Study of the Specific Adsorption of Calcium Ions on the Surface of Heterogeneous and Homogeneous Cation-Exchange Membranes to Increase Their Selectivity towards Singly Charged Ions

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Ion-exchange membranes with high specific selectivity towards singly charged ions are in demand in various industries. One of the ways to increase the specific selectivity can be formation of a thin layer on the membrane surface with a charge opposite to the charge of its fixed groups. The possibility of forming such a layer due to the specific interaction of calcium ions with the sulfonate groups of the membrane during treatment with a high-intensity electric current in a CaCl2 solution is studied. The ability of heterogeneous (MK-40, Ralex CMH) and homogeneous (CMX, CJMC-5) sulfocationite membranes for specific adsorption of calcium ions on their surface is investigated. It is shown that the CMX membrane exhibits this ability to the greatest extent, which is due to the higher density of \( - {\text{SO}}_{3}^{ - }\) groups on its surface compared to other studied membranes. It is found that the formation of a thin positively charged layer on the surface of the CMX membrane increases the permselectivity coefficient of the membrane, \({{P}_{{{{{\text{N}}{{{\text{a}}}^{{\text{ + }}}}} \mathord{\left/
{\vphantom {{{\text{N}}{{{\text{a}}}^{{\text{ + }}}}} {{\text{C}}{{{\text{a}}}^{{{\text{2 + }}}}}}}} \right.} {{\text{C}}{{{\text{a}}}^{{{\text{2 + }}}}}}}}}},\)
by 69%. At the same time, the presence of such a layer does not lead to an increase in undesirable water splitting, which occurs when applying widely used as modifiers polyelectrolytes with amino groups.

Авторлар туралы

V. Gil

Kuban State University

Хат алмасуға жауапты Автор.
Email: violetta_gil@mail.ru
Russia, 350040, Krasnodar

