Superimposed high-frequency jet ventilation in children with oncohematological diseases and acute respiratory distress syndrome

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: The mortality rate of children with hematological cancer and acute respiratory distress syndrome is still high, which is often associated with the ineffectiveness of traditional mechanical ventilation methods in the treatment of critical hypoxemia in these patients. Currently, the search continues for alternative methods of respiratory support, one of which is the combined high-frequency jet artificial ventilation of the lungs.

AIM: This study aimed to evaluate the efficacy and safety of combined high-frequency jet artificial ventilation in the treatment of children with hematological malignancies and severe acute respiratory distress syndrome.

MATERIALS AND METHODS: The study was conducted in the Department of Resuscitation and Intensive Care of the Dmitry Rogachev National Medical Research Center for Pediatric Hematology, Oncology and Immunology, from 2016 to 2020. Combined high-frequency jet artificial ventilation was used as an alternative method of respiratory support.

RESULTS: In case of severe hypoxemia caused by secondary severe acute respiratory distress syndrome, the use of combined high-frequency jet ventilation after 12 h leads to a significant improvement in arterial blood oxygenation, improves the biomechanical characteristics of the respiratory system, and reduces the likelihood of developing ventilator-associated lung damage. An increase in oxygenation and absence of an effect on the indicators of central hemodynamics provide a greater delivery of oxygen to the tissues, thereby improving the general condition of the patients.

CONCLUSIONS: In severe parenchymal respiratory failure accompanied by critical hypoxemia, combined high-frequency jet artificial ventilation of the lungs can be considered an alternative method of respiratory support.

About the authors

Aleksey Yu. Ivanashkin

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology

Author for correspondence.
Email: ivanashkin@yandex.ru
ORCID iD: 0000-0002-4348-4573
SPIN-code: 2694-6501

anesthesiologist-resuscitator

Russian Federation, 1, Samory Mashela st., 117997, Moscow

Galina A. Novichkova

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology

Email: gnovichkova@yandex.ru
ORCID iD: 0000-0002-2322-5734
SPIN-code: 7890-1419

Dr. Sci. (Med.), Professor, General Director

Russian Federation, 1, Samory Mashela st., 117997, Moscow

Vladimir V. Lazarev

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology; Pirogov Russian National Research Medical University

Email: lazarev_vv@inbox.ru
ORCID iD: 0000-0001-8417-3555
SPIN-code: 4414-0677

Dr. Sci. (Med.), Professor, Head of the Department of Pediatric Anesthesiology and Intensive Care, anesthesiologist-resuscitator

Russian Federation, 1, Samory Mashela st., 117997, Moscow; Moscow

Igor G. Khamin

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology

Email: igorhamin@yandex.ru
ORCID iD: 0000-0001-8264-2258
SPIN-code: 8369-1378

Cand. Sci. (Med.), Head of the Department of Pediatric Anesthesiology and Intensive Care, anesthesiologist-resuscitator

Russian Federation, 1, Samory Mashela st., 117997, Moscow

Leonid E. Tsypin

Pirogov Russian National Research Medical University

Email: cypin1939@mail.ru
ORCID iD: 0000-0002-3114-8759
SPIN-code: 5062-2010

Dr. Sci. (Med.), Professor of Children Anesthesiology and Intensive Care Department

Russian Federation, 1, Samory Mashela st., 117997, Moscow

Elena A. Spiridonova

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology

Email: spiridonova.e.a@gmail.com
ORCID iD: 0000-0002-5230-5725
SPIN-code: 1729-8002

Dr. Sci. (Med.), Professor

Russian Federation, 1, Samory Mashela st., 117997, Moscow

Aleksey A. Maschan

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology

Email: hemoncim@yandex.ru
ORCID iD: 0000-0002-0016-6698
SPIN-code: 4505-2346
Scopus Author ID: 55915056400
ResearcherId: A-4792-2019

Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences

 

 

 

Russian Federation, 1, Samory Mashela st., 117997, Moscow

References

  1. Garner JS, Jarvis RW, Emori TG, et al. CDC definitions for nosocomial infections. Am J Infect Control. 1988;16(3):128–140. doi: 10.1016/0196-6553(88)90053-3
  2. Bojko T, Notterman D, Greenwald B, et al. Acute hypoxemic respiratory failure in children following bone marrow transplantation: an outcome and pathologic study. Crit Care Med. 1995;23(4):755–759. doi: 10.1097/00003246-199504000-00026
  3. Pelosi P, D’Onofrio D, Chiumello D, et al. Pulmonary and extrapulmonary acute respiratory distress syndrome are different. Eur Respir J. 2003;22(42):48–56. doi: 10.1183/09031936.03.00420803
  4. Kassil’ VL, Zolotokrylina ES. Ostryi-respiratornyi distress-sindrom. Moscow: Meditsina, 2003. P. 22–24, 139–140.
  5. MacLaren G. When to initiate ECMO with low likelihood of success. Crit Care. 2018;22(1):12–14. doi: 10.1186/s13054-018-2162-2
  6. Gupta M, Shanley TP, Moler FW. Extracorporeal life support for severe respiratory failure in children with immune compromised conditions. Pediatr Crit Care Med. 2008;9(4):380–385. doi: 10.1097/PCC.0b013e318172d54d
  7. Friedrich G, Mausser G, Gugatschka M. Die Jet-Ventilation in der operativen LaryngologieJet ventilation in laryngotracheal surgery. HNO. 2008;56(12):1197–1206. doi: 10.1007/s00106-008-1725-y
  8. Yaroshetsky AI, Gritsan AI, Avdeev SN, et al. Diagnostics and intensive therapy of Acute Respiratory Distress Syndrome (Clinical guidelines of the Federation of Anesthesiologists and Reanimatologists of Russia). Russian Journal of Anaesthesiology and Reanimatology. 2020;(2):5–39. (In Russ.) doi: 10.17116/anaesthesiology20200215
  9. Ranieri V, Rubenfeld G. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307(23):2525–2533. doi: 10.1001/jama.2012.5669
  10. Cheifetz IM. Pediatric ARDS. Respir Care. 2017;62(6):718–731. doi: 10.4187/respcare.05591
  11. Khemani RG, Smith L, Zimmerman J, et al. Pediatric acute respiratory distress syndrome: Definition, incidence, and epidemiology: Proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med. 2015;16(5):S23–S40. doi: 10.1097/PCC.0000000000000432
  12. Murray JF, Matthay M, Luce J, et al. An expanded definition of the adult respiratory distress syndrome. Respir Care. 1988;33(12):1131–1137. doi: 10.1164/ajrccm/138.3.720
  13. Yaroshetskiy AI, Protsenko DN, Ignatenko OV, et al. Significance of static pressure-volume loop and lung computed tomography for differential diagnostics of parenchymal lung failure. Russian Journal of Anaesthesiology and Reanimatology. 2014;(2):21–26. (In Russ.)
  14. Levy MM, Evans LE, Rhodes A. The Surviving Sepsis Campaign Bundle: 2018 update. Intensive Care Med. 2018;44(6):925–928. doi: 10.1007/s00134-018-5085-0
  15. Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017;43(3):304–377. doi: 10.1007/s00134-017-4683-6
  16. Matics TJ, Sanchez-Pinto LN. Adaptation and Validation of a Pediatric Sequential Organ Failure Assessment Score and Evaluation of the Sepsis-3 Definitions in Critically Ill Children. JAMA Pediatr. 2017;171(10):e172352. doi: 10.1001/jamapediatrics.2017.2352
  17. Rice TW, Wheeler AP, Bernard GR, et al. Comparison of the SpO2/FIO2 ratio and the PaO2/FIO2 ratio in patients with acute lung injury or ARDS. Chest. 2007;132(2):410–417. doi: 10.1378/chest.07-0617
  18. Khemani RG, Patel NR, Bart RD, et al. Comparison of the pulse oximetric saturation/fraction of inspired oxygen ratio and the PaО2/fraction of inspired oxygen ratio in children. Chest. 2009;135(3):662–668. doi: 10.1378/chest.08-2239
  19. Marcelo BP, Maureen OM, Slutsky AS. Driving pressure and survival in the acute respiratory distress syndrome. N Eng J Med. 2014;372(8):747–755. doi: 10.1056/NEJMsa1410639
  20. Shkolnikova MA, Miklashevich IM, Kalinin LA. QT interval and heart rate in 4,415 healthy Russian children aged 0–17 years. Eur Heart J. 2007;28(1):407–408. doi: 10.1093/eurheartj/ehm418
  21. Slutsky AS, Drazen JM. Ventilation with small tidal volumes. N Eng J Med. 2002;347(9):630–631. doi: 10.1056/NEJMp020082
  22. Laffey JG, Bellani G, Pham T, et al. Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study. Intensive Care Med. 2016;42(12):1865–1876. doi: 10.1007/s00134-016-4571-5
  23. Kassil’ VL, Vyzhigina MA. Iskusstvennaya ventilyatsiya legkikh pri ORDS. In: Kassil’ VL, editor. Iskusstvennaya i vspomogatel’naya ventilyatsiya legkikh: rukovodstvo dlya vrachei. Moscow: Meditsina, 2004. P. 377–388.
  24. Kontorovich MB, Zislin BD. Monitoring parametrov mekhaniki dykhaniya pri iskusstvennoi ventilyatsii legkikh. Intensive Care Journal. 2008;(2):39–45. Available at: https://icj.ru/journal/number-2-2008/162-monitoring-parametrov-mehaniki-dyhaniya-pri-iskusstvennoy-ventilyacii-legkih.html. (In Russ.)
  25. Kontorovich MB, Zislin BD. Monitoring davleniya v dykhatel’nykh putyakh pri vysokochastotnoi struinoi ventilyatsii legkikh. Intensive Care Journal. 2007;(1):35–37. Available at: https://icj.ru/journal/number-1-2007/101-monitoring-davleniya-v-dyhatelnyh-putyah-pri-vysokochastotnoy-struynoy-ventilyacii-legkih.html. (In Russ.)
  26. Тchistуakov AV, Zislin BD, Kontorovitch MB, Markov AV. New technologies in monitoring of respiratory mechnanics during high-frequency jet artificial lung ventilation. Journal of new medical technologies. 2008;15(2):208–210. URL: http://www.medtsu.tula.ru/VNMT/Bulletin/2008/08B2.pdf. (In Russ.)
  27. Kassil’ VL, Vyzhigina MA, Leskin GS. Iskusstvennaya i vspomogatel’naya ventilyatsiya legkikh. Moscow: Meditsina, 2004. P. 125–131. (In Russ.)
  28. Leithner C, Podolsky A, Globits S. Magnetic resonans imaging of the heart during PEEP ventilation in normal subjects. Crit Care Resusc. 1994;22(3):426–432. doi: 10.1097/00003246-199403000-00012
  29. Mitaka C, Nagura T. Two-dimensionnal echocardiographic evaluation of inferior vena cava,right ventricl e,and left ventricle during positive-pressure ventilation with varying levels of positive end-expiratory pressure. Crit Care Med. 1989;17(3):205–210. doi: 10.1097/00003246-198903000-00001
  30. Vyzhigina MA, Mizikov VM, Sandrikov VA, et al. Respiratory support in anaesthetic management for thoracic surgery and their comparative characteristics: over 2000 anaesthesia experience. Russian Journal of Anaesthesiology and Reanimatology. 2013;(2):34–40. (In Russ.)
  31. Alekseev AV, Vyzhigina MA, Parshin VD, et al. Review of the current methods of respiratory support for tracheal surgery. Russian Journal of Anaesthesiology and Reanimatology. 2016;61(5):391–395. (In Russ.) doi: 10.18821/0201-7563-2016-61-5-391-395
  32. Schuster S, Erbel R, Weilemann LS. Hemodynamics during PEEP ventilation in patients with severe left ventricular failure studied by transesophageal echocardiography. Chest. 1990;97(5):1181–1189. doi: 10.1378/chest.97.5.1181
  33. Som A, Maitra S, Bhattacharjee S. Goal directed fluid therapy decreases postoperative morbidity but not mortality in major non-cardiac surgery: a meta-analysis and trial sequential analysis of randomized controlled trials. J Anesth. 2017;31(1):66–81. doi: 10.1007/s00540-016-2261-7

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dynamics of “driving pressure” and static compliance. Lung recruitment test (p < 0.0000; Wilcoxon Rank-Sum Test)

Download (54KB)
3. Fig. 2. Dynamics of saturation at the research stages. *p < 0.000022; Wilcoxon Rank-Sum Test

Download (77KB)
4. Fig. 3. Dynamics of oxygen partial pressure at the research stages. *p < 0.00048; **p < 0.00365; Wilcoxon Rank-Sum Test

Download (72KB)
5. Fig. 4. Dynamics of the respiratory index at the research stages. *p < 0.00048; **p < 0.00365; Wilcoxon Rank-Sum Test

Download (70KB)
6. Fig. 5. Dynamics of the oxygenation index at the stages of the study. *p < 0.00048; **p < 0.05; ***p < 0.0033895; Wilcoxon Rank-Sum Test

Download (70KB)
7. Fig. 6. Dynamics of the “plateau pressure” at the research stages. *p < 0.015293; Wilcoxon Rank-Sum Test

Download (75KB)
8. Fig. 7. Dynamics of “driving pressure” at the research stages. *p < 0.0000086; Wilcoxon Rank-Sum Test

Download (69KB)
9. Fig. 8. Dynamics of biomechanical properties of the respiratory system at the research stages. *p < 0,0088; Wilcoxon Rank-Sum Test

Download (55KB)
10. Fig. 9. Dynamics of cardiac output at the stages of the study. ANOVA Chi Sqr. = 6.317308, p = 0.38860; Friedman test

Download (61KB)
11. Fig. 10. Dynamics of the severity of the patients’ condition at the stages of the study. *р ≤ 0.0033; Wilcoxon Rank-Sum Test. ANOVA Chi Sqr. = 4.713740, p = 0.45181; Friedman test

Download (95KB)
12. Fig. 11. Dynamics of the oxygen delivery index. *р ≤ 0.0029; Wilcoxon Rank-Sum Test; ANOVA Chi Sqr. = 9.052863, p = 0.10698; Friedman test

Download (80KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies