Topical issues of clinical symptoms and diagnostics of septic shock

Cover Page

Cite item

Full Text

Abstract

Currently, septic shock remains an unresolved public health problem that leads to serious epidemiological, economic and social problems. Septic shock is a common hemodynamic disorder caused by the interaction between pathogenic microbes and host cells, resulting in developing hypoxia, severe metabolic disorders and multiple organ failure. By now, no unified concept for pathophysiology of septic shock are available. However, the aforementioned data prove that one of the key arms in the pathogenesis is endothelial dysfunction and associated ischemic disorders. In the clinical course of septic shock, three stages are distinguished: the stage of compensation, decompensation as well as the stage of irreversible disorders. The initial stage, or the stage of compensation, is characterized by the activated inflammatory response against infectious agents. Clinically, this stage is characterized by the development of “warm shock”: fever, dermal hyperemia, hyperventilation, increased cardiac output, and tachycardia. The second stage in developing septic shock is characterized by arising “cold shock” as a consequence of escalating heart and respiratory failure. The final stage is the development of multiple organ failure manifested by emerging “shock” organs. Multiple organ failure occurs due to microthrombosis and increasing ischemia, which leads to hypoxia and development of mitochondrial dysfunction in immune cells. At this stage patients are characterized by the progressive cyanosis, developing anuria and intestinal obstruction, as well as altered mental status. Laboratory and instrumental diagnostics of septic shock is a promising approach to examine septic shock. The level of serum C-reactive protein, lactate, and proinflammatory cytokines are not highly specific diagnostic parameters of septic shock, because they can be found in any inflammatory process. Today, the promising diagnostic markers are pentraxin-3, high-density lipoproteins, and phosphatidylcholine. The severity of septic shock can be assessed by determining blood schistocytes, central venous pressure, and the ratio of venous-arterial CO2 and arterial-venous O2 pressure. The following diagnostic methods can be used to determine multiple organ failure: level of serum proenkephalin A119–159 and heparin-binding protein; echocardiography, troponin I concentration and N-terminal pro-b-type natriuretic peptides; measuring activity of the renin-angiotensin-aldosterone system. Here we discuss the key aspects of pathogenesis, clinical picture and morphological changes of septic shock. The promising methods for diagnosing the disease and its complications have been studied.

About the authors

Liliya I. Gomanova

I.M. Sechenov First Moscow State Medical University

Email: gomanova_liliya@mail.ru
ORCID iD: 0000-0002-6713-7090

Student of Erismann Institute of Public Health

Russian Federation, 119991, Moscow, Trubetskaya str., 8/2

Marina A. Fokina

I.M. Sechenov First Moscow State Medical University

Author for correspondence.
Email: fokina.marina.mgmu@yandex.ru
ORCID iD: 0000-0001-7612-6206

PhD (Medicine), Associate Professor, Department of Human Pathology

Russian Federation, 119991, Moscow, Trubetskaya str., 8/2

References

  1. Курмышкина О.В., Богданова А.А., Волкова Т.О., Полторак А.Н. Септический шок: врожденные молекулярно-генетические механизмы развития генерализованного воспалительного процесса // Онтогенез. 2015. Т. 46, № 4. С. 225–239. [Kurmyshkina O.V., Bogdanova A.A., Volkova T.O., Poltorak A.N. Septic shock: innate molecular genetic mechanisms of the development of generalized inflammation. Ontogenez = Ontogenesis, 2015, vol. 46, no. 4, pp. 225–239. (In Russ.)] doi: 10.7868/S0475145015040060
  2. Макацария А.Д., Акиньшина С.В., Бицадзе В.О., Хизроева Д.Х., Казакова Л.А., Гадаева З.К. Септический шок в акушерстве: новый взгляд на патогенез // Практическая медицина. 2012. Т. 65, № 9. С. 11–23. [Makatsariya A.D., Akinshina S.V., Bitsadze V.O., Hizroeva D.H., Kazakova L.A., Gadaeva Z.K. Septic shock in obstetrics: a new look at the pathogenesis. Prakticheskaya meditsina = Practical Medicine, 2012, vol. 65, no. 9, pp. 11–23. (In Russ.)]
  3. Макацария А.Д., Серов В.Н., Суконцева Т.А., Бицадзе В.О., Шкода А.С., Хизроева Д.Х., Воробьев А.В. Вопросы патогенеза коагулопатии при септическом шоке // Акушерство и гинекология. 2019. № 10. С. 13–21. [Makatsariya A.D., Serov V.N., Sukontseva T.A., Bitsadze V.O., Shkoda A.S., Khizroeva D.Kh., Vorobyev A.V. The issues of the pathogenesis of coagulopathy in septic shock. Akusherstvo i ginekologiya = Obstetrics and Gynegology, 2019, no. 10, pp. 13–21. (In Russ.)] doi: 10.18565/aig.2019.10.13-21
  4. Никитин Е.А., Клейменов К.В., Батиенко Д.Д., Акуленко Д.А., Селиверстов П.В., Добрица В.П., Радченко В.Г. Новые подходы к воздействию на патогенетические звенья сепсиса // Медицинский совет. 2019. Т. 21. С. 240–246. [Nikitin E.A., Kleymenov K.V., Batienco D.D., Akulenko D.A., Seliverstov P.V., Dobritsa V.P., Radchenko V.G. New approaches to the impact on the pathogenetic links of sepsis. Meditsinskiy sovet = Medical Council, 2019, vol. 21, pp. 240–246. (In Russ.)] doi: 10.21518/2079-701X-2019-21-240-246
  5. Чирский В.С., Андреева Е.А., Юзвинкевич А.К., Гайворонский И.В. Патологоанатомическая характеристика септического шока в условиях современной терапии // Журнал анатомии и гистопатологии. 2020. Т. 9, № 1. С. 69–76. [Chirskii V.S., Andreeva E.A., Yuzvinkevich A.K., Gaivoronskii I.V. Pathomorphological characteristics of septic shock in modern therapy. Zhurnal anatomii i gistopatologii = Journal of Anatomy and Histopathology, 2020, vol. 9, no. 1, pp. 69–76. (In Russ.)] doi: 10.18499/2225-7357-2020-9-1-69-76
  6. Abasiyanik M.F., Wolfe K., Van Phan H., Lin J., Laxman B., White S.R., Verhoef P.A., Mutlu G.M., Patel B., Tay S. Ultrasensitive digital quantification of cytokines and bacteria predicts septic shock outcomes. Nat. Commun., 2020, vol. 11, no. 1: 2607. doi: 10.1038/s41467-020-16124-9
  7. Annane D. Adrenal insufficiency in sepsis. Curr. Pharm. Des., 2008, vol. 14, no. 19, pp. 1882–1886. doi: 10.2174/138161208784980626
  8. Bassetti M., Vena A., Meroi M., Cardozo C., Cuervo G., Giacobbe D.R., Salavert M., Merino P., Gioia F., Fernández-Ruiz M., López-Cortés L.E., Almirante B., Escolà-Vergé L., Montejo M., Aguilar-Guisado M., Puerta-Alcalde P., Tasias M., Ruiz-Gaitán A., González F., Puig-Asensio M., Marco F., Pemán J., Fortún J., Aguado J.M., Soriano A., Carratalá J., Garcia-Vidal C., Valerio M., Sartor A., Bouza E., Muñoz P. Factors associated with the development of septic shock in patients with candidemia: a post hoc analysis from two prospective cohorts. Crit. Care, 2020, vol. 24, no. 1: 117. doi: 10.1186/s13054-020-2793-y
  9. Bateman R.M., Sharpe M.D., Singer M., Ellis C.G. The effect of sepsis on the erythrocyte. Int. J. Mol. Sci., 2017, vol. 18, no. 9: 1932. doi: 10.3390/ijms18091932
  10. Beck V., Chateau D., Bryson G.L., Pisipati A., Zanotti S., Parrillo J.E., Kumar A.; Cooperative Antimicrobial Therapy of Septic Shock (CATSS) Database Research Group. Timing of vasopressor initiation and mortality in septic shock: a cohort study. Crit. Care, 2014, vol. 18, no. 3: R97. doi: 10.1186/cc13868
  11. Bedet A., Razazi K., Boissier F., Surenaud M., Hue S., Giraudier S., Brun-Buisson C., Mekontso Dessap A. Mechanisms of thrombocytopenia during septic shock: a multiplex cluster analysis of endogenous sepsis mediators. Shock, 2018, vol. 49, no. 6, pp. 641–648. doi: 10.1097/SHK.0000000000001015
  12. Brusletto B.S., Løberg E.M., Hellerud B.C., Goverud I.L., Berg J.P., Olstad O.K., Gopinathan U., Brandtzaeg P., Øvstebø R. Extensive changes in transcriptomic “fingerprints” and immunological cells in the large organs of patients dying of acute septic shock and multiple organ failure caused by Neisseria meningitidis. Front. Cell Infect. Microbiol., 2020, no. 10: 42. doi: 10.3389/fcimb.2020.00042
  13. Caironi P., Latini R., Struck J., Hartmann O., Bergmann A., Bellato V., Ferraris S., Tognoni G., Pesenti A., Gattinoni L., Masson S.; ALBIOS Study Investigators. Circulating proenkephalin, acute kidney injury, and its improvement in patients with severe sepsis or shock. Clin. Chem., 2018, vol. 64, no. 9, pp. 1361–1369. doi: 10.1373/clinchem.2018.288068
  14. Calfee C.S., Thompson B.T., Parsons P.E., Ware L.B., Matthay M.A., Wong H.R. Plasma interleukin-8 is not an effective risk stratification tool for adults with vasopressor-dependent septic shock. Crit. Care Med., 2010, vol. 38, no. 6, pp. 1436–1441. doi: 10.1097/CCM.0b013e3181de42ad
  15. Cambiaghi A., Díaz R., Martinez J.B., Odena A., Brunelli L., Caironi P., Masson S., Baselli G., Ristagno G., Gattinoni L., Oliveira E., Pastorelli R., Ferrario M. An innovative approach for the integration of proteomics and metabolomics data in severe septic shock patients stratified for mortality. Sci. Rep., 2018, no. 8: 6681. doi: 10.1038/s41598-018-25035-1
  16. Chang J.C. Hemostasis based on a novel ‘two-path unifying theory’ and classification of hemostatic disorders. Blood Coagul. Fibrinolysis, 2018, vol. 29, no. 7, pp. 573–584. doi: 10.1097/MBC.0000000000000765
  17. Chang J.C. Sepsis and septic shock: endothelial molecular pathogenesis associated with vascular microthrombotic disease. Thromb. J., 2019, no. 7: 10. doi: 10.1186/s12959-019-0198-4
  18. Chang J.C. Thrombocytopenia in critically ill patients due to vascular microthrombotic disease: pathogenesis based on “two activation theory of the endothelium”. Vascul. Dis. Ther., 2017, no. 2, pp. 1–7. doi: 10.15761/VDT.1000132
  19. Chen W., Zhao L., Liu P., Sheng B., Zhen J. The predictive value of plasma N-terminal pro-B-type natriuretic peptide levels in the evaluation of prognosis and the severity of patients with septic shock induced myocardial suppression. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2013, vol. 25, no. 1, pp. 40–44. doi: 10.3760/cma.j.issn.2095-4352.2013.01.011
  20. Dienstmann G., Avi K.T., Leite L.A.C., Alano J.S., Souza M.L.R., Mulazani M.D.S., Mendivil P.C.G. First case report of fulminant septic shock from meningococcemia associated with Cryptococcus neoformans coinfection in an immunocompetent patient. Med. Mycol. Case Rep., 2019, no. 26, pp. 44–46. doi: 10.1016/j.mmcr.2019.10.003
  21. Dugas A.F., Mackenhauer J., Salciccioli J.D., Cocchi M.N., Gautam S., Donnino M.W. Prevalence and characteristics of nonlactate and lactate expressors in septic shock. J. Crit. Care., 2012, vol. 27, no. 4, pp. 344–350. doi: 10.1016/j.jcrc.2012.01.005
  22. Falcone M., Tiseo G., Gutiérrez-Gutiérrez B., Raponi G., Carfagna P., Rosin C., Luzzati R., Delle Rose D., Andreoni M., Farcomeni A., Venditti M., Rodríguez-Baño J., Menichetti F.; GISA (Italian Group for Antimicrobial Stewardship). Impact of initial antifungal therapy on the outcome of patients with candidemia and septic shock admitted to medical wards: a propensity score-adjusted analysis. Open Forum Infect. Dis., 2019, vol. 6, no. 7: ofz251. doi: 10.1093/ofid/ofz251
  23. Fan S.L., Miller N.S., Lee J., Remick D.G. Diagnosing sepsis — the role of laboratory medicine. Clin. Chim. Acta., 2016, no. 460, pp. 203–210. doi: 10.1016/j.cca.2016.07.002
  24. Filbin M.R., Lynch J., Gillingham T.D., Thorsen J.E., Pasakarnis C.L., Nepal S., Matsushima M., Rhee C., Heldt T., Reisner A.T. Presenting symptoms independently predict mortality in septic shock: importance of a previously unmeasured confounder. Crit. Care Med., 2018, vol. 46, no. 10, pp. 1592–1599. doi: 10.1097/CCM.0000000000003260
  25. Ganjoo S., Ahmad K., Qureshi U.A., Mir Z.H. Clinical epidemiology of SIRS and sepsis in newly admitted children. Indian J. Pediatr., 2015, vol. 82, no. 8, pp. 698–702. doi: 10.1007/s12098-014-1618-x
  26. Gårdlund B., Dmitrieva N.O., Pieper C.F., Finfer S., Marshall J.C., Taylor Thompson B. Six subphenotypes in septic shock: latent class analysis of the PROWESS shock study. J. Crit. Care, 2018, no. 47, pp. 70–79. doi: 10.1016/j.jcrc.2018.06.012
  27. Garofalo A.M., Lorente-Ros M., Goncalvez G., Carriedo D., Ballén-Barragán A., Villar-Fernández A., Peñuelas Ó., Herrero R., Granados-Carreño R., Lorente J.A. Histopathological changes of organ dysfunction in sepsis. Intensive Care Med. Exp., 2019, no. 7 (1): doi: 10.1186/s40635-019-0236-3
  28. Guillamet C.V., Vazquez R., Micek S.T., Ursu O., Kollef M. Development and validation of a clinical prediction rule for candidemia in hospitalized patients with severe sepsis and septic shock. J. Crit. Care, 2015, vol. 30, no. 4, pp. 715–720. doi: 10.1016/ j.jcrc.2015.03.010
  29. Guzman J.A., Tchokonte R., Sobel J.D. Septic shock due to candidemia: outcomes and predictors of shock development. J. Clin. Med. Res., 2011, vol. 3, no. 2, pp. 65–71. doi: 10.4021/jocmr536w
  30. Hamed S., Behnes M., Pauly D., Lepiorz D., Barre M., Becher T. Diagnostic value of pentraxin-3 in patients with sepsis and septic shock in accordance with latest sepsis-3 definitions. BMC Infect. Dis., 2017, vol. 17, no. 1: 554. doi: 10.1186/s12879-017-2606-3
  31. Hollinger A., Wittebole X., François B., Pickkers P., Antonelli M., Gayat E., Chousterman B.G., Lascarrou J.B., Dugernier T., Di Somma S., Struck J., Bergmann A, Beishuizen A., Constantin J.M., Damoisel C., Deye N., Gaudry S., Huberlant V., Marx G., Mercier E., Oueslati H., Hartmann O., Sonneville R., Laterre P.F., Mebazaa A., Legrand M. Proenkephalin A 119-159 (Penkid) is an early biomarker of septic acute kidney injury: the kidney in sepsis and septic shock (Kid-SSS) study. Kidney Int. Rep., 2018, vol. 3, no. 6, pp. 1424–1433. doi: 10.1016/j.ekir.2018.08.006
  32. Hotchkiss R.S., Moldawer L.L., Opal S.M., Reinhart K., Turnbull I.R., Vincent J.L. Sepsis and septic shock. Nat. Rev. Dis. Primers, 2016, no. 2: 16045. doi: 10.1038/nrdp.2016.45
  33. Hu Q., Hao C., Tang S. From sepsis to acute respiratory distress syndrome (ARDS): emerging preventive strategies based on molecular and genetic researches. BioSci. Rep., 2020, vol. 40, no. 5: BSR20200830. doi: 10.1042/BSR20200830
  34. Inthasot V., Goushchi A., Lazzaroni S., Papaleo A., Galdon M.G., Chochrad D. Fatal septic shock associated with herpes simplex virus hepatitis: a case report. Eur. J. Case Rep. Intern. Med., 2018, vol. 5, no. 12: 000982. doi: 10.12890/2018_000982
  35. Jamme M., Daviaud F., Charpentier J., Marin N., Thy M., Hourmant Y., Mira J.P., Pène F. Time course of septic shock in immunocompromised and nonimmunocompromised patients. Crit. Care Med., 2017, vol. 45, no. 12, pp. 2031–2039. doi: 10.1097/CCM.0000000000002722
  36. Jie H., Li Y., Pu X., Ye J. Pentraxin 3, a predicator for 28-day mortality in patients with septic shock. Am. J. Med. Sci., 2017, vol. 353, no. 3, pp. 242–246. doi: 10.1016/j.amjms.2017.01.003
  37. Ko D.R., Kong T., Lee H.S., Kim S., Lee J.W., Chung H.S., Chung S.P., You J.S., Park J.W. Usefulness of the thrombotic microangiopathy score as a promising prognostic marker of septic shock for patients in the emergency department. J. Clin. Med., 2019, vol. 8, no. 6: 808. doi: 10.3390/jcm8060808
  38. Lee S.G., Song J., Park D.W., Moon S., Cho H.J., Kim J.Y., Park J., Cha J.H. Prognostic value of lactate levels and lactate clearance in sepsis and septic shock with initial hyperlactatemia: a retrospective cohort study according to the Sepsis-3 definitions. Medicine (Baltimore), 2021, vol. 100, no. 7: e24835. doi: 10.1097/MD.0000000000024835
  39. Lee Y.T., Gong M., Chau A., Wong W.T., Bazoukis G., Wong S.H., Lampropoulos K., Xia Y., Li G., Wong M.C.S., Liu T., Wu W.K.K., Tse G.; International Heath Informatics Study (IHIS) Network. Pentraxin-3 as a marker of sepsis severity and predictor of mortality outcomes: a systematic review and meta-analysis. J. Infect., 2018, vol. 76, no. 1, pp. 1–10. doi: 10.1016/ j.jinf.2017.10.016
  40. Lerolle N., Nochy D., Guérot E., Bruneval P., Fagon J.Y., Diehl J.L., Hill G. Histopathology of septic shock induced acute kidney injury: apoptosis and leukocytic infiltration. Intensive Care Med., 2010, vol. 36, no. 3, pp. 471–478. doi: 10.1007/s00134-009-1723-x
  41. Linder A., Åkesson P., Inghammar M., Treutiger C.J., Linnér A., Sundén-Cullberg J. Elevated plasma levels of heparin-binding protein in intensive care unit patients with severe sepsis and septic shock. Crit. Care, 2012, vol. 16, no. 3: R90. doi: 10.1186/cc11353
  42. Linder A., Christensson B., Herwald H., Björck L., Akesson P. Heparin-binding protein: an early marker of circulatory failure in sepsis. Clin. Infect. Dis., 2009, vol. 49, no. 7, pp. 1044–1050. doi: 10.1086/605563
  43. Lipinska-Gediga M. Sepsis and septic shock-is a microcirculation a main player? Anaesthesiol. Intensive Ther., 2016, vol. 48, no. 4, pp. 261–265. doi: 10.5603/AIT.a2016.0037
  44. Lu N., Zheng R., Lin H., Shao J., Yu J. Clinical studies of surviving sepsis bundles according to PiCCO on septic shock patients. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2014, vol. 26, no. 1, pp. 23–27. doi: 10.3760/cma.j.issn.2095-4352.2014.01.005
  45. Maestraggi Q., Lebas B., Clere-Jehl R., Ludes P.O., Chamaraux-Tran T.N., Schneider F., Diemunsch P., Geny B., Pottecher J. Skeletal muscle and lymphocyte mitochondrial dysfunctions in septic shock trigger ICU-acquired weakness and sepsis-induced immunoparalysis. BioMed. Res. Int., 2017, no. 2017: 897325. doi: 10.1155/2017/7897325
  46. Mahapatra S., Heffner A.C. Septic Shock. In: StatPearls. Treasure Island (FL). StatPearls Publishing, 2020. URL: https://www.ncbi.nlm.nih.gov/books/NBK430939
  47. Marino R., Struck J., Hartmann O., Maisel A.S., Rehfeldt M., Magrini L., Melander O., Bergmann A., Di Somma S. Diagnostic and short-term prognostic utility of plasma pro-enkephalin (pro-ENK) for acute kidney injury in patients admitted with sepsis in the emergency department. J. Nephrol., 2015, vol. 28, no. 6, pp. 717–724. doi: 10.1007/s40620-014-0163-z
  48. Monserrat J., de Pablo R., Diaz-Martín D., Rodríguez-Zapata M., de la Hera A., Prieto A., Alvarez-Mon M. Early alterations of B cells in patients with septic shock. Crit. Care, 2013, vol. 17, no. 3: R105. doi: 10.1186/cc12750
  49. Mouncey P.R., Osborn T.M., Power G.S., Harrison D.A., Sadique M.Z., Grieve R.D., Jahan R., Harvey E.S., Bell D., Bion J.F., Coats T.J., Singer M., Duncan Young J., Rowan M.K. Trial of early, goal-directed resuscitation for septic shock. N. Engl. J. Med., 2015, vol. 372, no. 14, pp. 1301–1311. doi: 10.1056/NEJMoa1500896
  50. Ng K., Schorr C., Reboli A.C., Zanotti S., Tsigrelis C. Incidence and mortality of sepsis, severe sepsis, and septic shock in intensive care unit patients with candidemia. Infect. Dis (Lond)., 2015, vol. 47, no. 8, pp. 584–587. doi: 10.3109/23744235.2015.1028100
  51. Ospina-Tascón G.A., Umaña M., Bermúdez W., Bautista-Rincón D.F., Hernandez G., Bruhn A., Granados M., Salazar B., Arango-Dávila C., De Backer D. Combination of arterial lactate levels and venous-arterial CO2 to arterial-venous O2 content difference ratio as markers of resuscitation in patients with septic shock. Intensive Care Med., 2015, no. 41, pp. 796–805. doi: 10.1007/s00134-015-3720-6
  52. Plataki M., Kashani K., Cabello-Garza J., Maldonado F., Kashyap R., Kor D.J., Gajic O., Cartin-Ceba R. Predictors of acute kidney injury in septic shock patients: an observational cohort study. Clin. J. Am. Soc. Nephrol., 2011, vol. 6, no. 7, pp. 1744–1751. doi: 10.2215/CJN.05480610
  53. Polat G., Ugan R.A., Cadirci E., Halici Z. Sepsis and septic shock: current treatment strategies and new approaches. Eurasian J. Med., 2017, vol. 49, no. 1, pp. 53–58. doi: 10.5152/eurasianjmed.2017.17062
  54. Rahasto P., Setianto B., Timan I.S., Suhendro S., Sukrisman L., Sukamawan R., Sudaryo M.K., Kabo P. Cardiac performance by echocardiography, cardiovascular biomarker, kidney function, and venous oxygen saturation as mortality predictors of septic shock. Acta Med. Indones., 2019, vol. 51, no. 1, pp. 47–53.
  55. Riviere P., Patin D., Delaporte E., Mahfoudi H., Lecailtel S., Poher F., Villette P., Duclaux J., Jouault P., Brunin G. Septic shock secondary to an acute necrotizing community-acquired pneumonia with bacteremia due to Pseudomonas aeruginosa. IDCases, 2019, no. 17: e00563. doi: 10.1016/j.idcr.2019.e00563
  56. Russell J.A., Rush B., Boyd J. Pathophysiology of septic shock. Crit. Care Clin., 2018, vol. 34, no. 1, pp. 43–61. doi: 10.1016/ j.ccc.2017.08.005
  57. Samannodi M., Zhao A., Nemshah Y., Shiley K. Plesiomonas shigelloides septic shock leading to death of postsplenectomy patient with pyruvate kinase deficiency and hemochromatosis. Case Rep. Infect. Dis., 2016, no. 2016: 1538501. doi: 10.1155/2016/1538501
  58. Sanz D., D’Arco F., Robles C.A., Brierley J. Incidence and pattern of brain lesions in paediatric septic shock patients. Br. J. Radiol., 2018, vol. 91, no. 1084: 20170861. doi: 10.1259/bjr.20170861
  59. Singer M., Deutschman C.S., Seymour C.W., Shankar-Hari M., Annane D., Bauer M., Bellomo R., Bernard G.R., Chiche J.-D., Coopersmith C.M., Hotchkiss R.S., Levy M.M., Marshall J.C., Martin G.S., Opal S.M., Rubenfeld G.D., Poll T., Vincent J.-L., Angus D.C. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA, 2016, vol. 315, no. 8, pp. 801–810. doi: 10.1001/jama.2016.0287
  60. Song J., Park D.W., Moon S., Cho H.J., Park J.H., Seok H. Diagnostic and prognostic value of interleukin-6, pentraxin 3, and procalcitonin levels among sepsis and septic shock patients: a prospective controlled study according to the Sepsis-3 definitions. BMC Infect. Dis., 2019, vol. 19, no. 1: 968. doi: 10.1186/s12879-019-4618-7
  61. Tanaka S., Diallo D., Delbosc S., Genève C., Zappella N., Yong-Sang J., Patche J., Harrois A., Hamada S., Denamur E., Montravers P., Duranteau J., Meilhac O. High-density lipoprotein (HDL) particle size and concentration changes in septic shock patients. Ann. Intensive Care, 2019, vol. 9, no. 1: 68. doi: 10.1186/s13613-019-0541-8
  62. Trinder M., Genga K.R., Kong H.J., Blauw L.L., Lo C., Li X., Cirstea M., Wang Y., Rensen P.C.N., Russell J.A., Walley K.R., Boyd J.H., Brunham L.R. Cholesteryl ester transfer protein influences high-density lipoprotein levels and survival in sepsis. Am. J. Respir. Crit. Care Med., 2019, vol. 199, no. 7, pp. 854–862. doi: 10.1164/rccm.201806-1157OC
  63. Tsai M.H., Chen Y.C., Lien J.M., Tian Y.C., Peng Y.S., Fang J.T., Yang C., Tang J.H., Chu Y.Y., Chen P.C., Wu C.S. Hemodynamics and metabolic studies on septic shock in patients with acute liver failure. J. Crit. Care, 2008, vol. 23, no. 4, pp. 468–472. doi: 10.1016/j.jcrc.2008.04.006
  64. Tverring J., Vaara S.T., Fisher J., Poukkanen M., Pettilä V., Linder A., FINNAKI Study Group. Heparin-binding protein (HBP) improves prediction of sepsis-related acute kidney injury. Ann. Intensive Care, 2017, vol. 7, no. 1: 105. doi: 10.1186/s13613-017-0330-1
  65. Vekaria-Hirani V., Kumar R., Musoke R.N., Wafula E.M., Chipkophe I.N. Prevalence and management of septic shock among children admitted at the Kenyatta National Hospital, longitudinal survey. Int. J. Pediatr., 2019, no. 2019: 1502963. doi: 10.1155/2019/1502963
  66. Wang X.T., Yao B., Liu D.W., Zhang H.M. Central venous pressure dropped early is associated with organ function and prognosis in septic shock patients: a retrospective observational study. Shock, 2015, vol. 44, no. 5, pp. 426–430. doi: 10.1097/SHK.0000000000000445
  67. Woźnica E.A., Inglot M., Woźnica R.K., Łysenko L. Liver dysfunction in sepsis. Adv. Clin. Exp. Med., 2018, vol. 27, no. 4, pp. 547–551. doi: 10.17219/acem/68363
  68. Yamaguchi H., Tanaka T., Maruyama A., Nagase H. Septic encephalopathy characterized by acute encephalopathy with biphasic seizures and late reduced diffusion and early nonconvulsive status epilepticus. Case Rep. Neurol. Med., 2016, no. 2016: 7528238. doi: 10.1155/2016/7528238
  69. Yamasaki K., Kurimura M., Kasai T., Sagara M., Kodama T., Inoue K. Determination of physiological plasma pentraxin 3 (PTX3) levels in healthy populations. Clin. Chem. Lab. Med., 2009, vol. 47, no. 4, pp. 471–477. doi: 10.1515/CCLM.2009.110
  70. Yang B., Wang J., Tao X., Wang D. Clinical investigation on the risk factors for prognosis in patients with septic shock. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2019, vol. 31, no. 9, pp. 1078–1082. doi: 10.3760/cma.j.issn.2095-4352.2019.09.004
  71. Yee C.R., Narain N.R., Akmaev V.R., Vemulapalli V. A data-driven approach to predicting septic shock in the intensive care unit. BioMed Inform. Insights, 2019, no. 11: 1178222619885147. doi: 10.1177/1178222619885147
  72. Zang H., Shen X., Wang S., He Z., Cheng H. Evaluation and prognostic value of Cv-aCO2/Da-vO2 in patients with septic shock receiving fluid resuscitation Cv-aCO2/Ca-vO2. Exp. Ther. Med., 2019, vol. 18, no. 5, pp. 3631–3635. doi: 10.3892/etm.2019.7956
  73. Zarbock A., Gomez H., Kellum J.A. Sepsis-induced acute kidney injury revisited: pathophysiology, prevention and future therapies. Curr. Opin. Crit. Care, 2014, vol. 20, no. 6, pp. 588–595. doi: 10.1097/MCC.0000000000000153
  74. Zhou Y., Liu Z., Huang J., Li G., Li F., Cheng Y., Xie X., Zhang J. Usefulness of the heparin-binding protein level to diagnose sepsis and septic shock according to Sepsis-3 compared with procalcitonin and C reactive protein: a prospective cohort study in China. BMJ Open, 2019, vol. 9, no. 4: e026527. doi: 10.1136/bmjopen-2018-026527
  75. Zuber B., Tran T.C., Aegerter P., Grimaldi D., Charpentier J., Guidet B., Mira J.P., Pène F.; CUB-Réa Network. Impact of case volume on survival of septic shock in patients with malignancies. Crit. Care Med., 2012, vol. 40, no. 1, pp. 55–62. doi: 10.1097/CCM.0b013e31822d74ba

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Gomanova L.I., Fokina M.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies