Modeling of the Membrane Gas Separation Process of CO2 Decomposition Products with the Production of CO and O2 Concentrates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Carbonylation and oxidative carbonylation processes require the production of a concentrate of carbon monoxide or its mixture with oxygen. Such concentrates can be produced by plasma-chemical decomposition of CO2 into CO and O2. Given the low conversion of such processes, there is a need to develop separation schemes for the 73% mol. CO2/18% mol. CO/9% mol. O2 mixture to produce concentrates that are practical to use. This article proposes a conceptual scheme for separating CO2 decomposition products using membrane gas separation technology with polysulfone hollow fiber gas separation membranes (PSF). For the first time, data on the transfer of CO, CO2, and O2 through PSF membranes in a ternary mixture were obtained for the simulation. Calculations show that using PSF membranes with a total area of 5.28 m2 when processing 1 m3 (STP)/h of the CO2/CO/O2 mixture, 93.9% CO2 with a concentration of 93.6 % mol. and extract 68.5% CO with a concentration of 85% mol.

About the authors

E. A. Grushevenko

A.V. Topchiev Institute of Petrochemical Synthesis RAS; Lomonosov Moscow State University

Email: evgrushevenko@ips.ac.ru
Department of Chemistry Moscow, Russian Federation; Moscow, Russian Federation

D. V. Miroshnichenko

A.V. Topchiev Institute of Petrochemical Synthesis RAS

Moscow, Russian Federation

L. G. Gasanova

A.V. Topchiev Institute of Petrochemical Synthesis RAS

Moscow, Russian Federation

D. N. Matveev

A.V. Topchiev Institute of Petrochemical Synthesis RAS

Moscow, Russian Federation

M. G. Shalygin

A.V. Topchiev Institute of Petrochemical Synthesis RAS

Moscow, Russian Federation

I. L. Borisov

A.V. Topchiev Institute of Petrochemical Synthesis RAS

Moscow, Russian Federation

A. L. Maksimov

Lomonosov Moscow State University

Department of Chemistry Moscow, Russian Federation

S. D. Bazhenov

A.V. Topchiev Institute of Petrochemical Synthesis RAS

Moscow, Russian Federation

References

  1. Макаров А.А., Кулагин В.А., Грушевенко Д.А., Галкина А.А. eds. Прогноз развития энергетики мира и России 2024, ИНЭИ РАН, Москва, 2024.
  2. Алешнев А.Ю., Волков А.В., Воротников Н.В., Максимов А.П., Ярославцев А.Б. // Мембраны и Мембранные Технологии. 2021. Т. 11. С. 283–303.
  3. Nath F., Mahmood M.N., Yousuf N. // Geoenergy Science and Engineering. 2024. V. 238. P. 212726. https://doi.org/10.1016/j.geoen.2024.212726
  4. Dumée L., Scholes C., Stevens G., Kentish S. // International Journal of Greenhouse Gas Control. 2012. V. 10. P. 443–455. https://doi.org/10.1016/J.IJGGC.2012.07.005
  5. Boot-Handford M.E., Abanades J.C., Anthony E.J., Blunt M.J., Brandani S., Mac Dowell N., Fernández J.R., Ferrari M.-C., Gross R., Hallett J.P., Haszeldine R.S., Heptonstall P., Lyngfelt A., Makuch Z., Mangano E., Porter R.T.J., Pourkashanian M., G.T. Rochelle, N. Shah, J.G. Yao, P.S. Fennell // Energy Environ. Sci. 2014. V. 7. P. 130–189. https://doi.org/10.1039/C3EE42350F
  6. C.-Huang H., C.-Tan S. // Aerosol Air Qual Res. 2014. V. 14. P. 480–499. https://doi.org/10.4209/aaqr.2013.10.0326
  7. Markewitz P., Kuckshinrichs W., Leitner W., Linssen J., Zapp P., Bongartz R., Schreiber A., T.E. Müller // Energy Environ Sci. 2012. V. 5. P. 7281. https://doi.org/10.1039/c2ee034034
  8. Peter S.C. // ACS Energy Lett. 2018. V. 3. P. 1557–1561. https://doi.org/10.1021/acsenergylett.8b00878
  9. Garba M.D., Usman M., Khan S., Shehzad F., Galadima A., Ehsan M.F., Ghanem A.S., Humayun M. // J Environ Chem Eng. 2021. V. 9. P.104756. https://doi.org/10.1016/j.jece.2020.104756
  10. Magomedova M.V., Starozhitskaya A.V., Galanova E.G., Matevosyan D.V., Egazar’yants S.V., Maximov A.L. // Petroleum Chemistry. 2023. V. 63. P. 1219–1227. https://doi.org/10.1134/S0965544123080091
  11. Corma A., Garcia H. // J Catal. 2013. V.308. P. 168–175. https://doi.org/10.1016/j.jcat.2013.06.008.
  12. Ya. Morozova V., Svidersky S.A., Demenieva O.S., Kulikova M.V., Maximov A.L. // Petroleum Chemistry. 2025. V. 65. P. 277–285. https://doi.org/10.1134/S0965544125600481
  13. Xin Q., Maximov A.L., Liu B.Y., Wang W., Guo H.Y., Xiao L.F., Wu W. // Russian Journal of Applied Chemistry. 2022. V. 95. P. 296–307. https://doi.org/10.1134/S107042722020100
  14. Wei J., Ge Q., Yao R., Wen Z., Fang C., Guo L., Xu H., Sun J. // Nat Commun. 2017. V. 8. P. 15174. https://doi.org/10.1038/ncomms15174
  15. Zhang F., Chen W., Li W. // Molecular Catalysis. 2023. V. 541. P. 113093. https://doi.org/10.1016/j.mcat.2023.113093
  16. Kuznetsov N.Yu., Maximov A.L., Beletskaya I.P. // Russian Journal of Organic Chemistry. 2022. V. 58. P. 1681–1711. https://doi.org/10.1134/S1070428022120016
  17. Merzljakov D.A., Alexeev M.S., Topchiy M.A., Yakhvarov D.G., N.Yu. Kuznetsov, Maximov A.L., Beletskaya I.P. // Molecules. 2025. V. 30. P. 248. https://doi.org/10.3390/molecules3000248
  18. Kuznetsov N.Yu., Beletskaya I.P. Application of CO2 as a C1-Synthon in Organic Chemistry: II. Catalytic Synthesis of Cyclic Carbonates (Carbamates) from CO2 and Epoxides (Aziridines), Russian Journal of Organic Chemistry 59 (2023) 1261–1297. https://doi.org/10.1134/S1070428021080018
  19. Bondarenko G.N., Ganina O.G., Lysova A.A., Fedin V.P., Beletskaya I.P. // Journal of CO2 Utilization. 2021. V. 53. P. 101718. https://doi.org/10.1016/j.jcou.2021.101718
  20. Nguyen T.V.Q., Rodr J.A.iguez-Santamaría, W-Yoo J., Kobayashi S. // Green Chemistry. 2017. V. 19. P. 2501–2505. https://doi.org/10.1039/C7GC00917H
  21. Duffy I.R., Vasdev N., Dahl K. // ACS Omega. 2020. V. 5. P. 8242–8250. https://doi.org/10.1021/acsomega.0c00524
  22. Liu Y., W-Ren M., K.-He K., W-Zhang Z., W-Li B., Wang M., X-Lu B. // J Org Chem. 2016. V. 81. P. 8959–8966. https://doi.org/10.1021/acs.joc.6b01616
  23. Rehevsky S.A., Shurupova O.V., Asachenko A.F., Plutalova A.V., Chernikova E.V., Beletskaya I.P. // Int J Mol Sci. 2023. V. 25. P. 10946. https://doi.org/10.3390/ijms252010946
  24. Winnefeld F., Leemann A., German A., Lohenbach B. // Curr Opin Green Sustain Chem/ 2022. V. 38. P. 100672. https://doi.org/10.1016/j.cogsc.2022.100672
  25. Ma X., Albertana J., Gabriels D., Horst R., Polat S., Snoeks C., Kapielin F., Erdl H.B., Vermaas D.A., Mei B., S. de Beer, M.A. van der Veen // Chem Soc Rev. 2023. V. 52. P. 3741–3777. https://doi.org/10.1039/D3CS00147D
  26. Wall D., Kepplinger W., Millner R. // Steel Res Int. 2011. V. 82. P. 926–933. https://doi.org/10.1002/srin.201100030
  27. Fujimori S., Inoue S. // J Am Chem Soc. 2022. V. 144. P. 2034–2050. https://doi.org/10.1021/jacs.1c13152
  28. Kuzmin A.E., Demenieva O.S., Kulikova M.V., Ya.Morozova V., Svidersky S.A., Maksimov A.L. // J Taiwan Inst Chem Eng. 2025. V. 167. P. 105847. https://doi.org/10.1016/j.jtice.2024.105847
  29. Wu P., Li X., Ullah N., Li Z. // Molecular Catalysis. 2021. V. 499. P. 111304. https://doi.org/10.1016/j.mcat.2020.111304
  30. Golubev O.V., Maximov A.L. // Plasma Chemistry and Plasma Processing. 2024. V. 44. P. 2087–2100. https://doi.org/10.1007/s11090-024-10512-5
  31. Zhang K., Harvey A.P. // Chemical Engineering Journal. 2021. V. 405. P. 126625. https://doi.org/10.1016/j.cej.2020.126625
  32. Kumar A., Hasija V., Sudhaik A., Raizada P., Van Q.L., Singh P., T.-Pham H., Kim T., Ghotekar S., V.-Nguyen H. // Chemical Engineering Journal. 2022. V. 430. P. 133031. https://doi.org/10.1016/j.cej.2021.133031
  33. Ouyang T., Wang H., Huang H., Wang J., Guo S., Liu W., Zhong D., Lu T. // Angewandte Chemie International Edition. 2018. V. 57. P. 16480–16485. https://doi.org/10.1002/anie.201811010
  34. Wang P., Dong R., Guo S., Zhao J., Z.-Zhang M., T.-Lu B. // Natl Sci Rev. 2020. V. 7. P. 1459–1467. https://doi.org/10.1093/nsr/nwaa112
  35. Gupta R., Mishra A., Thirupathaiah Y., Chandel A.K. // Biomass Convers Biorefin. 2024. V. 14. P. 3007–3030. https://doi.org/10.1007/s13399-022-02552-8
  36. Zhang H., Zhang X., Yang D., Shuai Y., Lougou B.G., Pan Q., Wang F. // Energy Convers Manag. 2023. V. 279. P. 116772. https://doi.org/10.1016/j.enconman.2023.116772
