Contemporary robotic surgical systems: A preliminary review
- Authors: Kozlov Y.A.1,2,3, Rozhanski A.P.1,3, Makarochkina M.V.1, Sapukhin E.V.1, Strashinsky A.S.1, Ryakhina A.O.1, Mirzalieva G.E.3, Marchuk A.A.1
-
Affiliations:
- Irkutsk State Regional Children’s Clinical Hospital
- Irkutsk State Medical Academy of Postgraduate Education
- Irkutsk State Medical University
- Issue: Vol 15, No 1 (2025)
- Pages: 35-50
- Section: Reviews
- URL: https://journals.rcsi.science/2219-4061/article/view/312982
- DOI: https://doi.org/10.17816/psaic1878
- ID: 312982
Cite item
Full Text
Abstract
Robot-assisted surgery has emerged as the most transformative technological advancement in this field of medicine over the past two decades. Since the U.S. Food and Drug Administration (FDA) approved the da Vinci robotic surgical system (Intuitive Surgical, Sunnyvale, California, USA) in 2000, it has revolutionized minimally invasive surgery by shortening the learning curve and facilitating reconstructive steps in many procedures compared to conventional laparoscopy. Today, the da Vinci system accounts for approximately 80% of the global surgical robotics market. However, its high acquisition and maintenance costs remain a significant barrier for many hospitals, including those in the United States. As many of the original patents filed by Intuitive Surgical have reached their 20-year expiration, opportunities have arisen for the development of alternative systems. In addition to cost, common criticisms of the da Vinci system include limited communication between the surgeon and the operating team due to the closed-console design, lack of haptic feedback, rigid arm positioning, and the large physical footprint of the platform. Over the past decade, several new robotic systems have been introduced, some of which have been approved for clinical use. Each of these platforms incorporates key innovations aimed at addressing the technical and economic limitations of the da Vinci system. The entry of these systems into the market has effectively ended Intuitive Surgical’s monopoly. Although none of them is currently available worldwide, platforms such as Senhance, Versius, and Hugo RAS have gained traction primarily in Europe, whereas others—such as the KangDuo surgical robot, Toumai, Revo-I, and Hinotori—are used in China, South Korea, and Japan. Comparative evaluation of these systems against the da Vinci must account for several factors. Since its initial launch in 2000, five generations of the system have been developed: the original 2000 model, S, Si, Xi, and the fifth-generation model. Most of the systems reviewed here are still in their first generation and are expected to undergo further improvements and refinement. This review provides an overview of both well-established and emerging robotic surgical platforms, their distinct design features, clinical applications, and surgical outcomes. It covers widely used systems such as da Vinci, Senhance, Versius, and Hugo RAS, as well as less extensively reported platforms including Revo-I, Avatera, KangDuo, Hinotori, Dexter, and Chinese alternatives to the da Vinci system, notably the first domestically developed Chinese surgical robot, Toumai.
Full Text
##article.viewOnOriginalSite##About the authors
Yury A. Kozlov
Irkutsk State Regional Children’s Clinical Hospital; Irkutsk State Medical Academy of Postgraduate Education; Irkutsk State Medical University
Author for correspondence.
