Gas permeability of membranes based on crystallizable poly(hexadecylmethylsiloxane)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this work, the membranes based on crystallizable poly(hexadecy-l-methyl-siloxane) (PHDMS) were obtained and their gas transport properties in relation to a number of light hydrocarbons were investigated with a focus on n-butane and methane permeability and selectivity. A first-order phase transition (crystallization of side alkyl chains) with a melting temperature (Tm) of 26°C was detected for the PHDMS-membranes. It was shown that the membrane transport properties were significantly influenced by their phase state. The gas permeability, diffusivity and solubility undergone a sudden change in the vicinity of Tm. Thus, a decrease in temperature from 30° to 20°C leads to a decrease in the hydrocarbons permeability coefficients by an order of magnitude. On one hand, the membranes n-butane/methane selectivity at a temperature T > Tm did not exceed 25, which is comparable with the results for previously studied polyalkylmethylsiloxanes with shorter alkyl chains. On the other, the n-butane/methane selectivity of semicrystalline membranes (T < Tm), despite a noticeable reduction in gas permeability, can reach selectivity values of ~150.

Sobre autores

S. Sokolov

A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: sokolovste@ips.ac.ru
29 Leninsky pr., Moscow, 119991, Russia

E. Grushevenko

A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

29 Leninsky pr., Moscow, 119991, Russia

A. Malakhov

A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

29 Leninsky pr., Moscow, 119991, Russia

Bibliografia

  1. Grushevenko E.A., Borisov I.L., Volkov A.V. // Petrol. Chem. 2021. V. 61. № 9. P. 959–976.
  2. Yang J., Vaidya M.M., Harrigan D.J., Duval S.A., Hamad F., Bahamdan A.A. // Sep. Purif. Tech. 2020. V. 242. P. 116774.
  3. Mushardt H., Müller M., Shishatskiy S., Wind J., Brinkmann T. // Membranes. 2016. V. 6. № 1. P. 16.
  4. Schultz J., Peinemann K.-V. // J. Membr. Sci. 1996. V. 110. № 1. P. 37–45.
  5. Khanbabaei G., Vasheghani-Farahani E., Rahmatpour A. // Chem. Eng. J. 2012. V. 191. P. 369–377.
  6. Grushevenko E.A., Borisov I.L., Bakhtin D.S., Bondarenko G.N., Levin I.S., Volkov A.V. // React. Funct. Polym. 2019. V. 134. P. 156–165.
  7. Grushevenko E.A., Borisov I.L., Knyazeva A.A., Volkov V.V., Volkov A.V. // Sep. Purif. Tech. 2020. V. 241. P. 116696.
  8. Espenschied B., Schulz R.C. // Makromol. Chem. Rapid Commun. 1983. V. 4. P. 633.
  9. Mogri Z., Paul D.R. // Polymer. 2001. V. 42. № 6. P. 2531.
  10. Mogri Z., Paul D.R. // Polymer. 2001. V. 42. № 6. P. 7781.
  11. López-Carrasquero F., de Ilarduya A.M., Cárdenas M., Carrillo M., Arnal M.L., Laredo E., Torres C., Méndez B., Müller A.J. // Polymer. 2003. V. 44. № 17. P. 4969–4979.
  12. Rim P.B., Rasoul H.A.A., Hurley S.M., Orler E.B. Scholsky K.M. // Macromolecules. 1987. V. 20. № 1. P. 208.
  13. Borisov I.L., Grushevenko E.A., Anokhina T.S., Bakhtin D.S., Levin I.S., Bondarenko G.N., Volkov V.V., Volkov A.V. // Mater. Today Chem. 2021. V. 22. P. 10059.
  14. Sokolov S.E., Grushevenko E.A., Volkov V.V., Borisov I.L., Markova S.Yu., Shalygin M.G., Volkov A.V. // Membr. Membr. Technol. 2022. V. 4. № 6. P. 377–384.
  15. Malakhov A.O., Sokolov S.E., Grushevenko E.A., Volkov V.V. // Membranes. 2023. V. 13. № 1. P. 124.
  16. Stern S.A., Shah V.M., Hardy B.J. // J. Polym. Sci. B. 1987. V. 25. № 6. P. 1263–1298.
  17. Matteucci S., Yampolskii Y., Freeman B.D., Pinnau I. in: Materials Science of Membranes for Gas and Vapor Separation, Ed. by Yampolskii Y., Pinnau I., Freeman B.D. (John Wiley & Sons, 2006), Chap. 1, Chichester.
  18. Yampolskii Y., Starannikova L., Belov N., Bermeshev M., Gringolts M., Finkelshtein E. // J. Membr. Sci. 2014. V. 453. P. 532–545.
  19. Van Krevelen D.W., Nijenhuis K.Te. Properties of polymers. Elsevier, Amsterdam, 2009. Chap. 18.
  20. Teplyakov V., Meares P. // Gas Sep. Purif. 1990. V. 4. № 2. P. 66–74.
  21. Sarkar A., Mehra M., Dasgupta D., Negi L., Saxen A. // Macromolecules. 2018. V. 51. № 22. P. 9354–9359.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».