Определение молекулярно-генетических маркеров тяжелой формы течения ВЭБ-мононуклеоза

Обложка

Цитировать

Полный текст

Аннотация

Вирус Эпштейна—Барр (ВЭБ) является одним из этиологических агентов инфекционного мононук-леоза. Тяжелая форма течения заболевания может приводить к развитию серьезных осложнений, риск возникновения которых зависит в том числе от состояния иммунной системы пациента. На сегодняшний день отсутствуют специфические тесты, позволяющие определять риск развития тяжелой формы болезни. Целью работы стало выявление молекулярно-генетических маркеров тяжелой формы течения ВЭБ-инфекционного мононуклеоза (ВЭБ-ИМ) в иммунокомпетентных клетках периферической крови. В лейкоцитах периферической крови пациентов с ВЭБ-ИМ тяжелой и средней степени тяжести, а также практически здоровых доноров определяли экспрессию 483 генов и транскриптов генов, регулирующих апоптоз, пролиферацию и дифференцировку иммунокомпетентных клеток. Использовали ДНК-биочипы оригинального дизайна. Обработку результатов осуществляли с применением разработанной нами программы «MiDA». Для выявления маркеров тяжелой формы течения патологии проводили сравнение экспрессии каждого гена и транскрипта у пациентов с ВЭБ-ИМ и практически здоровых доноров. Для каждого гена и транскрипта определяли уровень изменения экспрессии и значимость для бинарной классификации. В качестве маркеров тяжелой формы ВЭБ-ИМ отбирали гены и транскрипты, характеризовавшиеся максимальными значениями двух определяемых параметров при сравнении пациентов с тяжелой формой инфекции и здоровых доноров, а также пациентов с тяжелой и средней степенью тяжести ВЭБ-ИМ. Гены и транскрипты, экспрессия которых различалась у пациентов с ВЭБ-ИМ средней степени тяжести и здоровых доноров, из перечня маркеров исключались. Также были исключены маркеры, дифференциально экспрессирующиеся в зависимости от пола и возраста обследуемых. В перечень маркеров тяжелой формы течения ВЭБ-ИМ вошли регуляторы апоптоза (гены BCL2L11, BIRC3 и транскрипт XIAP.NM_001167), а также факторы сплайсинга (ген CELF6 и транскрипт SF1.NM_201995). По сравнению с донорами и пациентами со средней степенью тяжести заболевания, у пациентов с тяжелой формой течения ВЭБ-ИМ в крови выявлено снижение экспрессии генов BCL2L11, BIRC3, транскриптов SF1.NM_201995 и XIAP.NM_001167, а также усиление экспрессии гена CELF6. Функциональная роль установленных молекулярных маркеров позволяет предположить, что тяжелая форма ВЭБ-ИМ характеризуется подавлением митохондриального и активацией TRAF-зависимого путей апоптоза в иммунокомпетентных клетках пациентов. Характер экспрессии выделенных маркеров является специфическим для тяжелой формы течения ВЭБ-ИМ, не зависит от пола и возраста пациентов. Результаты работы могут быть использованы при разработке специфических средств оценки риска развития осложнений ВЭБ-мононуклеоза.

Об авторах

Е. Н. Филатова

ФБУН Нижегородский НИИ эпидемиологии и микробиологии им. акад. И.Н. Блохиной Роспотребнадзора

Автор, ответственный за переписку.
Email: filatova@nniiem.ru
ORCID iD: 0000-0002-6683-7191

Филатова Елена Николаевна - кандидат биологических наук, ведущий научный сотрудник лаборатории молекулярной биологии и биотехнологии.

603950, Нижний Новгород, ул. Малая Ямская, 71, Тел.: 8 (831) 469-79-46 (служебн.), Факс: 8 (831) 469-79-20

Россия

Н. А. Сахарнов

ФБУН Нижегородский НИИ эпидемиологии и микробиологии им. акад. И.Н. Блохиной Роспотребнадзора

Email: saharnov@nniiem.ru
ORCID iD: 0000-0003-3965-2033

Научный сотрудник лаборатории молекулярной биологии и биотехнологии.

