Применение первапорации и парофазного мембранного метода для концентрирования фурфурола из водных растворов
- Авторы: Козлова А.А.1, Грудковская В.К.1, Афокин М.И.1, Шалыгин М.Г.1
-
Учреждения:
- Институт нефтехимического синтеза им. А.В. Топчиева РАН
- Выпуск: Том 15, № 2 (2025)
- Страницы: 107-120
- Раздел: Статьи
- URL: https://journals.rcsi.science/2218-1172/article/view/328030
- DOI: https://doi.org/10.31857/S2218117225020021
- EDN: https://elibrary.ru/KMMELG
- ID: 328030
Цитировать
Аннотация
Ключевые слова
Об авторах
А. А. Козлова
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Email: a_a_kozlova@ips.ac.ru
Ленинский пр., 29, Москва, 119991, Россия
В. К. Грудковская
Институт нефтехимического синтеза им. А.В. Топчиева РАНЛенинский пр., 29, Москва, 119991, Россия
М. И. Афокин
Институт нефтехимического синтеза им. А.В. Топчиева РАНЛенинский пр., 29, Москва, 119991, Россия
М. Г. Шалыгин
Институт нефтехимического синтеза им. А.В. Топчиева РАНЛенинский пр., 29, Москва, 119991, Россия
Список литературы
- Jorqueira D.S., Lima L.F., Moya S.F., et al. // Applied Catalysis A: General. 2023. V. 119. P. 360.
- Mariscal R., Maireles-Torres P., Ojeda M., Sádaba I., Granados M. L. // Energy and environmental science. 2016. V. 9. P. 1144–1189. https://doi.org/10.1039/C5EE02666K
- Kabbour M., Luque R. // Biomass, biofuels, biochemicals. 2020. P. 283–297. https://doi.org/10.1016/B978-0-444-64307-0.00010-X
- Сушкова В.И. // Химия растительного сырья. 2023. V. 2. P. 27–54. https://doi.org/10.14258/jcprm.20230211880
- Zhao S., Zhang Y., Rao Z., Liu H., et al. // Applied Catalysis B: Environment and Energy. 2025. P. 125228. https://doi.org/10.1016/j.apcatb.2025.125228
- Sun Y., Wang Z., Liu Y., et al. // Energies. 2019. V. 13. P. 21. https://doi.org/10.3390/en13010021
- Tu R., Liang K., Sun Y., Wu Y., et al. // Chinese J. Chemical Engineering. 2023. V. 452. P. 139526.
- Mitran G., Nguyen T.L.P., Seo D.K. // Biomass and Bioenergy. 2024. V. 190. P. 107429.
- Joshi R., Tiwari M.S. // Catalysis Today. 2025. P. 115276.
- Lange J.P., Van Der Heide E., van Buijtenen J., Price R. // ChemSusChem. 2012. V. 5. P. 150–166. https://doi.org/10.1002/cssc.201100648
- Lange J. P. // Catalysis Today. 2024. P. 114726. https://doi.org/10.1016/j.cattod.2024.114726
- ООО “НПО Завод фурановых соединений”. Официальный сайт. URL: https://npozfs.ru/.
- Yong K.J., Wu T.Y., Lee C.B., et al. // Biomass and Bioenergy. 2022. V. 161. P. 106458. https://doi.org/10.1016/j.biombioe.2022.106458
- Delbecq F., Wang Y., Muralidhara A., et al. // Frontiers in chemistry. 2018. V. 6. P. 146. https://doi.org/10.3390/coatings11010110
- Dutta S., De S., Saha B., Alam M. I. // Catalysis Science Technology. 2012. V. 2. P. 2025–2036. https://doi.org/10.1039/C2CY20235B
- Ntimbani R.N., Farzad S., Görgens J.F. // Biomass Conversion and Biorefinery. 2021. V. 12. P. 5257–5267. https://doi.org/10.1007/s13399-021-01313-3
- Jaswal A., Singh P.P., Mondal T. // Green Chemistry. 2022. V. 24. P. 510–551. https://doi.org/10.1039/D1GC03278J
- Сушкова В.И, Воробьёва Г.И. Безотходная конверсия растительного сырья в биологически активные вещества. Москва. Дели принт. 2008. С. 215.
- Чхеда Ж.Н., Ланж Ж.П. Замкнутый способ получения фурфурола из биомасс. Пат. № 2713659 (РФ), 06.02.2020.
- Li X., Hu J., Yang T., Yang X., Qu J., Li C.M. // Nano Energy. 2022. V. 92. P. 106714. https://doi.org/10.1016/j.nanoen.2021.106714
- Lee C.B.T.L., Wu T.Y. // Renewable and Sustainable Energy Reviews. 2021. V. 137. P. 110172. https://doi.org/10.1016/j.rser.2020.110172
- Cai C.M., Zhang T., Kumar R., Wyman C.E. // J. Chem. Tech. Biotech. 2014. V. 89. P. 2–10. https://doi.org/10.1002/jctb.4168
- Weingarten R., Tompsett G.A., Conner W.C., Huber G.W. // Journal of Catalysis. 2011. V. 279. P. 174–182. https://doi.org/10.1016/j.jcat.2011.01.013
- Dulie N.W., Woldeyes B.V, Demsash H.D., Jabasingh A.S. // Waste and Biomass Valorization. 2021. V. 12. P. 531–552. https://doi.org/10.1007/s12649-020-00946-1
- Dubiniak A., Kulikov L., Egazaryants S., Maximov A., Karakhanov E. // Applied Catalysis A: General. 2025. V. 689. P. 120025. https://doi.org/10.1016/j.apcata.2024.120025
- Galkin K.I., Ananikov V.P. // ChemSusChem. 2019. V. 12. P. 185–189. https://doi.org/10.1002/cssc.201802126
- Edumujeze D., Fournier-Salaün M.C., Leveneur S. // Fuel. 2025. V. 381. P. 133423. https://doi.org/10.1016/j.fuel.2024.133423
- Qian X., Jia S., Skogestad S., Yuan X. // Computer Aided Chemical Engineering. 2016. V. 38. P. 409–414. https://doi.org/10.1016/B978-0-444-63428-3.50073-4
- Contreras-Zarazúa G., Martin-Martin M., Sánchez-Ramirez E., Segovia-Hernández J.G. // Chemical Engineering and Processing-Process Intensification. 2022. V. 171. P. 108569. https://doi.org/10.1016/j.cep.2021.108569
- Nhien L.C., Long N.V.D., Kim S., Lee M. // Biotechnology for Biofuel. 2017. V. 10. P. 81. https://doi.org/10.1186/s13068-017-0767-3
- Alonso-Riano P., Illera A.E., Amândio M.S., et al. // Separation and Purification Technology. 2023. V. 309. P. 123008. https://doi.org/10.1016/j.seppur.2022.123008
- Zhuang Y., Si Z., Pang S., et al. // Journal of Cleaner Production. 2023. V. 396. P. 136481. https://doi.org/10.1016/j.jclepro.2023.136481
- Mohamad N., Reig M., Vecino X., et al. // Journal of Chemical Technology Biotechnology. 2019. V. 94. P. 2899–2907. https://doi.org/10.1002/jctb.6093
- Ali A.A., Al-Othman A., Tawalbeh M., et al. // Journal of Environmental Chemical Engineering. 2024. V. 13. P. 114998. https://doi.org/10.1016/j.jece.2024.114998
- Pervaporation, DeltaMem AG. Официальный сайт. URL: https://www.deltamem.ch/.
- Shalygin M.G., Kozlova A.A., Heider J., et al. // Membranes and Membrane Technologies. 2023. V. 5. P. 55–67. https://doi.org/10.1134/s2517751623010055
- Borisov I.L., Golubev G.S., Vasilevsky V.P., et al. // J. Membr. Sci. 2017. V. 523. P. 291–300. https://doi.org/10.1016/j.memsci.2016.10.009
- Yakovlev A.V., Shalygin M.G., Matson S.M., et al. // J. Membr. Sci. 2013. V. 434. P. 99–105. https://doi.org/10.1016/j.memsci.2013.01.061
- Hu S., Guan Y., Cai D., et al. // Scientific Reports. 2015. V. 5. P. 9428. https://doi.org/10.1038/srep09428
- Shalygin M.G., Kozlova A.A., Teplyakov V.V. // Membranes and Membrane Technologies. 2022. V. 4. P. 258–266. https://doi.org/10.1134/S2517751622040084
- Borisov I.L., Volkov V.V. // Separation and Purification Technology. 2015. V. 146. P. 3341. https://doi.org/10.1016/j.seppur.2015.03.023
- Wang Y., Ban Y., Liu J., et al. // J. Membr. Sci. 2025. V. 722. P. 123864. https://doi.org/10.1016/j.memsci.2025.123864
- Vane L.M. // J. Chem. Tech. Biotech. 2019. V. 94. P. 343–365. https://doi.org/10.1002/jctb.5839
- Abo B.O., Gao M., Wang Y., et al. // Environ. Sci. Pollut. Res. 2019. V. 26. P. 20164–20182. https://doi.org/10.1007/s11356-019-05437-y
- Mao H., Li S.-H., Zhang A.-S., et al. // Separation and Purification Technology. 2021. V. 272. P. 118813. https://doi.org/10.1016/j.seppur.2021.118813
- Green D., Southard M.Z. // Perry’s Chemical Engineers Handbook. 2019. P. 2–8.
