horita N., Ilesanmi O.S., Jakovljevic M.B., Jamal A.A., Kahsay A., Kasaeian A., Kassa D.H., Khader Y.S., Khan E.A., Khan M.N., Khang Y.-H., Kim Y.J., Kissoon N., Knibbs L.D., Kochhar S., Koul P.A., Kumar G.A., Lodha R., Abd El Razek H.M., Malta D.C., Mathew J.L., Mengistu D.T., Mezgebe H.B., Mohammad K.A., Mohammed M.A., Momeniha F., Murthy S., Nguyen C.T., Nielsen K.R., Ningrum D.N.A., Nirayo Y.L., Oren E., Ortiz J.R., Mahesh P.A., Postma M.J., Qorbani M., Quansah R., Rai R.K., Rana S.M., Ranabhat C.L., Ray S.E., Rezai M.S., Ruhago G.M., Safiri S., Salomon J.A., Sartorius B., Savic M., Sawhney M., She J., Sheikh A., Shiferaw M.S., Shigematsu M., Singh J.A., Somayaji R., Sufiyan M.B., Taffere G.R., Temsah M.-H., Thompson M.J., Tobe-Gai R., Topor-Madry R., Tran B.X., Tran T.T., Tuem K.B., Ukwaja K.N., Vollset S.E., Walson J.L., Weldegebreal F., Werdecker A., West T.E., Yonemoto N., El Sayed Zaki M., Zhou L., Zodpey S., Vos T., Lim S.S., Naghavi M., Murray C.J.L., Mokdad A.H., Hay S.I., Reiner R.C. Jr. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis., 2018, vol. 18, no. 11, pp. 1191–1210. doi: 10.1016/s1473-3099(18)30310-4
  97. Troeger C.E., Blacker B.F., Khalil I.A., Zimsen S.R.M., Albertson S.B., Abate D., Abdela J., Adhikari T.B., Aghayan S.A., Agrawal S., Ahmadi A., Aichour A.N., Aichour I., Aichour M.T.E., Al-Eyadhy A., Al-Raddadi R.M., Alahdab F., Alene K.A., Aljunid S.M., Alvis-Guzman N., Anber N.H., Anjomshoa M., Antonio C.A.T., Aremu O., Atalay H.T., Atique S., Attia E.F., Avokpaho E.F.G.A., Awasthi A., Babazadeh A., Badali H., Badawi A., Banoub J.A.M., Barac A., Bassat Q., Bedi N., Belachew A.B., Bennett D.A., Bhattacharyya K., Bhutta Z.A., Bijani A., Carvalho F., Castañeda-Orjuela C.A., Christopher D.J., Dandona L., Dandona R., Dang A.K., Daryani A., Degefa M.G., Demeke F.M., Dhimal M., Djalalinia S., Doku D.T., Dubey M., Dubljanin E., Duken E.E., Edessa D., El Sayed Zaki M., Fakhim H., Fernandes E., Fischer F., Flor L.S., Foreman K.J., Gebremichael T.G., Geremew D., Ghadiri K., Goulart A.C., Guo J., Ha G.H., Hailu G.B., Haj-Mirzaian A., Haj-Mirzaian A., Hamidi S., Hassen H.Y., Hoang C.L., Horita N., Hostiuc M., Irvani S.S.N., Jha R.P., Jonas J.B., Kahsay A., Karch A., Kasaeian A., Kassa T.D., Kefale A.T., Khader Y.S., Khan E.A., Khan G., Khan M.N., Khang Y.-H., Khoja A.T., Khubchandani J., Kimokoti R.W., Kisa A., Knibbs L.D., Kochhar S., Kosen S., Koul P.A., Koyanagi A., Defo B.K., Kumar G.A., Lal D.K., Lamichhane P., Leshargie C.T., Levi M., Li S., Macarayan E.R.K., Majdan M., Mehta V., Melese A., Memish Z.A., Mengistu D.T., Meretoja T.J., Mestrovic T., Miazgowski B., Milne G.J., Milosevic B., Mirrakhimov E.M., Moazen B., Mohammad K.A., Mohammed S., Monasta L., Morawska L., Mousavi S.M., Muhammed O.S.S., Murthy S., Mustafa G., Naheed A., Nguyen H.L.T., Nguyen N.B., Nguyen S.H., Nguyen T.H., Nisar M.I., Nixon M.R., Ogbo F.A., Olagunju A.T., Olagunju T.O., Oren E., Ortiz J.R., Mahesh P.A., Pakhale S., Patel S., Paudel D., Pigott D.M., Postma M.J., Qorbani M., Rafay A., Rafiei A., Rahimi-Movaghar V., Rai R.K., Rezai M.S., Roberts N.L.S., Ronfani L., Rubino S., Safari S., Safiri S., Saleem Z., Sambala E.Z., Samy A.M., Santric Milicevic M.M., Sartorius B., Sarvi S., Savic M., Sawhney M., Saxena S., Seyedmousavi S., Shaikh M.A., Sharif M., Sheikh A., Shigematsu M., Smith D.L., Somayaji R., Soriano J.B., Sreeramareddy C.T., Sufiyan M.B., Temsah M.-H., Tessema B., Teweldemedhin M., Tortajada-Girbés M., Tran B.X., Tran K.B., Tsadik A.G., Ukwaja K.N., Ullah I., Vasankari T.J., Vollset S.E., Vu G.T., Wada F.W., Waheed Y., Eoin West T., Wiysonge C.S., Yimer E.M., Yonemoto N., Zaidi Z., Vos T., Lim S.S., Murray C.J.L., Mokdad A.H., Hay S.I., Reiner R.C.Jr. Mortality, morbidity, and hospitalisations due to influenza lower respiratory tract infections, 2017: an analysis for the Global Burden of Disease Study 2017. Lancet Respir., Med., 2019, vol. 7, no. 1, pp. 69–89. doi: 10.1016/s2213-2600(18)30496-x
  98. Trougakos I.P., Stamatelopoulos K., Terpos E., Tsitsilonis O.E., Aivalioti E., Paraskevis D., Kastritis E., Pavlakis G.N., Dimopoulos M.A. Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. J. Biomed. Sci., 2021, vol. 28, no. 1, pp. 9. doi: 10.1186/s12929-020-00703-5