Email: yuriherz@hotmail.com
ORCID iD: 0000-0003-2313-897X
SPIN-code: 3682-0832
MD, Dr. Sci. (Medicine), Professor, Corresponding Member of the Russian Academy of Sciences
Russian Federation, Irkutsk; Irkutsk; IrkutskAlexander P. Rozhanski
Irkutsk State Regional Children’s Clinical Hospital; Irkutsk State Medical University
Email: alexanderozhanski@mail.ru
ORCID iD: 0000-0001-7922-7600
MD
Russian Federation, Irkutsk; IrkutskMarina V. Makarochkina
Irkutsk State Regional Children’s Clinical Hospital
Email: m.makarochkina@gmail.com
ORCID iD: 0000-0001-8295-6687
SPIN-code: 4600-4071
MD
Russian Federation, IrkutskEduard V. Sapukhin
Irkutsk State Regional Children’s Clinical Hospital
Email: sapukhin@yandex.ru
ORCID iD: 0000-0001-5470-7384
MD
Russian Federation, IrkutskAlexey S. Strashinsky
Irkutsk State Regional Children’s Clinical Hospital
Email: leksus-642@yandex.ru
ORCID iD: 0000-0002-1911-4468
MD
Russian Federation, IrkutskAnna O. Ryakhina
Irkutsk State Regional Children’s Clinical Hospital
Email: romahka.yansa@yandex.ru
ORCID iD: 0009-0006-0340-1186
Russian Federation, Irkutsk
Gyulnara E. Mirzalieva
Irkutsk State Medical University
Email: mirzalieva.gulnara@mail.ru
ORCID iD: 0009-0008-9542-9390
Russian Federation, Irkutsk
Andrey A. Marchuk
Irkutsk State Regional Children’s Clinical Hospital
Email: maa-ped20@yandex.ru
ORCID iD: 0000-0001-9767-0454
MD
Russian Federation, IrkutskReferences
- McCulloch P, Checcucci E, Chow AK, et al. New multiport robotic surgical systems: a comprehensive literature review of clinical outcomes in urology. Ther Adv Urol. 2023;15:17562872231177781. doi: 10.1177/17562872231177781
- McCulloch P, Altman DG, Campbell WB, et al. No surgical innovation without evaluation: the IDEAL recommendations. Lancet. 2009;374(9695):1105–1112. doi: 10.1016/S0140-6736(09)61116-8
- Marcus HJ, Ramirez PT, Khan DZ, et al. The IDEAL framework for surgical robotics: development, comparative evaluation and long-term monitoring. Nat Med. 2024;30(1):61–75. doi: 10.1038/s41591-023-02732-7 EDN: RYBXGO
- Namdarian B, Dasgupta P. What robot for tomorrow and what improvement can we expect? Curr Opin Urol. 2018;28(2):143–152. doi: 10.1097/MOU.0000000000000474
- Samalavicius NE, Janusonis V, Siaulys R, et al. Robotic surgery using Senhance® robotic platform: single center experience with first 100 cases. J Robot Surg. 2020;14:371–376. doi: 10.1007/s11701-019-01000-6
- Thomas BC, Slack M, Hussain M, et al. Preclinical evaluation of the Versius surgical system, a new robot-assisted surgical device for use in minimal access renal and prostate surgery. Eur Urol Focus. 2021;7:444–452. doi: 10.1016/j.euf.2020.01.011 EDN: RZDTHL
- Ragavan N, Bharathkumar S, Chirravur P, et al. Evaluation of Hugo RAS system in major urologic surgery: our initial experience. J Endourol. 2022;36:1029–1035. doi: 10.1089/end.2022.0015 EDN: NNCEWW
- Alip S, Koukourikis P, Han WK, et al. Comparing Revo-i and da Vinci in Retzius-sparing robot-assisted radical prostatectomy: a preliminary propensity score analysis of outcomes. J Endourol. 2022;36(1):104–110. doi: 10.1089/end.2021.0421 EDN: APBMVO
- Shademan A, Decker RS, Opfermann JD, et al. Supervised autonomous robotic soft tissue surgery. Sci Transl Med. 2016;8(337):337ra64. doi: 10.1126/scitranslmed.aad9398
- Anvari M, McKinley C, Stein H. Establishment of the world’s first telerobotic remote surgical service: for provision of advanced laparoscopic surgery in a rural community. Ann Surg. 2005;241(3):460–464. doi: 10.1097/01.sla.0000154456.69815.ee
- Nakauchi M, Suda K, Nakamura K, et al. Establishment of a new practical telesurgical platform using the Hinotori™ surgical robot system: a preclinical study. Langenbecks Arch Surg. 2022;407(8):3783–3791. doi: 10.1007/s00423-022-02710-6 EDN: IPNORS
- Hellan M, Spinoglio G, Pigazzi A, et al. The influence of fluorescence imaging on the location of bowel transection during robotic left-sided colorectal surgery. Surg Endosc. 2014;28(5):1695–1702. doi: 10.1007/s00464-013-3377-6 EDN: VLBTSU
- Gosrisirikul C, Chang KD, Raheem AA, et al. New era of robotic surgical systems. Asian J Endosc Surg. 2018;11(4):291–299. doi: 10.1111/ases.12660
- Brassetti A, Ragusa A, Bove AM, et al. Robot-assisted transperitoneal repair of a recto-vesical fistula, a case report. Urol Video J. 2023;19:100233. doi: 10.1016/j.urolvj.2023.100233 EDN: CDEDAL
- Dobbs RW, Halgrimson WR, Talamini S, et al. Single-port robotic surgery: the next generation of minimally invasive urology. World J Urol. 2020;38(4):897–905. doi: 10.1007/s00345-019-02898-1 EDN: CVYBYG
- Melling N, Barr J, Schmitz R, et al. Robotic cholecystectomy: first experience with the new Senhance robotic system. J Robot Surg. 2019;13(3):495–500. doi: 10.1007/s11701-018-0877-3
- McKechnie T, Khamar J, Daniel R, et al. The Senhance surgical system in colorectal surgery: a systematic review. J Robot Surg. 2023;17(2):325–334. doi: 10.1007/s11701-022-01455-0 EDN: SQEESB
- Gueli Alletti S, Rossitto C, Cianci S, et al. The Senhance™ surgical robotic system ("Senhance") for total hysterectomy in obese patients: a pilot study. J Robot Surg. 2018;12(2):229–234. doi: 10.1007/s11701-017-0718-9
- Kastelan Z, Hudolin T, Kulis T, et al. Extraperitoneal radical prostatectomy with the Senhance robotic platform: first 40 cases. Eur Urol. 2020;78(6):932–934. doi: 10.1016/j.eururo.2020.07.012 EDN: CMFSXK
- Kastelan Z, Hudolin T, Kulis T, et al. Upper urinary tract surgery and radical prostatectomy with Senhance® robotic system: single center experience — first 100 cases. Int J Med Robot. 2021;17(4):e2269. doi: 10.1002/rcs.2269 EDN: XGFOYA
- Kulis T, Hudolin T, Penezic L, et al. Comparison of extraperitoneal laparoscopic and extraperitoneal Senhance radical prostatectomy. Int J Med Robot. 2022;18(1):e2344. doi: 10.1002/rcs.2344 EDN: EFWLHH
- Venckus R, Jasenas M, Telksnys T, et al. Robotic-assisted radical prostatectomy with the Senhance® robotic platform: single center experience. World J Urol. 2021;39(12):4305–4310. doi: 10.1007/s00345-021-03792-5 EDN: HJHCGV
- Carbonara U, Srinath M, Crocerossa F, et al. Robot-assisted radical prostatectomy versus standard laparoscopic radical prostatectomy: an evidence-based analysis of comparative outcomes. World J Urol. 2021;39(10):3721–3732. doi: 10.1007/s00345-021-03687-5 EDN: GWZVHV
- Kaneko G, Shirotake S, Oyama M, et al. Initial experience of laparoscopic radical nephrectomy using the Senhance® robotic system for renal cell carcinoma. Int Cancer Conf J. 2021;10(3):228–232. doi: 10.1007/s13691-021-00487-x EDN: ESEJOR
- Sassani JC, Glass Clark S, McGough CE, et al. Sacrocolpopexy experience with a novel robotic surgical platform. Int Urogynecol J. 2022;33(11):3255–3260. doi: 10.1007/s00192-022-05155-z EDN: SNNZKH
- Holzer J, Beyer P, Schilcher F, et al. First pediatric pyeloplasty using the Senhance® robotic system — a case report. Children (Basel). 2022;9(3):302. doi: 10.3390/children9030302 EDN: CPMDQU
- Kelkar D, Borse MA, Godbole GP, et al. Interim safety analysis of the first-in-human clinical trial of the Versius surgical system, a new robot-assisted device for use in minimal access surgery. Surg Endosc. 2021;35(9):5193–5202. doi: 10.1007/s00464-020-08014-4 EDN: GMOCCG
- Rocco B, Turri F, Sangalli M, et al. Robot-assisted radical prostatectomy with the Versius robotic surgical system: first description of a clinical case. Eur Urol Open Sci. 2023;48:82–83. doi: 10.1016/j.euros.2022.11.019 EDN: GVZAAF
- Reeves F, Challacombe B, Ribbits A, et al. Idea, development, exploration, assessment, long-term follow-up study (IDEAL) stage 1/2a evaluation of urological procedures with the Versius robot. BJU Int. 2022;130(4):441–443. doi: 10.1111/bju.15829 EDN: SDUXOA
- Hussein AA, Mohsin R, Qureshi H, et al. Transition from da Vinci to Versius robotic surgical systems: initial experience and outcomes of over 100 consecutive procedures. J Robot Surg. 2023;17(2):419–426. doi: 10.1007/s11701-022-01422-9 EDN: RYVERM
- Bravi CA, Paciotti M, Sarchi L, et al. Robot-assisted radical prostatectomy with the novel Hugo robotic system: initial experience and optimal surgical set-up at a tertiary referral robotic center. Eur Urol. 2022;82(2):233–237. doi: 10.1016/j.eururo.2022.04.029 EDN: XNXMQA
- Gallioli A, Uleri A, Gaya JM, et al. Initial experience of robot-assisted partial nephrectomy with Hugo™ RAS system: implications for surgical setting. World J Urol. 2023;41(4):1085–1091. doi: 10.1007/s00345-023-04336-9 EDN: CIQEXP
- Elorrieta V, Villena J, Kompatzki Á, et al. Robot-assisted laparoscopic surgeries for nononcological urologic disease: initial experience with Hugo RAS system. Urology. 2023;174:118–125. doi: 10.1016/j.urology.2023.01.042 EDN: OCBGUO
- Raffaelli M, Gallucci P, Voloudakis N, et al. The new robotic platform Hugo™ RAS for lateral transabdominal adrenalectomy: a first world report of a series of five cases. Updates Surg. 2023;75(1):217–225. doi: 10.1007/s13304-022-01410-6 EDN: YMXAWR
- Kwon W, Jang JY, Jeong CW, et al. Cholecystectomy with the Hugo™ robotic-assisted surgery system: the first general surgery clinical study in Korea. Surg Endosc. 2024. doi: 10.1007/s00464-024-11334-4 EDN: FLJBWO
- Yap MÁC, Castillo CEV, Martino M, et al. The experience with Hugo™ robot-assisted surgery on complex gynecological patients in Panama. J Robot Surg. 2024;19(1):3. doi: 10.1007/s11701-024-02149-5
- Lim JH, Lee WJ, Park DW, et al. Robotic cholecystectomy using Revo-I model MSR-5000, the newly developed Korean robotic surgical system: a preclinical study. Surg Endosc. 2017;31(8):3391–3397. doi: 10.1007/S00464-016-5357-0 EDN: EXDWPS
- Chang KD, Abdel Raheem A, Choi YD, et al. Retzius-sparing robot-assisted radical prostatectomy using the Revo-I robotic surgical system: surgical technique and results of the first human trial. BJU Int. 2018;122(3):441–448. doi: 10.1111/BJU.14245 EDN: VHHJYL
- Kim JS, Choi M, Hwang HS, et al. The Revo-i robotic surgical system in advanced pancreatic surgery: a second non-randomized clinical trial and comparative analysis to the da Vinci™ system. Yonsei Med J. 2024;65(3):148–155. doi: 10.3349/ymj.2023.0140 EDN: FUDWPI
- Gkeka K, Tsaturyan A, Faitatziadis S, et al. Robot-assisted radical nephrectomy using the novel Avatera robotic surgical system: a feasibility study in a porcine model. J Endourol. 2023;37(3):273–278. doi: 10.1089/end.2022.0596 EDN: VOEAVM
- Peteinaris A, Kallidonis P, Tsaturyan A, et al. The feasibility of robot-assisted radical cystectomy: an experimental study. World J Urol. 2023;41(2):477–482. doi: 10.1007/s00345-022-04266-y EDN: BBSBUE
- Kallidonis P, Tatanis V, Peteinaris A, et al. Robot-assisted pyeloplasty for ureteropelvic junction obstruction: initial experience with the novel Avatera system. World J Urol. 2023;41(11):3155–3160. doi: 10.1007/s00345-023-04586-7 EDN: JPPTHS
- Gkeka K, Kallidonis P, Peteinaris A, et al. Robot-assisted radical prostatectomy using the Avatera system™: a prospective pilot study. Minerva Urol Nephrol. 2024;76(1):52–59. doi: 10.23736/S2724-6051.23.05545-3 EDN: ZZHADF
- Fan S, Dai X, Yang K, et al. Robot-assisted pyeloplasty using a new robotic system, the KangDuo-Surgical Robot-01: a prospective, single-centre, single-arm clinical study. BJU Int. 2021;128(2):162–165. doi: 10.1111/bju.15396 EDN: VXTZOW
- Fan S, Xiong S, Li Z, et al. Pyeloplasty with the Kangduo surgical robot vs the da Vinci Si robotic system: preliminary results. J Endourol. 2022;36(12):1538–1544. doi: 10.1089/end.2022.0366 EDN: YRBIVT
- Wang J, Fan S, Shen C, et al. Partial nephrectomy through retroperitoneal approach with a new surgical robot system, KD-SR-01. Int J Med Robot. 2022;18(2):e2352. doi: 10.1002/rcs.2352 EDN: HGIIMA
- Fan S, Hao H, Chen S, et al. Robot-assisted laparoscopic radical prostatectomy using the KangDuo surgical robot system vs the da Vinci Si robotic system. J Endourol. 2023;37(5):568–574. doi: 10.1089/end.2022.0739 EDN: FZCVKT
- Li X, Xu W, Fan S, et al. Robot-assisted partial nephrectomy with the newly developed KangDuo surgical robot versus the da Vinci Si surgical system: a double-center prospective randomized controlled noninferiority trial. Eur Urol Focus. 2023;9(1):133–140. doi: 10.1016/j.euf.2022.07.008 EDN: XXRKKK
- Xiong S, Fan S, Chen S, et al. Robotic urologic surgery using the KangDuo-Surgical Robot-01 system: a single-center prospective analysis. Chin Med J (Engl). 2023;136(24):2960–2966. doi: 10.1097/CM9.0000000000002920 EDN: BHYIMU
- Dong J, Ji R, Liu G, et al. Feasibility, safety and effectiveness of robot-assisted retroperitoneal partial adrenalectomy with a new robotic surgical system: a prospective clinical study. Front Surg. 2023;10:1071321. doi: 10.3389/fsurg.2023.1071321 EDN: LAJNJC
- Hinata N, Yamaguchi R, Kusuhara Y, et al. Hinotori surgical robot system, a novel robot-assisted surgical platform: preclinical and clinical evaluation. Int J Urol. 2022;29(10):1213–1220. doi: 10.1111/iju.14973 EDN: YWFGTV
- Miyake H, Motoyama D, Matsushita Y, et al. Initial experience of robot-assisted partial nephrectomy using Hinotori surgical robot system: single institutional prospective assessment of perioperative outcomes in 30 cases. J Endourol. 2023;37(5):531–534. doi: 10.1089/end.2022.0775 EDN: VMGLKU
- Miura R, Okuya K, Akizuki E, et al. World-first report of low anterior resection for rectal cancer with the Hinotori™ surgical robot system: a case report. Surg Case Rep. 2023;9(1):156. doi: 10.1186/s40792-023-01705-9 EDN: TBHMLK
- Kitadani J, Ojima T, Hayata K, et al. Robotic gastrectomy using hinotori™ surgical robot system: initial case series. Asian J Endosc Surg. 2024;17(3):e13349. doi: 10.1111/ases.13349
- Tobe T, Terakawa T, Ueki H, et al. Initial experience of robot-assisted laparoscopic pyeloplasty for ureteropelvic junction obstruction using the Hinotori surgical robot system. Int J Med Robot. 2024;20(5):e2673. doi: 10.1002/rcs.2673 EDN: AFLBPW
- Böhlen D, Gerber R. First ever radical prostatectomy performed with the new Dexter robotic system™. Eur Urol. 2023;83(5):479–480. doi: 10.1016/j.eururo.2023.02.004 EDN: OKDBDW
- Alkatout I, Becker T, Nuhn P, et al. The first robotic-assisted hysterectomy below the bikini line with the Dexter robotic system™. Facts Views Vis Obgyn. 2024;16(1):87–91. doi: 10.52054/FVVO.16.1.010 EDN: BZWZFH
- Pokhrel G, Zheng H, Tao J, et al. Assessing the feasibility and safety of the Toumai® robotic system in urologic surgery: initial experience. J Endourol. 2024;38(6):552–558. doi: 10.1089/end.2024.0028 EDN: HIFJVL
- Zhang Z, Zhan W, Tian H, et al. An initial exploratory clinical study and outcome assessment of gastrointestinal surgeries using advanced robotic-assisted techniques. Surg Endosc. 2024;39(2):766–775. doi: 10.1007/s00464-024-11398-2 EDN: TSFTQI
- Huang J, Zhu H, Lu P, et al. Comparison of lobectomy performed through Toumai® surgical robot and da Vinci surgical robot in early-stage non-small cell lung cancer: a retrospective study of early perioperative results. Transl Lung Cancer Res. 2023;12(11):2219–2228. doi: 10.21037/tlcr-23-603 EDN: IKPNAL
Supplementary files