  37. Owen S., Ko B.H., Zhao Y., Jiao F. // Acc Chem Res. 2022. V. 55. P. 638–648. https://doi.org/10.1021/acs.accounts.1c00674
  38. Liu W., Ji Y., Huang Y., Zhang X.J., Wang T., Fang M.X., Jiang L. // Renewable and Sustainable Energy Reviews. 2024. V. 191. P. 114141. https://doi.org/10.1016/j.rser.2023.114141
  39. Allangawi A., E.Alzaimoor F.H., Shanadh H.H., Mohammed H.A., Saqer H., El-Fatath A.A., Kamel A.H. // Processes, C. 2023. V. 9. P. 17. https://doi.org/10.3390/c9010017
  40. Teplyakov V., Meares P. // Gas Separation & Purification. 1990. V. 4. P. 66–74. https://doi.org/10.1016/0950-4214(90)80030-O
  41. Perez-Carbajo J., Matito-Martos I., S.Balestra R.G., Tsampas M.N., M.C.M. van de Sanden, Delgado J.A., V.I. Agueda, Merkling P.J., Calero S. // ACS Appl Mater Interfaces. 2018. V. 10. P. 20512–20520. https://doi.org/10.1021/acsami.8b04507
  42. Luna-Triguero A., Vicent-Luna J.M., Jansman M.J., Zafeiropoulos G., Tsampas M.N., M.C.M. van de Sanden, Akse H.N., Calero S. // Catal Today. 2021. V. 362. P. 113–121. https://doi.org/10.1016/J.CATTOD.2020.03.061
  43. Klau. Weissermel, H.-Jürgen. Arpe, Industrial Organic Chemistry, 2008.
  44. Sidhikku R. Kandath Valappil, Ghasem N., Al-Marzouqi M. // Journal of Industrial and Engineering Chemistry. 2021. V. 98. P. 103–129. https://doi.org/10.1016/j.jiec.2021.03.030
  45. Checchetto R., Scarpa M., De M.G. Angelis, Minelli M. // J Memb Sci. 2022. V. 659. Art. 120768. https://doi.org/10.1016/J.MEMSCI.2022.120768
  46. James J., L.E. Lücking, H.A.J. van Dijk, Boon J. // Frontiers in Chemical Engineering. 2023. V. 5. Art. 1066091 https://doi.org/10.3389/fceng.2023.1066091
  47. Duan S., Xu H., Zhang J., Shan M., Zhang S., Zhang Y., Wang X., Kapiejin F. // J Memb Sci. 2025. V. 717. Art. 123595. https://doi.org/10.1016/j.memsci.2024.123595
  48. Анищенко А.О., Раменская Ю.П., Бударин М.И., Лазарева Ю.Н. // Высокомолекулярные Соединения. Сер. А. 2006. Т. 48. С. 1876–1884.
  49. Gkoisis P., Peleka E., Zouboulis A. // Membranes. 2023. V. 13. P. 898. https://doi.org/10.3390/membranes13120898
  50. Yang Q., Lin Q., Chong C.T., Zhang Y. // Greenhouse Gases: Science and Technology. 2024. V. 14. P. 776–790. https://doi.org/10.1002/ghg.2304
  51. Aitken C.L., Koros W.J., Paul D.R. // Macromolecules. 1992. V. 25. P. 3424–3434. https://doi.org/10.1021/ma00039a018
  52. Pfromm P.H., Koros W.J. // Polymer. 1995. V. 36. №. 12. P. 2379–2387. https://doi.org/10.1016/0032-3861(95)97336-E
  53. Bakhtin D.S., Kulikov L.A., Legkov S.A., Khotimsky V.S., Levin I.S., Borisov I.L., Maksimov A.L., Volkov V.V., Karakhanov E.A., Volkov A.V. // Journal of Membrane Science. 2018. V. 554. P. 211–220. doi. org/10.1016/j.memsci.2018.03.001
  54. Golubev O., Maximov A. // Processes. 2023. V. 11. Art. 11051553. https://doi.org/10.3390/pr11051553
  55. Golubev O.V., Tsaplin D.E., Maximov A.L. // Gases. 2023. V. 3. Art. 3040012 https://doi.org/10.3390/gases3040012
  56. Топольский Д.Н., Нечаева М.В., Королева Ю.С., Караваев Э.А. // Известия Академии Наук. Серия: Химическая. 2020. P. 625–634.
  57. Beller M., Cornils B., Frohnting C.D., Kohlpaintner C.W. // J Mol Catal A Chem, 1995, V. 104. P. 17–85. https://doi.org/10.1016/1381-1169(95)00130-1
  58. Schmid M. Plasma-assisted Conversion of CO2-Process Design and Techno-economic Evaluation. 2024.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).