  99. Tuthill T.J., Groppelli E., Hogle J.M., Rowlands D.J. Picornaviruses. Curr. Top. Microbiol. Immunol., 2010, vol. 343, pp. 43–89. doi: 10.1007/82_2010_37
  100. Tyrrell D.A., Cohen S., Schlarb J.E. Signs and symptoms in common colds. Epidemiol. Infect., 1993, vol. 111, no. 1, pp. 143–156. doi: 10.1017/s0950268800056764
  101. Waman V.P., Kolekar P.S., Kale M.M., Kulkarni-Kale U. Population structure and evolution of rhinoviruses. PLoS One, 2014, vol. 9, no. 2: e88981. doi: 10.1371/journal.pone.0088981
  102. Weber T.P., Stilianakis N.I. Inactivation of influenza A viruses in the environment and modes of transmission: a critical review. J. Infect., 2008, vol. 57, no. 5, pp. 361–373. doi: 10.1016/j.jinf.2008.08.013
  103. Weinberger Opek M., Yeshayahu Y., Glatman-Freedman A., Kaufman Z., Sorek N., Brosh-Nissimov T. Delayed respiratory syncytial virus epidemic in children after relaxation of COVID-19 physical distancing measures, Ashdod, Israel, 2021. Euro Surveill., 2021, vol. 26, no. 29: 2100706. doi: 10.2807/1560-7917.Es.2021.26.29.2100706
  104. WHO. Coronavirus disease (COVID-19) dashboard. 2021. URL: https://covid19.who.int
  105. WHO. Influenza (Seasonal). URL: https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)
  106. WHO. Overview of influenza activity globally. Influenza Update No. 411 of 27 January 2022. URL: https://www.who.int/publications/m/item/influenza-update-n-411
  107. Winther B. Rhinovirus infections in the upper airway. Proc. Am. Thorac. Soc., 2011, vol. 8, no. 1, pp. 79–89. doi: 10.1513/pats.201006-039RN
  108. Winther B. Rhinoviruses. In: International Encyclopedia of Public Health, Ed. Heggenhougen H.K. Academic Press: Oxford, 2008, pp. 577–581. doi: 10.1016/B978-012373960-5.00610-9
  109. Winther B., Gwaltney J.M., Hendley J.O. Respiratory virus infection of monolayer cultures of human nasal epithelial cells. Am. Rev. Respir. Dis., 1990, vol. 141, no. 4, pp. 839–845. doi: 10.1164/ajrccm/141.4_Pt_1.839
  110. Wolsk H.M., Følsgaard N.V., Birch S., Brix S., Hansel T.T., Johnston S.L., Kebadze T., Chawes B.L., Bønnelykke K., Bisgaard H. Picornavirus-induced airway mucosa immune profile in asymptomatic neonates. J. Infect. Dis., 2016, vol. 213, no. 8, pp. 1262–1270. doi: 10.1093/infdis/jiv594
  111. Wu A., Mihaylova V.T., Landry M.L., Foxman E.F. Interference between rhinovirus and influenza A virus: a clinical data analysis and experimental infection study. Lancet Microbe, 2020, vol. 1, no. 6, pp. e254-e262. doi: 10.1016/s2666-5247(20)30114-2
  112. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA, 2020, vol. 323, no. 13, pp. 1239–1242. doi: 10.1001/jama.2020.2648
  113. Zanotto P.M., Gibbs M.J., Gould E.A., Holmes E.C. A reevaluation of the higher taxonomy of viruses based on RNA polymerases. J. Virol., 1996, vol. 70, no. 9, pp. 6083–6096. doi: 10.1128/JVI.70.9.6083-6096.1996
  114. Zlateva K.T., van Rijn A.L., Simmonds P., Coenjaerts F.E.J., van Loon A.M., Verheij T.J.M., de Vries J.J.C., Little P., Butler C.C., van Zwet E.W., Goossens H., Ieven M., Claas E.C.J.; GRACE Study Group. Molecular epidemiology and clinical impact of rhinovirus infections in adults during three epidemic seasons in 11 European countries (2007–2010). Thorax, 2020, vol. 75, no. 10, pp. 882–890. doi: 10.1136/thoraxjnl-2019-214317

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Variants of the relationship between rhinoviruses, RS-viruses, influenza A viruses and SARS-CoV-2 during their co-circulation in pandemics (based on [2, 3, 4, 10, 20, 48, 61, 71, 106, 111])

Download (85KB)
3. Figure 2. Taxonomy of respiratory viruses discussed in the review (based on [30, 43, 44])

Download (127KB)
4. Figure 3. Common features between rhinoviruses, influenza A viruses, RS-viruses and SARS-CoV-2 (based on [17, 33, 34, 50, 65, 91])

Download (151KB)
5. Figure 4. Distinctive features of rhinoviruses, influenza A viruses, RS-viruses and SARS-CoV-2 (based on [17, 33, 34, 50, 65, 91]). Note. White rectangles denote features of other viruses differed from rhinoviruses; gray rectangles — common features for rhinoviruses and other viruses.

Download (191KB)

Copyright (c) 2022 Kiseleva I.V., Ksenafontov A.D.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies