The Influence of the Molecular Weight of Sodium Polystyrene Sulfonate on the Mobility of Macromolecules in Aqueous Solution by NMR

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Diffusion processes in aqueous solutions of sodium polystyrene sulfonate with different molecular weights were studied using pulsed field gradient NMR. It was shown that Na⁺ cations in these polymers are partially replaced by ammonium ions NH₄⁺. A lognormal distribution of diffusion coefficients was introduced to interpret the experimental dependences of the spin echo signal amplitudes of the polymer matrix protons on the magnetic field gradient. It is related to the polymer molecular weight distribution. It was shown that, at the same polymer concentration, with increasing molecular weight, the average values of the diffusion coefficients decrease, and their distributions broaden. In the concentration range from 20 to 65 water molecules per sulfo group, the distribution width is independent of concentration, indicating the absence of macromolecular associates. With a further increase in the polymer molecule concentration, the distribution width of the diffusion coefficients increases, indicating the formation of associates.

Sobre autores

S. Bilyk

FRC PCP MC RAS; Lomonosov Moscow State University

Chernogolovka, Russian Federation; Moscow, Russian Federation

V. Tverskoy

IREA–Russian Technological University

Moscow, Russian Federation

M. Dorogonitsky

KFU

Kazan, Russian Federation

N. Slesarenko

FRC PCP MC RAS

Chernogolovka, Russian Federation

D. Melnikova

KFU

Kazan, Russian Federation

V. Skirda

KFU

Kazan, Russian Federation

A. Chernyak

FRC PCP MC RAS; Osippan Institute of Solid State Physics, RAS

Chernogolovka, Russian Federation

V. Volkov

FRC PCP MC RAS; Lomonosov Moscow State University

Email: vihvolj@mail.ru
Chernogolovka, Russian Federation; Moscow, Russian Federation

Bibliografia

  1. Fillipov S.P., Yaroslavtsev A.B. // Russ. Chem. Rev. 2021. V. 90. P. 627–643.
  2. Asghar M.R., Zahid A., Su H., Divya K., Anwar M.T., Xu // Batteries. 2025. V. 11. P. 134.
  3. Huang D., Hwang J.-Y. // Solid State Ionics. 2023. V. 392. P. 116149.
  4. Saxena A., Tripathi B.P., Shahi V.K. // J. Phys. Chem. B. 2007. V. 111. P. 12454–12461.
  5. Stenina I.A., Yaroslavtsev A.B. // Membranes. 2021. V. 11. P. 198.
  6. Conte P. // Magn. Reson. Chem. 2015. V. 53. P. 711–718.
  7. Lee D.K., Saito T., Benesi A.J., Hickner M.A., Allcock H.R. // J. Phys. Chem. B. 2011. V. 115. P. 776–783.
  8. Peng J., Lou K., Goenaga G., Zawodzinski T. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 38418–38430.
  9. Волков В.Н., Черняк А.В., Голубенко Д.В., Шевалкова Н.В., Тверской В.А., Ярославцев А.Б. // Мембраны и мембранные технологии. 2020. Т. 10. № 1. С. 63–72.
  10. Volkov V.I., Slesarenko N.A., Chernyak A.V., Zabrodin V.A., Golubenko D.V., Tverskoy V.A., Yaroslavlsev A.B. // Membr. Membr. Technol. 2022. V. 4. P. 189–194.
  11. Bilyk S.A., Tverskoy V.A., Chernyak A.V., Avilova I.A., Slesarenko N.A., Volkov V.I. // Membranes 2023. V. 13. P. 725.
  12. Halle B., Bratko D., Puculell L. // Ber. Bunsenges. Phys. Chem. 1985. V. 89. P. 1254–1260.
  13. Halle B., Wennerstor H., Puculell L. // J. Phys. Chem. 1984. V. 88. P. 2482–2494.
  14. Tromp R.H., Van der Maarel J.R.C., De Bleijser J., Leyte J.C. // Biophysical Chemistry 1991. V. 41. P. 81–100.
  15. Böhme U., Hänel B., Scheler U. // Progr Colloid Polym Sci. 2011. V. 138. P. 45–48.
  16. Kato M., Nakagawa T., Akamatu H. // Bull. Chem. Soc. Japan. 1960. V. 33. P. 322–329.
  17. Маклаков А.И., Скирда В.Д., Фатекуллин Н.Ф. Самоциффузия в растворах и расплавах полимеров // Изд. Казанского гос. университета, 1987, 224 с.
  18. Зотьев С.М., Усманов Э.Д., Шакирьянов А.Г., Ягола // Вычислительные методы и программирование. 2005. Т. 6. С. 249–252.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).