Нижний Новгород

Россия

О. В. Уткин

ФБУН Нижегородский НИИ эпидемиологии и микробиологии им. акад. И.Н. Блохиной Роспотребнадзора

Email: utkino2004@mail.ru
ORCID iD: 0000-0002-0941-9890

Кандидат биологических наук, зав. лабораторией молекулярной биологии и биотехнологии.

Нижний Новгород

Россия

Е. А. Кулова

ФГБОУВО Приволжский исследовательский медицинский университет Минздрава России

Email: dr_kulova@mail.ru

Кандидат медицинских наук, доцент кафедры инфекционных болезней.

Нижний Новгород

Россия

Список литературы

  1. Солнцев Л.А., Старикова В.Д., Сахарнов Н.А., Князев Д.И., Уткин О.В. Стратегия подбора зондов для изучения совокупности мРНК участников рецептор-опосредованного сигналинга апоптоза // Молекулярная биология. 2015. Т. 49, № 3. С. 457-465. doi: 10.7868/S0026898415030167(In Russ.)
  2. Филатова Е.Н., Уткин О.В. Роль некодирующих изоформ мРНК белок-кодирующих генов в регуляции генной экспрессии // Генетика. 2018. Т. 54, № 8. С. 879-887. doi: 10.1134/S0016675818080052 (In Russ)
  3. Arning S., Gruter P., Bilbe G., Kramer A. Mammalian splicing factor SF1 is encoded by variant cDNAs and binds to RNA. RNA, 1996, vol. 2, no. 8, pp. 794-810.
  4. Asslaber D., Watch N., Leisch M., Qi Y., Maeding N., Hufnagl C., Jansko B., Zaborsky N., Villunger A., Hartmann T.N., Greil R., Egle A. BIRC3 expression predicts CLL progression and defines treatment sensitivity via enhanced NF-kB nuclear translocation. Clin. Cancer Res., 2018, vol. 25, no. 6, pp. 1901-1912. doi: 10.1158/1078-0432.CCR.-18-1548
  5. Caslini C., Spinelli O., Cazzaniga G., Golay J., De Gioia L., Pedretti A., Breviario F., Amaru R., Barbui T., Biondi A., Introna M., Rambaldi A. Identification of two novel isoforms of the ZNF162 gene: a growing family of signal transduction and activator of RNA proteins. Genomics, 1997, vol. 42, no. 2, pp. 268-277. doi: 10.1006/geno.1997.4705
  6. Corioni M., Antih N., Tanackovic G., Zavolan M., Kramer A. Analysis of in situ pre-mRNA targets of human splicing factor SF1 reveals a function in alternative splicing. Nucleic Acids Res., 2011, vol. 39, no. 5, pp. 1868-1879. doi: 10.1093/nar/gkq1042
  7. Dunmire S.K., Odumade O.A., Porter J.L., Reyes-Genere J., Schmeling D.O., Bilgic H., Fan D., Baechler E.C., Balfour H.H. Jr., Hogquist K.A. Primary EBV infection induces an expression profile distinct from other viruses but similar to hemophagocytic syndromes. PLoS One, 2014, vol. 9, no. 1: e85422c. doi: 10.1371/journal.pone.0085422
  8. Fitzsimmons L., Boyce A.J., Wei W., Chang C., Croom-Carter D., Tierney R.J., Herold M.J., Bell A.I., Strasser A., Kelly G.L., Rowe M. Coordinated repression of BIM and PUMA by Epstein-Barr virus latent genes maintains the survival of Burkitt lymphoma cells. Cell Death Differ., 2018, vol. 25, no. 2, pp. 241-254. doi: 10.1038/cdd.2017.150
  9. Fu Q., He C., Mao Z. Epstein-Barr virus interactions with the Bcl-2 protein family and apoptosis in human tumor cells. J. Zhejiang Univ. Sci. B, 2013, vol. 14, no. 1, pp. 8-24. doi: 10.1631/jzus.B1200189
  10. Houldcroft C.J., Kellam P. Host genetics of Epstein-Barr virus infection, latency and disease. Rev. Med. Virol., 2015, vol. 25, no. 2, pp. 71-84. doi: 10.1002/rmv.1816
  11. Ladd A.N., Nguyen H.N., Malhorta K., Cooper A. CELF6, a member of the CELF family of RNA-binding proteins, regulates muscle-specific splicing enhancer-dependent alternative splicing. J. Biol. Chem., 2004, vol. 279, no. 17, pp. 17756-17764. doi: 10.1074/jbc.M310687200
  12. Lopez-Granados E., Stacey M., Kienzler A.-K., Sierro S., Willberg C.B., Fox C.P., Rigaud S., Long H.M., Hislop A.D., Rickinson A.B., Patel S., Latour S., Klenerman P., Chapel H. A mutation in X-linked inhibitor of apoptosis (G466X) leads to memory inflation of Epstein-Barr virus-specific T cells. Clin. Exp. Immunol., 2014, vol. 178, no. 3, pp. 470- 482. doi: 10.1111/cei.12427
  13. McAulay K.A., Higgins C.D., Macsween K.F., Lake A., Jarrett R.F., Robertson F.L., Williams H., Crawford D.H. HLA class I polymorphisms are associated with development of infectious mononucleosis upon primary EBV infection. J. Clin. Invest., 2007, vol. 117, no. 10, pp. 3042-3048. doi: 10.1172/JCI32377
  14. Pender M.P. CD8+ T-cell deficiency, Epstein-Barr virus infection, vitamin D deficiency, and steps to autoimmunity: a unifying hypothesis. Autoimmune Dis., 2012, vol. 2012:189096. doi: 10.1155/2012/189096
  15. Price A.M., Dai J., Bazot Q., Patel L., Nikitin P.A., Djavadian R., Winter P.S., Salinas C.A., Barry A.P., Wood K.C., Johann-sen E.C., Letai A., Allday M.J., Luftig M.A. Epstein-Barr virus ensures B cell survival by uniquely modulating apoptosis at early and late times after infection. eLife, 2017, vol. 6: e22509. doi: 10.7554/eLife.22509
  16. Price A.M., Luftig M.A. Dynamic Epstein-Barr virus gene expression on the path to B-cell transformation. Adv. Virus Res., 2014, vol. 88,pp. 279-313. doi: 10.1016/B978-0-12-800098-4.00006-4
  17. Price A.M., Tourigny J.P., Forte E., Salinas R.E., Dave S.S., Luftig M.A. Analysis of Epstein-Barr virus-regulated host gene expression changes through primary B-cell outgrowth reveals delayed kinetics of latent membrane protein 1-mediated NF-kB activation. J. Virol,, 2012, vol. 86, no. 20,pp. 11096-11106. doi: 10.1128/JVI.01069-12
  18. Rigaud S., Fondaneche M.-C., Lambert N., Pasquier B., Ateo V., Soulas P., Galicier L., Le Deist F., Rieux-Laucat F., Revy P., Fischer A., de Saint Basile G., Latour S. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature, 2006, vol. 444, no. 7115, pp. 110-114. doi: 10.1038/nature05257
  19. Skinner C.M., Ivanov N.S., Barr S.A., Chen Y., Skalsky R.L. An Epstein-Barr virus microRNA blocks interleukin-1 (IL-1) signaling by targeting IL-1 receptor 1. J. Virol., 2017, vol. 91, no. 21: e00530-17. doi: 10.1128/JVI.00530-17
  20. Wood C.D., Veenstra H., Khasnis S., Gunnel A., Webb H.M., Shannon-Lowe C., Andrews S., Osborne C.S., West M.J. MYC activation and BCL2L11 silencing by a tumour virus through the large-scale reconfiguration of enhancer-promoter hubs. eLife, 2016, vol. 5: e18270. doi: 10.7554/eLife.18270
  21. Worth A.J.J., Houldcroft C.J., Booth C. Severe Epstein-Barr virus infection in primary immunodeficiency and the normal host. Br. J. Haematol., 2016, vol. 175, no. 4, pp. 559-576. doi: 10.1111/bjh.14339

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Филатова Е.Н., Сахарнов Н.А., Уткин О.В., Кулова Е.А., 2020

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».