ВОЗМОЖНЫЕ КОЛЛИЗИИ В ИММУНОДИАГНОСТИКЕ ВИРУСНЫХ ИНФЕКЦИЙ И ВАКЦИНАЦИИ

Обложка

Цитировать

Полный текст

Аннотация

Антитела (АТ), особенно естественные, проявляют полиспецифичность не только из-за свойственной им конформационной динамичности. С помощью компьютерного анализа исследовано распространение среди поверхностных белков ДНК- и РНК-содержащих вирусов, вызывающих наиболее распространенные инфекции у человека, идентичных и гомологичных пептидов. Выявлено, что каждый вирусный белок содержит фрагменты, гомологичные фрагментам других вирусных белков, что позволяет предполагать наличие пептидного континуума родства белков (ПКРБ) вирусов. В числе возможных проявлений ПКРБ вирусов вклад его в полиреактивность и аутореактивность АТ, и, следовательно, иммунологические подходы идентификации вирусов нельзя рассматривать как высоко надежные из-за высокой вероятности перекрестных реакций. Существование ПКРБ вирусных белков исключает возможность существования 100%-ной специфичности иммунодиагностикумов для идентификации вирусов. Из-за ПКРБ коллизии с иммунодиагностикой могут возникать как в случае идентификации самого вируса, так и при идентификации циркулирующих в организме АТ к вирусу. Кроме того, ПКРБ может служить причиной гетерологичного иммунитета и, соответственно, тяжелого течения инфекции. Специ- альный компьютерный анализ пептидного родства нуклеопротеина (НП) вируса гриппа А с различными белками человека позволил обнаружить у НП, помимо описанного ранее для него общего мотива с рецептором гипокретина 2, пептиды, гомологичные таковым в мелатониновом и глутаматном рецепторах и в трех белках ионных каналов. Обнаружение пептидного родства НП с этими белками человека позволяет полагать, что вызванный прививкой противогриппозной вакцины Pandemrix (GlaxoSmithKline) в период пандемии гриппа 2009–2010 гг. всплеск нарколепсии у детей и подростков может быть обусловлен образованием АТ не только к пептиду с общим для НП и рецептора гипокретина 2 мотивом, но и к этим новым выявленным пептидам НП, гомологичным к другим белкам. При иммунном ответе на инфекцию или вакцину, как известно, образуются АТ ко множеству преимущественно иммунодоминантных эпитопов. Уменьшить и даже избежать риски осложнений вакцинаций возможно, выполнив предварительный компьютерный анализ на наличие в белках вакцинальных вирусов эпитопов, гомологичных таковым в белках человека, и особенно преклинический анализ специфичности индуцируемых вакциной АТ на микропанелях с многотысячным набором образцов белков человека.

