Investigation of the Water Vapor Influence on the CO2 Recovery from Flue Gases: Simulation under Various Membrane Module Operating Modes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Despite the development of nuclear and alternative energy, thermal power plants that burn fossil fuels (coal, petroleum products or natural gas) will retain a significant share in the energy mix for a long time. In this regard, the reduction post-combustion CO2 emissions of organic fuels through its capture, utilization or storage. In this paper mathematical modeling of a CO2 recovery single-stage membrane process from flue gases of a thermal power plant was carried out taking into account the presence of water vapor on CO2 mass transfer and without taking into account their influence under different operating modes of the membrane module. Commercially available polymer gas separation membranes were selected for the simulation. The simulation results showed that taking into account the presence of water vapor makes it possible to reduce the required membrane area by 1.6 times. When comparing the operating modes of the membrane module it was shown that the cross-flow and countercurrent modes provide the same indicators of the required membrane area for CO2 recovery < 80%, while the co-current mode becomes less advantageous for CO2 recovery > 60%. Thus for low values CO2 recovery the choice of mode is not critical and for high values the counter-current has a slight advantage over the cross-flow mode.

About the authors

D. V Miroshnichenko

A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: dmiroshnichenko@ips.ac.ru
Moscow, Russian Federation

M. G Shalygin

A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Moscow, Russian Federation

S. D Bazhenov

A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Moscow, Russian Federation

References

  1. Olivier J., Janssens-Maenhout G., Peters J. // PBL Netherlands Environmental Assessment Agency. 2012. The Hague. The Netherlands.
  2. Emissions trading system (ETS), 2020 climate & energy package. URL: https://ec.europa.eu/clima/policies/strategies/2020_en (дата обращения 15 октября 2025).
  3. European Commission. EU Emissions Trading System (EU ETS). URL: https://ec.europa.eu/clima/sites/clima/files/factsheet_ets_en.pdf (дата обращения 15 октября 2025).
  4. Kárászová M., Zach B., Petrusová Z., Červenka V., Bobák M., Šyc M., Izák P. // Separation and Purification Technology. 2020. V. 238. P. 116448.
  5. Анептичева A. Ю., Волков А. В., Воротникова Н. В., Максимов А. Л., Ярославцев А. Б. // Мембраны и мембранные технологии 2021. Т. 11. С. 283–303.
  6. Nath F., Mahmood M. N., Yousuf N. // Geoenergy Science and Engineering. 2024. V. 238. P. 212726.
  7. Bui M., Adjiman C.S., Bardow A., Anthony E.J., Boston A., Brown S., Fennell P.S., Fuss S., Galindo A., Hackett L.A. et al. // Energy & Environmental Science. 2018. V. 11. № 5. P. 1062–1176.
  8. Karmviboon K., Krajanghi W., Supap T., Muchan P., Saiwan C., Idem R., Koivanit J. // Separation and Purification Technology. 2019. V. 228. P. 115744.
  9. Coleman A. // LSU J. of Energy Law and Resources. 2018. V. 6.
  10. Elmabrouk H.E.B.S.K., Mahmud W.M. // International Conference on Industrial Engineering and Operations Management. Rabat, Morocco, 11–13 April 2017.
  11. Schüssel D. Holy Grail of Carbon Capture Continues to Elude Coal Industry. Institute for Energy Economics and Financial Analysis: Cleveland, OH, USA, 2018.
  12. Merkel T.C., Lin H., Wei X., Baker R. // J. of Membrane Science. 2010. V. 359. P. 126–139.
  13. Li Q., Wu H., Wang Z., Wang J. // Separation and Purification Technology. 2022. V. 298. P. 121584.
  14. Hussain A., Hägg M.-B. // J. of Membrane Science. 2010. V. 359. P. 140–148.
  15. He X., Chen D., Liang Z., Yang F. // Carbon Capture Science & Technology. 2022. V. 2. P. 100020.
  16. Miroshnichenko D., Shalygin M., Bazhenov S. // Membranes. 2023. V. 13. P. 692.
  17. PermSelect. Membranes. URL: https://www.permselect.com/membranes (дата обращения: 15.04.2024).
  18. STC “Vladipor”. URL: http://www.vladipor.ru (дата обращения: 15.04.2024).
  19. Puri P.S. // Membrane Engineering for the Treatment of Gases: Volume 1: Gas-separation Problems with Membranes. The Royal Society of Chemistry: London, UK. 2011. P. 215–244.
  20. Brinkmann T., Lillepärg J., Notzke H., Pohlmann J., Shishatskiy S., Wind J., Wolff T. // Engineering. 2017. V. 3. P. 485–493.
  21. Baker R., Freeman B. Large Pilot Testing of the MTR Membrane Post-Combustion CO2 Capture Process; U.S. Department of Energy National Energy Technology Laboratory: Washington, DC, USA. 2018.
  22. Alaskin A.A., Trubyanov M.M., Yanbikov N.R., Kyvuchkov S.S., Chadov A.A., Smorodin K.A., Drozdov P.N., Vorotyntsev V.M., Vorotyntsev I.V. // Membranes and Membrane Technologies. 2020. V. 2. № 1. P. 35–44.
  23. Metz S.J., van de Ven W.J.C., Potreck J., Mulder M.H.V., Wessling M. // J. of Membrane Science. 2005. V. 251. P. 29–41.
  24. Alentiev A.Y., Levin I.S., Belov N.A., Nikiforov R.Y., Chirkov S.V., Bezzin D.A., Ryzhikh V.E., Kostina J.V., Shantarovich V.P., Grunin L.Y. // Polymers. 2022. V. 14. P. 120.
  25. Merkel T.C., Wei X., He Z., White L.S., Wijmans J.G., Baker R.W. // Industrial and Engineering Chemistry Research. 2013. V. 52. P. 1150–1159.
  26. Brinkmann T. // J. of Membrane Science. 2015. V. 489. P. 237–244.
  27. Bouraceur R., Lape N., Roizard D., Vallieres C., Fave E. // Energy. 2006. V. 31. P. 2556–2570.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).