- Tai W.P., Lee H.Y., Lee M.J. // Fluid Phase Equilibria. 2014. V. 384. P. 134–142. https://doi.org/10.1016/j.fluid.2014.10.037
- Liu G., Jin W. // J. Membr. Sci. 2021. V. 636. P. 119557. https://doi.org/10.1016/j.memsci.2021.119557
- Qin F., Li S., Qin P., Karim M.N., Tan T. // Green Chemistry. 2014. V. 16. P. 1262–1273. https://doi.org/10.1039/C3GC41867G
- Grushevenko E.A., Borisov I.L., Volkov A.V. // Pet. Chem. 2021. V. 61. P. 959–976. https://doi.org/10.1134/S0965544121090103
- Zheng P., McCarthy T.J. // Langmuir. 2010. V. 26. P. 18585–18590. https://doi.org/10.1021/la104065e
- Ahmad A., Li S.H., Zhao Z.P. // J. Membr. Sci. 2021. V. 620. P. 118863. https://doi.org/10.1016/j.memsci.2020.118863
- Liu W., Ji S.L., Guo H.X., Gao J., Qin Z.P. // J. Appl. Polym. Sci. 2014. V. 131. https://doi.org/10.1002/app.40004
- Baker R.W. Membrane technology and applications. Wiley. 2024. P. 539. https://doi.org/10.1002/9781119686026
- Vinh-Thang H., Kaliaguine S. // Chemical reviews. 2013. V. 113. P. 4980–5028. https://doi.org/10.1021/cr3003888
- Sandmeier M., Paunović N., Conti R., et. al. // Macromolecules. 2021. V. 54. P. 7830–7839. https://doi.org/10.1021/acs.macromol.1c00856
- Li S., Li P., Si Z., Li G., et al. // AIChE J. 2019. V. 65. P. e16710. https://doi.org/10.1002/aic.16710
- Sawatdiruk S., Charoensuppanimit P., Faungnawakij K., Klaysom C. // Sep. Pur. Tech. 2021. V. 278. P. 119281. https://doi.org/10.1016/j.seppur.2021.119281
- Shan H., Li S., Zhang X., et al. // Sep. Pur. Tech. 2021. V. 258. P. 118006. https://doi.org/10.1016/j.seppur.2020.118006
- Xu X., Nikolaeva D., Hartanto Y., Luis P. // Separation and Purification Technology. 2021. V. 278. P. 119233. https://doi.org/10.1016/j.seppur.2021.119233
- Ghosh U.K., Pradhan N.C., Adhikari B. // Desalination. 2010. V. 252. P. 1–7. https://doi.org/10.1016/j.desal.2009.11.009
- Ghosh U.K., Pradhan N.C., Adhikari B. // Desalination. 2007. V. 208. P. 146–158. https://doi.org/10.1016/j.desal.2006.04.078
- Yang Y., Si Z., Cai D., et. al. // Separation and Purification Technology. 2020. V. 235. P. 116144. https://doi.org/10.1016/j.seppur.2019.116144
- Wang Y., Xue T., Si Z., et al. // J. Membr. Sci. 2022. V. 653. P. 120515. https://doi.org/10.1016/j.memsci.2022.120515
- Liu C., Ding C., Hao X., et. al // Separation and Purification Technology. 2018. V. 207. P. 42–50. https://doi.org/10.1016/j.seppur.2018.06.029
- Yang R., Zhang H., Li X., Ye X., Liu L. // ACS Sustainable Chemistry Engineering. 2024. V. 12. P. 12378–12385. https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.4c02672
- Шалыгин М.Г., Козлова А.А., Нетрусов А.И., Тепляков В.В. // Мембраны и мембранные технологии. 2016. Т. 6. № 3. C. 313–324. https://doi.org/10.1134/S221811721603010X
- Vane L.M. // Separation Science and Technology. 2013. V. 48. P. 429–437.
- Teplyakov V.V., Shalygin M.G., Kozlova A.A., et al. // Petroleum Chemistry. 2017. V. 57. P. 747–762. https://doi.org/10.1134/S0965544117090080
Дополнительные файлы