V. Ruleva

Kuban State University

Email: violetta_gil@mail.ru
Russia, 350040, Krasnodar

M. Porozhnyy

Kuban State University

Email: violetta_gil@mail.ru
Russia, 350040, Krasnodar

M. Sharafan

Kuban State University

Email: violetta_gil@mail.ru
Russia, 350040, Krasnodar

Әдебиет тізімі

  1. Luo T., Abdu S., Wessling M. // J. Membr. Sci. 2018. V. 555. P. 429–454.
  2. Pang X., Tao Y., Xu Y., Pan J., Shen J., Gao C. // J. Membr. Sci. 2020. V. 595. P. 117544.
  3. Ge L., Wu B., Yu D., Mondal A.N., Hou L., Afsar N.U., Li Q., Xu T., Miao J., Xu T. // Chin. J. Chem. Eng. 2017. V. 25. № 11. P. 1606–1615.
  4. Besha A.T., Tsehaye M.T., Aili D., Zhang W., Tufa R.A. // Membranes. 2019. V. 10. № 1. P. 7.
  5. Zhang Y., Paepen S., Pinoy L., Meesschaert B., Van der Bruggen B. // Sep. Purif. Technol. 2012. V. 88. P. 191–201.
  6. Tran A.T.K., Zhang Y., Lin J., Mondal P., Ye W., Meesschaert B., Pinoy L., Van der Bruggen B. // Sep. Purif. Technol. 2015. V. 141. P. 38–47.
  7. Liu R., Wang Y., Wu G., Luo J., Wang S. // Chem. Eng. J. 2017. V. 322. P. 224–233.
  8. Guo Z.-Y., Ji Z.-Y., Chen Q.-B., Liu J., Zhao Y.-Y., Li F., Liu Z.-Y., Yuan J.-S. // J. Clean. Prod. 2018. V. 193. P. 338–350.
  9. Sata T., Izuo R. // J. Membr. Sci. 1989. V. 45. № 3. P. 209–224.
  10. Kotoka F., Merino-Garcia I., Velizarov S. // Membranes. 2020. V. 10. № 8. P. 160.
  11. Femmer R., Mani A., Wessling M. // Sci. Rep. 2015. V. 5. № 1. P. 11583.
  12. Abdu S., Martí-Calatayud M.-C., Wong, J.E., García-Gabaldón M., Wessling M. // ACS Appl. Mater. Interfaces. 2014. V. 6. № 3. P. 1843–1854.
  13. Цыгурина К.А., Кириченко Е.В., Кириченко К.А. // Мембраны и мембранные технологии. 2022. Т. 12. № 1. С. 15–28. [Tsygurina K.A., Kirichenko E.V., Kirichenko K.A. // Membranes and Membrane Technologies. 2022. V. 4. № 1. P. 11–22.]
  14. Mulyati S., Takagi R., Fujii A., Ohmukai Y., Matsuyama H. // J. Membr. Sci. 2013. V. 431. P. 113–120.
  15. Stenina I., Golubenko D., Nikonenko V., Yaroslavtsev A. // Int. J. Mol. Sci. 2020. V. 21. № 15. P. 5517.
  16. Vaselbehagh M., Karkhanechi H., Takagi R., Matsuyama H. // J. Membr. Sci. 2015. V. 490. P. 301–310.
  17. White N., Misovich M., Yaroshchuk A., Bruening M.L. // ACS Appl. Mater. Interfaces. 2015. V. 7. № 12. P. 6620–6628.
  18. Merino-Garcia I., Kotoka F., Portugal C.A.M., Crespo J.G., Velizarov S. // Membranes. 2020. V. 10. № 6. P. 134.
  19. Zhao Y., Li Y., Yuan S., Zhu J., Houtmeyers S., Li J., Dewil R., Gao C., Van der Bruggen B. J. Mater. Chem. A. 2019. V. 7. P. 6348–6356.
  20. Falina I., Loza N., Loza S., Titskaya E., Romanyuk N. // Membranes. 2021. V. 11. № 3. P. 227.
  21. Güler E., van Baak W., Saakes M., Nijmeijer K. // J. Memb. Sci. 2014. V. 455. P. 254–270.
  22. Lambert J., Avila-Rodriguez M., Durand G., Rakib M. // J. Memb. Sci. 2006. V. 280. № 1–2. P. 219–225.
  23. Pan J., Ding J., Tan R., Chen G., Zhao Y., Gao C., Van der Bruggen B., Shen J. // J. Memb. Sci. 2017. V. 539. P. 263–272.
  24. Zhao Y., Tang K., Liu H., Van der Bruggen B., Sotto Díaz A., Shen J., Gao C. // J. Memb. Sci. 2016. V. 520. P. 262–271.
  25. Khoiruddin Ariono D., Subagjo Wenten I.G. // J. Appl. Polym. Sci. 2017. V. 134. № 48. P. 45540.
  26. Zhao Y., Tang K., Ruan H., Xue L., Van der Bruggen B., Gao C., Shen J. // J. Memb. Sci. 2017. V. 536. P. 167–175.
  27. Zhao Y., Zhu J., Ding J., Van der Bruggen B., Shen J., Gao C. // J. Memb. Sci. 2018. V. 548. P. 81–90.
  28. Zhao Y., Gao C., Van der Bruggen B. // Nanoscale. 2019. V. 11. P. 2264–2274.
  29. Golubenko D.V., Yaroslavtsev A.B. // J. Membr. Sci. 2021. V. 635. P. 119466.
  30. Golubenko D., Yaroslavtsev A. // J. Membr. Sci. 2020. V. 612. P. 118408.
  31. Titorova V.D., Moroz I.A., Mareev S.A., Pismenskaya N.D., Sabbatovskii K.G., Wang Y., Xu T., Nikonenko V.V. // J. Membr. Sci. 2022. V. 644. P. 120149.
  32. Nie X.-Y., Sun S.-Y., Sun Z., Song X., Yu J.-G. // Desalination. 2017. V. 403. P. 128–135.
  33. Berezina N.P., Kononenko N.A., Dyomina O.A., Gnusin N.P. // Adv. Colloid Interface Sci. 2008. V. 139. P. 3–28.
  34. Newman J.S. Electrochemical systems. N.J.: Prentice Hall, 1973. 432 p.
  35. Nikonenko V., Nebavsky A., Mareev S., Kovalenko A., Urtenov M., Pourcelly G. // Appl. Sci. 2018. V. 9. № 1. P. 25.
  36. Sata T., Sata T., Yang W. // J. Membr. Sci. 2002. V. 206. № 1–2. P. 31–60.
  37. Pismenskaya N.D., Pokhidnia E.V., Pourcelly G., Nikonenko V.V. // J. Membr. Sci. 2018. V. 566. P. 54–68.
  38. Nebavskaya K.A., Sarapulova V.V., Sabbatovskiy K.G., Sobolev V.D., Pismenskaya N.D., Sistat P., Cretin M., Nikonenko V.V. // J. Membr. Sci. 2017. V. 523. P. 36–44.
  39. Гиль В.В., Порожный М.В., Рыбалкина О.А., Саббатовский К.Г., Письменская Н.Д. // Мембраны и мембранные технологии. 2021. Т. 11. № 5. С. 371–381. [Gil V.V., Porozhnyy M.V., Rybalkina O.A., Sabbatovskiy K.G., Pismenskaya N.D. // Membranes and Membrane Technologies. 2021.V. 3. № 5. P. 334–343.]
  40. Rubinstein I., Zaltzman B. // Phys. Rev. Lett. 2015. V. 114. P. 114502.
  41. Mishchuk N.A. // Adv. Colloid Interface Sci. 2010. V. 160. № 1–2. P. 16–39.
  42. Левич В.Г. // Докл. АН СССР. 1959. Т. 124. С. 869–872.
  43. Dukhin S.S. // Adv. Colloid Interface Sci. 1991. V. 35. P. 173–196.
  44. Mishchuk N.A. // Colloids Surf. A Physicochem. Eng. Asp. 1998. V. 140. № 1–3.P. 75–89.
  45. Roghmans F., Evdochenko E., Stockmeier F., Schneider S., Smailji A., Tiwari R., Mikosch A., Karatay E., Kühne A., Walther A., Mani A., Wessling M. // Adv. Mater. Interfaces. 2018. V. 6. P. 1801309.
  46. Никоненко В.В., Мареев С.А., Письменская Н.Д., Узденова А.М., Коваленко А.В., Уртенов М.Х., Пурсели Ж. // Электрохимия. 2017. Т. 53. № 10. С. 1266–1289. [Nikonenko V.V., Mareev S.A., Pis’menskaya N.D., Uzdenova A.M., Kovalenko A.V., Urtenov M.Kh., Pourcelly G. // Russ. J. Electrochem. 2017. 53, 1122–1144.]
  47. Rubinstein I., Zaltzman B. // Phys. Rev. E. 2000. V. 62. P. 2238–2251.
  48. Rubinstein I., Zaltzman B. // Math. Models Methods Appl. Sci. 2001. V. 11. № 2. P. 263–300.
  49. Васильева В.И., Жильцова А.В., Акберова Э.М., Фатаева А.И. // Конденсированные среды и межфазные границы. 2014. Том 16. № 3. С. 257–261.
  50. Ponomar M., Krasnyuk E., Butylskii D., Nikonenko V., Wang Y., Jiang C., Xu T., Pismenskaya N. // Membranes. 2022. V. 12. № 8. P. 765.
  51. Sarapulova V., Shkorkina I., Mareev S., Pismenskaya N., Kononenko N., Larchet C., Dammak L., Nikonenko V. // Membranes. 2019. V. 9. № 7. P. 84.
  52. Güler E., Elizen R., Vermaas D.A., Saakes M., Nijmeijer K. // J. Memb. Sci. 2013. V. 446. P. 266–276.
  53. Simons R. // Nature. 1979. V. 280. P. 824–826.
  54. Заболоцкий В.И., Шельдешов Н.В., Гнусин Н.П. // Успехи химии. 1988. Т. 57. № 6. С. 1403–1414. [Zabolotskii V.I., Shel’deshov N.V., Gnusin N.P. // Russian Chemical Reviews. 1988. V. 57. № 8. P. 801–808.]
  55. Belloň T., Polezhaev P., Vobecká L., Svoboda M., Slouka Z. // J. Membr. Sci. 2019. V. 572. P. 607–618.
  56. Kang M.-S., Choi Y.-J., Moon S.-H. // Korean J. Chem. Eng. 2004. V. 21. P. 221–229.
  57. Zabolotskiy V.I., But A.Y., Vasil’eva V.I., Akberova E.M., Melnikov S.S. // J. Membr. Sci. 2017. V. 526. P. 60–72.
  58. Belloň T., Slouka Z. // J. Membr. Sci. 2020. V. 610. P. 118 291.
  59. Porozhnyy M.V., Shkirskaya S.A., Butylskii D.Y., Dotsenko V.V., Safronova E.Y., Yaroslavtsev A.B., Deabate S., Huguet P., Nikonenko V.V. // Electrochim. Acta. 2021. V. 370. P. 137689.
  60. Gil V., Porozhnyy M., Rybalkina O., Butylskii D., Pismenskaya N. // Membranes. 2020. V. 10. № 6. P. 125.
  61. Belashova E.D., Melnik N.A., Pismenskaya N.D., Shevtsova K.A., Nebavsky A.V., Lebedev K.A., Nikonenko V.V. // Electrochim. Acta. 2012. V. 59. P. 412–423.
  62. Sarapulova V., Pismenskaya N., Butylskii D., Titorova V., Wang Y., Xu T., Zhang Y., Nikonenko V., // Membranes. 2020. V. 10. № 8. P. 165.
  63. Chapotot A., Pourcelly G., Gavach C. // J. Membr. Sci. 1994. V. 96. P. 167–181.
  64. Abdu S., Martí-Calatayud M.-C., Wong J.E., García-Gabaldón M., Wessling M. // ACS Appl. Mater. Interfaces. 2014. V. 6. № 3. P. 1843–1854.

Қосымша файлдар


© В.В. Гиль, В.Д. Рулева, М.В. Порожный, М.В. Шарафан, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>