Experimental Determination of the Gas Transport Characteristics of Polysuflone and Polyphenyleneoxide Hollow-Fiber Membranes in Relation to Noble Gases

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

This paper presents an an experimental study of commercially available hollow fiber membranes made of two polymers, polysulfone and polyphenylene oxide. The main objective is to determine the gas transport characteristics of these membranes with respect to air components and noble gases. Therefore, the permeabilities of the membranes for nitrogen, oxygen, helium, argon, xenon and krypton were determined as part of this study. Particular attention is paid to the xenon-containing air mixture, since the problem of capturing medical xenon seems to be an urgent chemical and technological problem due to the high cost of the process of obtaining this gas. In the course of the study, the values of the permeability of two membranes for pure gases were determined and the values of ideal selectivity were calculated. Thus, the membrane permeability values for argon, krypton, and xenon were 20.8, 8.4, and 6.8 GPU for the polysulfone membrane and 19.5, 6.2, and 4.8 GPU for the polyphenylene oxide membrane. It was found that the xenon permeability of these membranes decreases in the case of separation of a gas mixture consisting of oxygen nitrogen and xenon and is 5.9 and 4.1 GPU for polysulfone and polyphenylene oxide, respectively. The dependence of the performance of membrane modules based on polysulfone and polyphenylene oxide on the total area of the membrane has also been established.

Авторлар туралы

A. Atlaskin

Mendeleev Russian University of Chemical Technology

Хат алмасуға жауапты Автор.
Email: atlaskin.a.a@muctr.ru
Russia, 125047, Moscow, Miusskaya square, 9

S. Kryuchkov

Mendeleev Russian University of Chemical Technology

Email: atlaskin.a.a@muctr.ru
Russia, 125047, Moscow, Miusskaya square, 9

A. Stepakova

Mendeleev Russian University of Chemical Technology

Email: atlaskin.a.a@muctr.ru
Russia, 125047, Moscow, Miusskaya square, 9

I. Moiseenko

Mendeleev Russian University of Chemical Technology

Email: atlaskin.a.a@muctr.ru
Russia, 125047, Moscow, Miusskaya square, 9

N. Tsivkovsky

Mendeleev Russian University of Chemical Technology

Email: atlaskin.a.a@muctr.ru
Russia, 125047, Moscow, Miusskaya square, 9

K. Smorodin

Mendeleev Russian University of Chemical Technology

Email: atlaskin.a.a@muctr.ru
Russia, 125047, Moscow, Miusskaya square, 9

A. Petukhov

Mendeleev Russian University of Chemical Technology; Department of Chemistry, Lobachevsky State University of Nizhny Novgorod

Email: atlaskin.a.a@muctr.ru
Russia, 125047, Moscow, Miusskaya square, 9; Russia, 603950, Nizhny Novgorod, 23 Gagarin Avenue

