Evaluation of the Effect of Electroosmosis on the Efficiency of Electrobaromembrane Separation Using Track-Etched Membranes

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of a theoretical analysis of the influence of the electroosmotic flow on the electromigration and convective transport of competing ions separated by the electrobaromembrane method are presented. Separated ions of the same charge sign move in an electric field through the pores of a track-etched membrane to the corresponding electrode, while due to the pressure drop across the membrane, a commensurate counter convective flow is created. A simplified model based on the equation of convective electrodiffusion and Hagen–Poiseuille equation allows the analysis of experimental data applying only the ion effective transport numbers in the membrane pores as fitting parameters. Using a mathematical model described by the system of equations of Nernst–Planck, Navier–Stokes and Poisson, it is shown that the electroosmotic flow can cause the effective transport numbers of competing ions to exceed their values in solution, even if these ions are coions for the membrane.

作者简介

D. Butylskii

Kuban State University

Email: v_nikonenko@mail.ru
Russia, 350040, Krasnodar, 149 Stavropolskaya St.

S. Mareev

Kuban State University

Email: v_nikonenko@mail.ru
Russia, 350040, Krasnodar, 149 Stavropolskaya St.

I. Ryzhkov

Institute of Computational Modeling SB RAS; Siberian Federal University

Email: v_nikonenko@mail.ru
Russia, 660036, Krasnoyarsk, 50-44 Akademgorodok; Russia, 660041, Krasnoyarsk, 79 Svobodny pr.

M. Urtenov

Kuban State University

Email: v_nikonenko@mail.ru
Russia, 350040, Krasnodar, 149 Stavropolskaya St.

P. Apel

Joint Institute for Nuclear Research

Email: v_nikonenko@mail.ru
Russia, 141980, Dubna, 6 Joliot-Curie St

V. Nikonenko

Kuban State University

编辑信件的主要联系方式.
Email: v_nikonenko@mail.ru
Russia, 350040, Krasnodar, 149 Stavropolskaya St.

参考

  1. Tang C., Yaroshchuk A., Bruening M.L. // Chem. Commun. 2020. V. 56. № 74. P. 10954.
  2. Ge L., Wu B., Yu D., Mondal A.N., Hou L., Afsar N.U., Li Q., Xu T., Miao J., Xu T. // Chinese J. Chem. Eng. 2017. V. 25. № 11. P. 1606.
  3. Wang P., Wang M., Liu F., Ding S., Wang X., Du G., Liu J., Apel P., Kluth P., Trautmann C., Wang Y. // Nat. Commun. 2018. V. 9. № 1. P. 569.
  4. Humplik T., Lee J., O’Hern S.C., Fellman B.A., Baig M.A., Hassan S.F., Atieh M.A., Rahman F., Laoui T., Karnik R., Wang E.N. // Nanotechnology. 2011. V. 22. № 29. P. 292001.
  5. Wen Q., Yan D., Liu F., Wang M., Ling Y., Wang P., Kluth P., Schauries D., Trautmann C., Apel P., Guo W., Xiao G., Liu J., Xue J., Wang Y. // Adv. Funct. Mater. 2016. V. 26. № 32. P. 5796.
  6. Beaulieu M., Perreault V., Mikhaylin S., Bazinet L. // Membranes (Basel). 2020. V. 10. № 6. P. 113.
  7. He R., Girgih A.T., Rozoy E., Bazinet L., Ju X.-R., Aluko R.E. // Food Chem. 2016. V. 197. P. 1008.
  8. Pismenskaya N., Tsygurina K., Nikonenko V. // Membranes (Basel). 2022. V. 12. № 5. P. 497.
  9. Nir O., Sengpiel R., Wessling M. // Chem. Eng. J. 2018. V. 346. P. 640.
  10. Kumar R., Liu C., Ha G.-S., Park Y.-K., Ali Khan M., Jang M., Kim S.-H., Amin M.A., Gacem A., Jeon B.-H. // Chem. Eng. J. 2022. V. 447. P. 137507.
  11. Ge L., Wu B., Li Q., Wang Y., Yu D., Wu L., Pan J., Miao J., Xu T. // J. Memb. Sci. 2016. V. 498. P. 192.
  12. Ballet G.T., Hafiane A., Dhahbi M. // J. Memb. Sci. 2007. V. 290. № 1–2. P. 164.
  13. López J., Reig M., Licon E., Valderrama C., Gibert O., Cortina J.L. // Sep. Purif. Technol. 2022. V. 290. P. 120 914.
  14. Cecile Urbain Marie G., Perreault V., Henaux L., Carnovale V., Aluko R.E., Marette A., Doyen A., Bazinet L. // Sep. Purif. Technol. 2019. V. 211. P. 242.
  15. Masson F.-A., Mikhaylin S., Bazinet L. // J. Dairy Sci. 2018. V. 101. № 8. P. 7002.
  16. Ekman A., Forssell P., Kontturi K., Sundholm G. // J. Memb. Sci. 1982. V. 11. № 1. P. 65.
  17. Forssell P., Kontturi K. // Sep. Sci. Technol. 1983. V. 18. № 3. P. 205.
  18. Kontturi K., Pajari H. // Sep. Sci. Technol. 1986. V. 21. № 10. P. 1089.
  19. Butylskii D.Y., Pismenskaya N.D., Apel P.Y., Sabbatovskiy K.G., Nikonenko V.V. // J. Memb. Sci. 2021. V. 635. P. 119449.
  20. Butylskii D., Troitskiy V., Chuprynina D., Kharchenko I., Ryzhkov I., Apel P., Pismenskaya N., Nikonenko V. // Membranes (Basel). 2023. V. 13. № 5. P. 455.
  21. Tang C., Bondarenko M.P., Yaroshchuk A., Bruening M.L. // J. Memb. Sci. 2021. V. 638. P. 119 t684.
  22. Cui Z.F., Jiang Y., Field R.W. Fundamentals of Pressure-Driven Membrane Separation Processes // Membrane Technology. 2010. P. 1.
  23. Butylskii D.Y., Troitskiy V.A., Chuprynina D.A., Dammak L., Larchet C., Nikonenko V.V. // Membranes (Basel). 2023.
  24. Kontturi K., Ojala T., Forssell P. // J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases. 1984. V. 80. № 12. P. 3379.
  25. Tang C., Yaroshchuk A., Bruening M.L. // Membranes (Basel). 2022. V. 12. № 6. P. 631.
  26. Butylskii D.Y., Dammak L., Larchet C., Pismenskaya N.D., Nikonenko V.V. // Russ. Chem. Rev. 2023. V. 92. P. RCR5074.
  27. Kontturi K., Forssell P., Ekman A. // Sep. Sci. Technol. 1982. V. 17. № 10. P. 1195.
  28. Kontturi K., Forssell P., Sipilä A.H. // J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases. 1982. V. 78. № 12. P. 3613.
  29. Кислый А.Г., Бутыльский Д.Ю., Мареев С.А., Никоненко В.В. // Мембраны и Мембранные технологии. 2021. V. 11. № 2. P. 146.
  30. Kedem O., Katchalsky A. // Trans. Faraday Soc. 1963. V. 59. P. 1918.
  31. Филиппов А.Н. // Коллоидный журн. 2018. V. 80. № 6. P. 745.
  32. Филиппов А.Н. // Коллоидный журн. 2018. V. 80. № 6. P. 758.
  33. Kedem O., Freger V. // J. Memb. Sci. 2008. V. 310. № 1–2. P. 586.
  34. Murthy Z.V.P., Chaudhari L.B. // Chem. Eng. J. 2009. V. 150. № 1. P. 181.
  35. Kelewou H., Lhassani A., Merzouki M., Drogui P., Sellamuthu B. // Desalination. 2011. V. 277. № 1–3. P. 106.
  36. Kovács Z., Discacciati M., Samhaber W. // J. Memb. Sci. 2009. V. 332. № 1–2. P. 38.
  37. Hidalgo A.M., León G., Gómez M., Murcia M.D., Gómez E., Macario J.A. // Membranes (Basel). 2020. V. 10. № 12. P. 408.
  38. Wu F., Feng L., Zhang L. // Desalination. 2015. V. 362. P. 11.
  39. Zhang Y., Zhang L., Hou L., Kuang S., Yu A. // AIChE J. 2019. V. 65. № 3. P. 1076.
  40. Ghosh S., Klett R., Fink D., Dwivedi K.K., Vacík J., Hnatowicz V., Červena J. // Radiat. Phys. Chem. 1999. V. 55. № 3. P. 271.
  41. Apel P., Schulz A., Spohr R., Trautmann C., Vutsadakis V. // Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 1998. V. 146. № 1–4. P. 468.
  42. Berezkin V.V., Kiseleva O.A., Nechaev A.N., Sobolev V.D., Churaev N. V. // Kolloidn. Zhurnal. 1994. V. 56. № 2. P. 319.
  43. Berezkin V. V, Volkov V.I., Kiseleva O.A., Mitrofanova N.V., Sobolev V.D. // Adv. Colloid Interface Sci. 2003. V. 104. № 1–3. P. 325.
  44. Déjardin P., Vasina E.N., Berezkin V. V., Sobolev V.D., Volkov V.I. // Langmuir. 2005. V. 21. № 10. P. 4680.
  45. Apel P., Koter S., Yaroshchuk A. // J. Memb. Sci. 2022. V. 653. P. 120 556.
  46. Nichka V.S., Mareev S.A., Apel P.Y., Sabbatovskiy K.G., Sobolev V.D., Nikonenko V.V. // Membranes (Basel). 2022. V. 12. № 12. P. 1283.
  47. Apel P.Y. Track-Etching // Encyclopedia of Membrane Science and Technology / Ed. Hoek E.M.V., Tarabara V.V. 2013. P. 332.
  48. Ryzhkov I.I., Lebedev D.V., Solodovnichenko V.S., Minakov A.V., Simunin M.M. // J. Memb. Sci. 2018. V. 549. P. 616.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (122KB)
3.

下载 (322KB)
4.

下载 (467KB)
5.

下载 (73KB)
6.

下载 (359KB)

版权所有 © Д.Ю. Бутыльский, С.А. Мареев, И.И. Рыжков, М.Х. Уртенов, П.Ю. Апель, В.В. Никоненко, 2023

##common.cookie##