Об авторах

Е. П. Харченко

ФГБУН Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН

Автор, ответственный за переписку.
Email: neuro.children@mail.ru

д.б.н., ведущий научный сотрудник,

194223, Санкт-Петербург, пр. Мориса Тореза, 44

Россия

Список литературы

  1. Харченко Е.П. Иммуноэпитопный континуум родства белков и полиреактивность и аутореактивность антител // Медицинская иммунология. 2015. Т. 17, № 4. C. 335–346 [Kharchenko E.P. Immune Epitope continuum of the protein relationships, poly- and autoreactivity of antibodies] Meditsinskaya Immunologiya = Medical Immunology (Russia), 2015, vol. 17, no. 4, pp. 335–346. doi: 10.15789/1563-0625-2015-4-335-346 (In Russ.)]
  2. Харченко Е.П. Эволюционные аспекты оценки возможного числа и источников белковых регуляторов в организме // Журнал эволюционной биохимии и физиологии. 1988. Т. 24. С. 240–249. [Kharchenko E.P. Evolutionary aspects of evaluation of possible number and sources of protein regulators in the organism. Zhurnal evolyutsionnoi biokhimii i fiziologii = Journal of Evolutionary Biochemistry and Physiology, 1989, vol. 25, no. 2, pp. 176–181. (In Russ.)]
  3. Ahmed S.S., Volkmuth W., Duca J., Corti L., Pallaoro M., Pezzicoli A., Karle A., Rigat F., Rappuoli R., Narasimhan V., Julkunen I., Vuorela A., Vaarala O., Nohynek H., Pasini F.L., Montomoli E., Trombetta C., Adams C.M., Rothbard J., Steinman L., Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2. Sci. Transl. Med., 2015, vol. 7, no. 294:ra105. doi: 10.1126/scitranslmed.aab2354
  4. Gil A., Kenney L.L., Mishra R., Watkin L.B., Aslan N., Selin L.K. Vaccination and heterologous immunity: educating the immune system. Trans. R. Soc. Trop. Med. Hyg., 2015, vol. 109, no. 1, pp. 62–69. doi: 10.1093/trstmh/tru198
  5. Gunti S., Messer R.J., Xu C., Yan M., Coleman W.G., Peterson K.E., Hasenkrug K.J., Notkins A.L. Stimulation of Toll-like receptors profoundly influences the titer of polyreactive antibodies in the circulation. Sci. Rep., 2015, vol. 5:15066. doi: 10.1038/srep15066
  6. Haynes B.F., Moody M.A., Alam M., Bonsignori M., Verkoczy L., Ferrari G., Gao F., Tomaras G.D., Liao H.X., Kelsoe G. Progress in HIV-1 vaccine development. J. Allergy Clin. Immunol., 2014, vol. 134, pp. 3–10. doi: 10.1016/j.jaci.2014.04.025
  7. Nagele E.P., Han M., Acharya N.K., DeMarshall C., Kosciuk M.C., Nagele R.G. Natural IgG autoantibodies are abundant and ubiquitous in human sera, and their number is influenced by age, gender, and disease. PLoS ONE, 2013, vol. 8, no. 4:e60726. doi: 10.1371/journal.pone.0060726
  8. Poropatich K., Sullivan D.J. Jr. Human immunodeficiency virus type I long-term non-progressors: the viral genetic and immunological basis for disease non-proeression II. J. Gen. Virol., 2011, vol. 92, pt. 2, pp. 247– 268. doi: 10.1099/vir.0.027102-0
  9. Rothstein T.L., Griffin D.O., Holodick N.E., Quach T.D., Kaku H. Human B-1 cells take the stage. Ann. NY Acad. Sci., 2013, vol. 1285, pp. 97–114. doi: 10.1111/nyas.12137
  10. Selin L.K., Wlodarczyk M.F., Kraft A.R., Nie S., Kenney L.L., Puzone R., Celada F. Heterologous immunity: immunopathology, autoimmunity and protection during viral infections. Autoimmunity, 2011, vol. 44, pp. 328–347. doi: 10.3109/08916934.2011.523277
  11. Sharma S., Thomas P.G. The two faces of heterologous immunity: protection or immunopathology. J. Leukoc. Biol., 2014, vol. 95, pp. 405–416. doi: 10.1189/jlb.0713386
  12. Shen Z.T., Nguyen T.T., Daniels K.A., Welsh R.M., Stern L.J. Disparate epitopes mediating protective heterologous immunity to unrelated viruses share peptide-MHC structural features recognized by cross-reactive T cells. J. Immunol., 2013, vol. 191, no. 10, pp. 5139–5152. doi: 10.4049/jimmunol.1300852
  13. Van Regenmortel M. An outdated notion of antibody specificity is one of the major detrimental assumptions of the structurebased reverse vaccinology paradigm, which prevented it from helping to develop an effective HIV-1 vaccine. Front Immunol., 2014, vol. 5:593. doi: 10.3389/fimmu.2014.00593
  14. Verkoczy L., Diaz M., Holl T.M., Ouyang Y.B., Bouton-Verville H., Alam S.M., Liao H.X., Kelsoe G., Haynes B.F. Autoreactivity in an HIV-1 broadly reactive neutralizing antibody variable region heavy chain induces immunologic tolerance. Proc. Natl. Acad. Sci. USA, 2010, vol. 107, pp. 181–186. doi: 10.1073/pnas.0912914107
  15. Vujicić A.D., Gemović B., Veljković V., Glisić S., Veljković N. Natural autoantibodies in healthy neonatals recognizing a peptide derived from the second conserved region of HIV-1 gp120. Vojnosanit Pregl., 2014, vol. 71, no. 4, pp. 352–361.
  16. Welsh R.M., Che J.W., Brehm M.A., Selin L.K. Heterologous immunity between viruses. Immunol. Rev., 2010, vol. 235, no. 1, pp. 244–266. doi: 10.1111/j.0105-2896.2010.00897.x
  17. Yang G., Holl T.M., Liu Y, Li Y., Lu X., Nicely N.I., Kepler T.B., Alam S.M., Liao H.X., Cain D.W., Spicer L., VandeBerg J.L., Haynes B.F., Kelsoe G. Identification of autoantigens recognized by the 2F5 and 4e10 broadly neutralizing HIV-1 antibodies. J. Exp. Med., 2013, vol. 210, no. 2, pp. 241–256. doi: 10.1084/jem.20121977

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Харченко Е.П., 2016

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».