M. Atlaskina

Mendeleev Russian University of Chemical Technology

Email: atlaskin.a.a@muctr.ru
Russia, 125047, Moscow, Miusskaya square, 9

I. Vorotyntsev

Mendeleev Russian University of Chemical Technology

Email: atlaskin.a.a@muctr.ru
Russia, 125047, Moscow, Miusskaya square, 9

Әдебиет тізімі

  1. Sreenu B., Sarkar R., Kumar S.S.S., Chatterjee S., Rao G.A. // Materials Science and Engineering: A. 2020. V. 797. P. 140254.
  2. Yang J., Stegmaier U., Tang C., Steinbrück M., Große M., Wang S., Seifert H.J. // J. Nuclear Materials. 2021. V. 547. P. 152806.
  3. Vorotyntsev A.V., Petukhov A.N., Trubyanov M.M., Atlaskin A.A., Makarov D.A., Sergeeva M.S., Vorotyntsev I.V., Vorotyntsev V.M. // Reviews in Chemical Engineering. 2021. V. 37. I. 1. P. 125–161.
  4. Sui Y., Hess-Dunning A., Wei P., Pentzer E., Sankaran R.M., Zorman C.A. // Advanced Materials Technologies. 2019. V. 4. I. 12. P. 1900834.
  5. Torbin A.P., Chernyshov A.K., Svistun M.I., Mikheyev P.A. // J. Physics: Conference Series. 2021. V. 2067. I. 1. P. 012 014.
  6. Trubyanov M.M., Mochalov G.M., Suvorov S.S., Puzanov E.S., Petukhov A.N., Vorotyntsev I.V., Vorotyntsev V.M. // J. Chromatography A. 2018. V. 1560. P. 71–77.
  7. Wang Y.Z., Li T.T., Cao H.L., Yang W.C. // Medical Gas Research. 2019. V. 9. I. 2. P. 80–87.
  8. Aarhaug T.A., Kjos O., Isaksen M., Polden J.O. // 2023. P. 743–748.
  9. Kim M.S., Lee T., Son Y., Park J., Kim M., Eun H., Park J.W., Kim Y. // Processes 2022. V. 10. P. 2401.
  10. Tabares F.L., Junkar I. // Molecules. 2021. V. 26. P. 1903. 2021.
  11. Ustyugova T.G., Kupriyanov M.Y. // Chemical and Petroleum Engineering. 2020. V. 56. I. 5–6. P. 371–377.
  12. Sanders D.F., Smith Z.P., Guo R., Robeson L.M., McGrath J.E., Paul D.R., Freeman B.D. // Polymer. 2013. V. 54. I. 18. P. 4729–4761.
  13. Castro-Muñoz R., Agrawal K.V., Coronas J. // RSC Advances. 2020. V. 10. I. 21. P. 12653–12670.
  14. Bondarenko V.L., Losyakov I.A., D’yachenko O.V., D’yachenko T.V. // Chemical and Petroleum Engineering. 2019. V. 54. I. 9–10. P. 728–734.
  15. Bondarenko V.L., Losyakov I.A., D’yachenko O.V., D’yachenko T.V. // Chemical and Petroleum Engineering. 2019. V. 54. I. 9–10. P. 735–745.
  16. Miandoab E.S., Mousavi S.H., Kentish S.E., Scholes C.A. // Separation and Purification Technology. 2021. V. 262. P. 118 349.
  17. Li H., Liu H., Li Y., Nan J., Shi C., Li S. // Energies. 2021. V. 14. P. 2266. 2021. V. 14. I. 8. P. 2266.
  18. Park J., Kim S.J., Lee I., Shin J.W., Park Y.I., Kim K., Park Y.K. // Chemical Engineering Research and Design. 2021. V. 172. P. 204–214.
  19. Xu Y., Tang Y., He C., Shu Y., Chen Q.L., Zhang B.J. // Chemical Engineering and Processing – Process Intensification. 2022. V. 177. P. 108982.
  20. Yang L., Qian S., Wang X., Cui X., Chen B., Xing H. // Chemical Society Reviews. 2020. V. 49. I. 15. P. 5359–5406.
  21. Atlaskin A.A., Trubyanov M.M., Yanbikov N.R., Bukovsky M.V., Drozdov P.N., Vorotyntsev V.M., Vorotyntsev I.V. // Petroleum Chemistry. 2018. V. 58. I. 6. P. 508–517.
  22. Petukhov A.N., Atlaskin A.A., Kryuchkov S.S., Smorodin K.A., Zarubin D.M., Petukhova A.N., Atlaskina M.E., Nyuchev A.V., Vorotyntsev A.V., Trubyanov M.M., Vorotyntsev I. V., Vorotynstev V.M. // Chemical Engineering J. 2021. V. 421. P. 127726.
  23. Nunes S.P., Culfaz-Emecen P.Z., Ramon G.Z., Visser T., Koops G.H., Jin W., Ulbricht M. // J. Membrane Science. 2020. V. 598. P. 117761.
  24. Ahmad M.Z., Peters T.A., Konnertz N.M., Visser T., Téllez C., Coronas J., Fila V., de Vos W.M., Benes N.E. // Separation and Purification Technology. 2020. V. 230. P. 115 858.
  25. Vorotyntsev I. V., Atlaskin A.A., Trubyanov M.M., Petukhov A.N., Gumerova O.R., Akhmetshina A.I., Vorotyntsev V.M. // DESALINATION AND WATER TREATMENT. 2017. V. 75. P. 305–313.
  26. Suwaileh W., Pathak N., Shon H., Hilal N. // Desalination. 2020. V. 485. P. 114455.
  27. Alent’ev A.Y., Volkov A. V., Vorotyntsev I. V., Maksimov A.L., Yaroslavtsev A.B. // Membranes and Membrane Technologies. 2021. V. 3. I. 5. P. 255–273.
  28. Sergeeva M.S., Mokhnachev N.A., Shablykin D.N., Vorotyntsev A.V., Zarubin D.M., Atlaskin A.A., Trubyanov M.M., Vorotyntsev I.V., Vorotyntsev V.M., Petukhov A.N. // J. Natural Gas Science and Engineering. 2021. V. 86. P. 103 740.
  29. Смородин К.А., Атласкин А.А., Зарубин Д.М., Петухов А.Н., Крючков С.С., Петухова А.Н., Атласкина М.Е., Степакова А.Н., Марков А.Н., Воротынцев И.В. // Мембраны и мембранные технологии. 2022. Т. 12. № 4. С. 235–244.
  30. Alentiev A.Y., Levin I.S., Buzin M.I., Belov N.A., Nikiforov R.Y., Chirkov S.V., Blagodatskikh I.V., Keche-kyan A.S., Kechekyan P.A., Bekeshev V.G., Ryzhikh V.E., Yampolskii Y.P. // Polymer. 2021. V. 226.
  31. Brožová L., Žitka J., Tomšík E. // Polymer Testing. 2021. V. 94.
  32. Dibrov G., Ivanov M., Semyashkin M., Sudin V., Fateev N., Kagramanov G. // Fibers. 2019. V. 7. I. 5. P. 43.
  33. Aitken C.L., Koros W.J., Paul D.R. // Macromolecules. 1992. V. 25. I. 13. P. 3424–3434.
  34. Julian H., Wenten I.G. // IOSR J. Engineering. 2012. V. 2. I. 3. P. 484–495.
  35. Low Z.-X., Budd P.M., McKeown N.B., Patterson D.A. // Chemical Reviews. 2018. V. 118. I. 12. P. 5871–5911.
  36. Pinnau I. // J. Membrane Science. 2004. V. 241. I. 2. P. 363–369.
  37. Alexander Stern S. // J. Membrane Science. 1994. V. 94. I. 1. P. 1–65.
  38. Yampolskii Y., Pinnau I., Freeman B.D. // Materials Science of Membranes for Gas and Vapor Separation. 2006. P. 1–445.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (754KB)
3.

Жүктеу (551KB)
4.

Жүктеу (179KB)
5.

Жүктеу (121KB)

© А.А. Атласкин, С.С. Крючков, А.Н. Степакова, И.С. Моисеенко, Н.С. Цивковский, К.А. Смородин, А.Н. Петухов, М.Е. Атласкина, И.В. Воротынцев, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>