Contemporary robotic surgical systems: A preliminary review

Cover Page

Cite item

Full Text

Abstract

Robot-assisted surgery has emerged as the most transformative technological advancement in this field of medicine over the past two decades. Since the U.S. Food and Drug Administration (FDA) approved the da Vinci robotic surgical system (Intuitive Surgical, Sunnyvale, California, USA) in 2000, it has revolutionized minimally invasive surgery by shortening the learning curve and facilitating reconstructive steps in many procedures compared to conventional laparoscopy. Today, the da Vinci system accounts for approximately 80% of the global surgical robotics market. However, its high acquisition and maintenance costs remain a significant barrier for many hospitals, including those in the United States. As many of the original patents filed by Intuitive Surgical have reached their 20-year expiration, opportunities have arisen for the development of alternative systems. In addition to cost, common criticisms of the da Vinci system include limited communication between the surgeon and the operating team due to the closed-console design, lack of haptic feedback, rigid arm positioning, and the large physical footprint of the platform. Over the past decade, several new robotic systems have been introduced, some of which have been approved for clinical use. Each of these platforms incorporates key innovations aimed at addressing the technical and economic limitations of the da Vinci system. The entry of these systems into the market has effectively ended Intuitive Surgical’s monopoly. Although none of them is currently available worldwide, platforms such as Senhance, Versius, and Hugo RAS have gained traction primarily in Europe, whereas others—such as the KangDuo surgical robot, Toumai, Revo-I, and Hinotori—are used in China, South Korea, and Japan. Comparative evaluation of these systems against the da Vinci must account for several factors. Since its initial launch in 2000, five generations of the system have been developed: the original 2000 model, S, Si, Xi, and the fifth-generation model. Most of the systems reviewed here are still in their first generation and are expected to undergo further improvements and refinement. This review provides an overview of both well-established and emerging robotic surgical platforms, their distinct design features, clinical applications, and surgical outcomes. It covers widely used systems such as da Vinci, Senhance, Versius, and Hugo RAS, as well as less extensively reported platforms including Revo-I, Avatera, KangDuo, Hinotori, Dexter, and Chinese alternatives to the da Vinci system, notably the first domestically developed Chinese surgical robot, Toumai.

About the authors

Yury A. Kozlov

Irkutsk State Regional Children’s Clinical Hospital; Irkutsk State Medical Academy of Postgraduate Education; Irkutsk State Medical University

Author for correspondence.
Email: yuriherz@hotmail.com
ORCID iD: 0000-0003-2313-897X
SPIN-code: 3682-0832

MD, Dr. Sci. (Medicine), Professor, Corresponding Member of the Russian Academy of Sciences

Russian Federation, Irkutsk; Irkutsk; Irkutsk

Alexander P. Rozhanski

Irkutsk State Regional Children’s Clinical Hospital; Irkutsk State Medical University

Email: alexanderozhanski@mail.ru
ORCID iD: 0000-0001-7922-7600

MD

Russian Federation, Irkutsk; Irkutsk

Marina V. Makarochkina

Irkutsk State Regional Children’s Clinical Hospital

Email: m.makarochkina@gmail.com
ORCID iD: 0000-0001-8295-6687
SPIN-code: 4600-4071

MD

Russian Federation, Irkutsk

Eduard V. Sapukhin

Irkutsk State Regional Children’s Clinical Hospital

Email: sapukhin@yandex.ru
ORCID iD: 0000-0001-5470-7384

MD

Russian Federation, Irkutsk

Alexey S. Strashinsky

Irkutsk State Regional Children’s Clinical Hospital

Email: leksus-642@yandex.ru
ORCID iD: 0000-0002-1911-4468

MD

Russian Federation, Irkutsk

Anna O. Ryakhina

Irkutsk State Regional Children’s Clinical Hospital

Email: romahka.yansa@yandex.ru
ORCID iD: 0009-0006-0340-1186
Russian Federation, Irkutsk

Gyulnara E. Mirzalieva

Irkutsk State Medical University

Email: mirzalieva.gulnara@mail.ru
ORCID iD: 0009-0008-9542-9390
Russian Federation, Irkutsk

Andrey A. Marchuk

Irkutsk State Regional Children’s Clinical Hospital

Email: maa-ped20@yandex.ru
ORCID iD: 0000-0001-9767-0454

MD

Russian Federation, Irkutsk

References

  1. McCulloch P, Checcucci E, Chow AK, et al. New multiport robotic surgical systems: a comprehensive literature review of clinical outcomes in urology. Ther Adv Urol. 2023;15:17562872231177781. doi: 10.1177/17562872231177781
  2. McCulloch P, Altman DG, Campbell WB, et al. No surgical innovation without evaluation: the IDEAL recommendations. Lancet. 2009;374(9695):1105–1112. doi: 10.1016/S0140-6736(09)61116-8
  3. Marcus HJ, Ramirez PT, Khan DZ, et al. The IDEAL framework for surgical robotics: development, comparative evaluation and long-term monitoring. Nat Med. 2024;30(1):61–75. doi: 10.1038/s41591-023-02732-7 EDN: RYBXGO
  4. Namdarian B, Dasgupta P. What robot for tomorrow and what improvement can we expect? Curr Opin Urol. 2018;28(2):143–152. doi: 10.1097/MOU.0000000000000474
  5. Samalavicius NE, Janusonis V, Siaulys R, et al. Robotic surgery using Senhance® robotic platform: single center experience with first 100 cases. J Robot Surg. 2020;14:371–376. doi: 10.1007/s11701-019-01000-6
  6. Thomas BC, Slack M, Hussain M, et al. Preclinical evaluation of the Versius surgical system, a new robot-assisted surgical device for use in minimal access renal and prostate surgery. Eur Urol Focus. 2021;7:444–452. doi: 10.1016/j.euf.2020.01.011 EDN: RZDTHL
  7. Ragavan N, Bharathkumar S, Chirravur P, et al. Evaluation of Hugo RAS system in major urologic surgery: our initial experience. J Endourol. 2022;36:1029–1035. doi: 10.1089/end.2022.0015 EDN: NNCEWW
  8. Alip S, Koukourikis P, Han WK, et al. Comparing Revo-i and da Vinci in Retzius-sparing robot-assisted radical prostatectomy: a preliminary propensity score analysis of outcomes. J Endourol. 2022;36(1):104–110. doi: 10.1089/end.2021.0421 EDN: APBMVO
  9. Shademan A, Decker RS, Opfermann JD, et al. Supervised autonomous robotic soft tissue surgery. Sci Transl Med. 2016;8(337):337ra64. doi: 10.1126/scitranslmed.aad9398
  10. Anvari M, McKinley C, Stein H. Establishment of the world’s first telerobotic remote surgical service: for provision of advanced laparoscopic surgery in a rural community. Ann Surg. 2005;241(3):460–464. doi: 10.1097/01.sla.0000154456.69815.ee
  11. Nakauchi M, Suda K, Nakamura K, et al. Establishment of a new practical telesurgical platform using the Hinotori™ surgical robot system: a preclinical study. Langenbecks Arch Surg. 2022;407(8):3783–3791. doi: 10.1007/s00423-022-02710-6 EDN: IPNORS
  12. Hellan M, Spinoglio G, Pigazzi A, et al. The influence of fluorescence imaging on the location of bowel transection during robotic left-sided colorectal surgery. Surg Endosc. 2014;28(5):1695–1702. doi: 10.1007/s00464-013-3377-6 EDN: VLBTSU
  13. Gosrisirikul C, Chang KD, Raheem AA, et al. New era of robotic surgical systems. Asian J Endosc Surg. 2018;11(4):291–299. doi: 10.1111/ases.12660
  14. Brassetti A, Ragusa A, Bove AM, et al. Robot-assisted transperitoneal repair of a recto-vesical fistula, a case report. Urol Video J. 2023;19:100233. doi: 10.1016/j.urolvj.2023.100233 EDN: CDEDAL
  15. Dobbs RW, Halgrimson WR, Talamini S, et al. Single-port robotic surgery: the next generation of minimally invasive urology. World J Urol. 2020;38(4):897–905. doi: 10.1007/s00345-019-02898-1 EDN: CVYBYG
  16. Melling N, Barr J, Schmitz R, et al. Robotic cholecystectomy: first experience with the new Senhance robotic system. J Robot Surg. 2019;13(3):495–500. doi: 10.1007/s11701-018-0877-3
  17. McKechnie T, Khamar J, Daniel R, et al. The Senhance surgical system in colorectal surgery: a systematic review. J Robot Surg. 2023;17(2):325–334. doi: 10.1007/s11701-022-01455-0 EDN: SQEESB
  18. Gueli Alletti S, Rossitto C, Cianci S, et al. The Senhance™ surgical robotic system ("Senhance") for total hysterectomy in obese patients: a pilot study. J Robot Surg. 2018;12(2):229–234. doi: 10.1007/s11701-017-0718-9
  19. Kastelan Z, Hudolin T, Kulis T, et al. Extraperitoneal radical prostatectomy with the Senhance robotic platform: first 40 cases. Eur Urol. 2020;78(6):932–934. doi: 10.1016/j.eururo.2020.07.012 EDN: CMFSXK
  20. Kastelan Z, Hudolin T, Kulis T, et al. Upper urinary tract surgery and radical prostatectomy with Senhance® robotic system: single center experience — first 100 cases. Int J Med Robot. 2021;17(4):e2269. doi: 10.1002/rcs.2269 EDN: XGFOYA
  21. Kulis T, Hudolin T, Penezic L, et al. Comparison of extraperitoneal laparoscopic and extraperitoneal Senhance radical prostatectomy. Int J Med Robot. 2022;18(1):e2344. doi: 10.1002/rcs.2344 EDN: EFWLHH
  22. Venckus R, Jasenas M, Telksnys T, et al. Robotic-assisted radical prostatectomy with the Senhance® robotic platform: single center experience. World J Urol. 2021;39(12):4305–4310. doi: 10.1007/s00345-021-03792-5 EDN: HJHCGV
  23. Carbonara U, Srinath M, Crocerossa F, et al. Robot-assisted radical prostatectomy versus standard laparoscopic radical prostatectomy: an evidence-based analysis of comparative outcomes. World J Urol. 2021;39(10):3721–3732. doi: 10.1007/s00345-021-03687-5 EDN: GWZVHV
  24. Kaneko G, Shirotake S, Oyama M, et al. Initial experience of laparoscopic radical nephrectomy using the Senhance® robotic system for renal cell carcinoma. Int Cancer Conf J. 2021;10(3):228–232. doi: 10.1007/s13691-021-00487-x EDN: ESEJOR
  25. Sassani JC, Glass Clark S, McGough CE, et al. Sacrocolpopexy experience with a novel robotic surgical platform. Int Urogynecol J. 2022;33(11):3255–3260. doi: 10.1007/s00192-022-05155-z EDN: SNNZKH
  26. Holzer J, Beyer P, Schilcher F, et al. First pediatric pyeloplasty using the Senhance® robotic system — a case report. Children (Basel). 2022;9(3):302. doi: 10.3390/children9030302 EDN: CPMDQU
  27. Kelkar D, Borse MA, Godbole GP, et al. Interim safety analysis of the first-in-human clinical trial of the Versius surgical system, a new robot-assisted device for use in minimal access surgery. Surg Endosc. 2021;35(9):5193–5202. doi: 10.1007/s00464-020-08014-4 EDN: GMOCCG
  28. Rocco B, Turri F, Sangalli M, et al. Robot-assisted radical prostatectomy with the Versius robotic surgical system: first description of a clinical case. Eur Urol Open Sci. 2023;48:82–83. doi: 10.1016/j.euros.2022.11.019 EDN: GVZAAF
  29. Reeves F, Challacombe B, Ribbits A, et al. Idea, development, exploration, assessment, long-term follow-up study (IDEAL) stage 1/2a evaluation of urological procedures with the Versius robot. BJU Int. 2022;130(4):441–443. doi: 10.1111/bju.15829 EDN: SDUXOA
  30. Hussein AA, Mohsin R, Qureshi H, et al. Transition from da Vinci to Versius robotic surgical systems: initial experience and outcomes of over 100 consecutive procedures. J Robot Surg. 2023;17(2):419–426. doi: 10.1007/s11701-022-01422-9 EDN: RYVERM
  31. Bravi CA, Paciotti M, Sarchi L, et al. Robot-assisted radical prostatectomy with the novel Hugo robotic system: initial experience and optimal surgical set-up at a tertiary referral robotic center. Eur Urol. 2022;82(2):233–237. doi: 10.1016/j.eururo.2022.04.029 EDN: XNXMQA
  32. Gallioli A, Uleri A, Gaya JM, et al. Initial experience of robot-assisted partial nephrectomy with Hugo™ RAS system: implications for surgical setting. World J Urol. 2023;41(4):1085–1091. doi: 10.1007/s00345-023-04336-9 EDN: CIQEXP
  33. Elorrieta V, Villena J, Kompatzki Á, et al. Robot-assisted laparoscopic surgeries for nononcological urologic disease: initial experience with Hugo RAS system. Urology. 2023;174:118–125. doi: 10.1016/j.urology.2023.01.042 EDN: OCBGUO
  34. Raffaelli M, Gallucci P, Voloudakis N, et al. The new robotic platform Hugo™ RAS for lateral transabdominal adrenalectomy: a first world report of a series of five cases. Updates Surg. 2023;75(1):217–225. doi: 10.1007/s13304-022-01410-6 EDN: YMXAWR
  35. Kwon W, Jang JY, Jeong CW, et al. Cholecystectomy with the Hugo™ robotic-assisted surgery system: the first general surgery clinical study in Korea. Surg Endosc. 2024. doi: 10.1007/s00464-024-11334-4 EDN: FLJBWO
  36. Yap MÁC, Castillo CEV, Martino M, et al. The experience with Hugo™ robot-assisted surgery on complex gynecological patients in Panama. J Robot Surg. 2024;19(1):3. doi: 10.1007/s11701-024-02149-5
  37. Lim JH, Lee WJ, Park DW, et al. Robotic cholecystectomy using Revo-I model MSR-5000, the newly developed Korean robotic surgical system: a preclinical study. Surg Endosc. 2017;31(8):3391–3397. doi: 10.1007/S00464-016-5357-0 EDN: EXDWPS
  38. Chang KD, Abdel Raheem A, Choi YD, et al. Retzius-sparing robot-assisted radical prostatectomy using the Revo-I robotic surgical system: surgical technique and results of the first human trial. BJU Int. 2018;122(3):441–448. doi: 10.1111/BJU.14245 EDN: VHHJYL
  39. Kim JS, Choi M, Hwang HS, et al. The Revo-i robotic surgical system in advanced pancreatic surgery: a second non-randomized clinical trial and comparative analysis to the da Vinci™ system. Yonsei Med J. 2024;65(3):148–155. doi: 10.3349/ymj.2023.0140 EDN: FUDWPI
  40. Gkeka K, Tsaturyan A, Faitatziadis S, et al. Robot-assisted radical nephrectomy using the novel Avatera robotic surgical system: a feasibility study in a porcine model. J Endourol. 2023;37(3):273–278. doi: 10.1089/end.2022.0596 EDN: VOEAVM
  41. Peteinaris A, Kallidonis P, Tsaturyan A, et al. The feasibility of robot-assisted radical cystectomy: an experimental study. World J Urol. 2023;41(2):477–482. doi: 10.1007/s00345-022-04266-y EDN: BBSBUE
  42. Kallidonis P, Tatanis V, Peteinaris A, et al. Robot-assisted pyeloplasty for ureteropelvic junction obstruction: initial experience with the novel Avatera system. World J Urol. 2023;41(11):3155–3160. doi: 10.1007/s00345-023-04586-7 EDN: JPPTHS
  43. Gkeka K, Kallidonis P, Peteinaris A, et al. Robot-assisted radical prostatectomy using the Avatera system™: a prospective pilot study. Minerva Urol Nephrol. 2024;76(1):52–59. doi: 10.23736/S2724-6051.23.05545-3 EDN: ZZHADF
  44. Fan S, Dai X, Yang K, et al. Robot-assisted pyeloplasty using a new robotic system, the KangDuo-Surgical Robot-01: a prospective, single-centre, single-arm clinical study. BJU Int. 2021;128(2):162–165. doi: 10.1111/bju.15396 EDN: VXTZOW
  45. Fan S, Xiong S, Li Z, et al. Pyeloplasty with the Kangduo surgical robot vs the da Vinci Si robotic system: preliminary results. J Endourol. 2022;36(12):1538–1544. doi: 10.1089/end.2022.0366 EDN: YRBIVT
  46. Wang J, Fan S, Shen C, et al. Partial nephrectomy through retroperitoneal approach with a new surgical robot system, KD-SR-01. Int J Med Robot. 2022;18(2):e2352. doi: 10.1002/rcs.2352 EDN: HGIIMA
  47. Fan S, Hao H, Chen S, et al. Robot-assisted laparoscopic radical prostatectomy using the KangDuo surgical robot system vs the da Vinci Si robotic system. J Endourol. 2023;37(5):568–574. doi: 10.1089/end.2022.0739 EDN: FZCVKT
  48. Li X, Xu W, Fan S, et al. Robot-assisted partial nephrectomy with the newly developed KangDuo surgical robot versus the da Vinci Si surgical system: a double-center prospective randomized controlled noninferiority trial. Eur Urol Focus. 2023;9(1):133–140. doi: 10.1016/j.euf.2022.07.008 EDN: XXRKKK
  49. Xiong S, Fan S, Chen S, et al. Robotic urologic surgery using the KangDuo-Surgical Robot-01 system: a single-center prospective analysis. Chin Med J (Engl). 2023;136(24):2960–2966. doi: 10.1097/CM9.0000000000002920 EDN: BHYIMU
  50. Dong J, Ji R, Liu G, et al. Feasibility, safety and effectiveness of robot-assisted retroperitoneal partial adrenalectomy with a new robotic surgical system: a prospective clinical study. Front Surg. 2023;10:1071321. doi: 10.3389/fsurg.2023.1071321 EDN: LAJNJC
  51. Hinata N, Yamaguchi R, Kusuhara Y, et al. Hinotori surgical robot system, a novel robot-assisted surgical platform: preclinical and clinical evaluation. Int J Urol. 2022;29(10):1213–1220. doi: 10.1111/iju.14973 EDN: YWFGTV
  52. Miyake H, Motoyama D, Matsushita Y, et al. Initial experience of robot-assisted partial nephrectomy using Hinotori surgical robot system: single institutional prospective assessment of perioperative outcomes in 30 cases. J Endourol. 2023;37(5):531–534. doi: 10.1089/end.2022.0775 EDN: VMGLKU
  53. Miura R, Okuya K, Akizuki E, et al. World-first report of low anterior resection for rectal cancer with the Hinotori™ surgical robot system: a case report. Surg Case Rep. 2023;9(1):156. doi: 10.1186/s40792-023-01705-9 EDN: TBHMLK
  54. Kitadani J, Ojima T, Hayata K, et al. Robotic gastrectomy using hinotori™ surgical robot system: initial case series. Asian J Endosc Surg. 2024;17(3):e13349. doi: 10.1111/ases.13349
  55. Tobe T, Terakawa T, Ueki H, et al. Initial experience of robot-assisted laparoscopic pyeloplasty for ureteropelvic junction obstruction using the Hinotori surgical robot system. Int J Med Robot. 2024;20(5):e2673. doi: 10.1002/rcs.2673 EDN: AFLBPW
  56. Böhlen D, Gerber R. First ever radical prostatectomy performed with the new Dexter robotic system™. Eur Urol. 2023;83(5):479–480. doi: 10.1016/j.eururo.2023.02.004 EDN: OKDBDW
  57. Alkatout I, Becker T, Nuhn P, et al. The first robotic-assisted hysterectomy below the bikini line with the Dexter robotic system™. Facts Views Vis Obgyn. 2024;16(1):87–91. doi: 10.52054/FVVO.16.1.010 EDN: BZWZFH
  58. Pokhrel G, Zheng H, Tao J, et al. Assessing the feasibility and safety of the Toumai® robotic system in urologic surgery: initial experience. J Endourol. 2024;38(6):552–558. doi: 10.1089/end.2024.0028 EDN: HIFJVL
  59. Zhang Z, Zhan W, Tian H, et al. An initial exploratory clinical study and outcome assessment of gastrointestinal surgeries using advanced robotic-assisted techniques. Surg Endosc. 2024;39(2):766–775. doi: 10.1007/s00464-024-11398-2 EDN: TSFTQI
  60. Huang J, Zhu H, Lu P, et al. Comparison of lobectomy performed through Toumai® surgical robot and da Vinci surgical robot in early-stage non-small cell lung cancer: a retrospective study of early perioperative results. Transl Lung Cancer Res. 2023;12(11):2219–2228. doi: 10.21037/tlcr-23-603 EDN: IKPNAL

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Evolution of the da Vinci robotic platform. © Asadizeidabadi A., et al. 2024. Distributed under CC BY-NC-ND 4.0 license. Source: borrowed from [Asadizeidabadi A, Hosseini S, Vetshev F, et al. Comparison of da Vinci 5 with previous versions of da Vinci and Sina: A review. Laparoscopic, Endoscopic and Robotic Surgery. 2024;7(2):60–65. doi: 10.1016/j.lers.2024.04.006 ].

Download (155KB)
3. Fig. 2. The da Vinci 5 robot: a, visualization system; b, surgeon console; c, patient cart. © Asadizeidabadi A., et al. 2024. Distributed under CC BY-NC-ND 4.0 license. Source: borrowed from [Asadizeidabadi A, Hosseini S, Vetshev F, et al. Comparison of da Vinci 5 with previous versions of da Vinci and Sina: A review. Laparoscopic, Endoscopic and Robotic Surgery. 2024;7(2):60–65. doi: 10.1016/j.lers.2024.04.006 ].

Download (106KB)
4. Fig. 3. New generations of surgical robots. © Asadizeidabadi A., et al. 2024. Distributed under CC BY-NC-ND 4.0 license. Source: borrowed from [Asadizeidabadi A, Hosseini S, Vetshev F, et al. Comparison of da Vinci 5 with previous versions of da Vinci and Sina: A review. Laparoscopic, Endoscopic and Robotic Surgery. 2024;7(2):60–65. doi: 10.1016/j.lers.2024.04.006 ].

Download (129KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».