Membrane Gas Separation of CO-containing Mixtures: Current State and Prospects

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review presents the current state of research in the field of membrane separation of gas mixtures containing carbon monoxide (CO). The main advantages of the membrane method in comparison with traditional approaches such as cryogenic distillation and adsorption are considered, as well as its key limitations. The literature data on the transport properties and selectivity of various classes of membrane materials for the separation of practically important mixtures of CO/H₂, CO/CH₄, CO/CO₂, CO/N₂ and CO/O₂ are summarized. The main research directions, including the use of polymer, carbon, inorganic membranes, as well as membranes based on ionic liquids, are considered. The main difficulties limiting the industrial application of membrane technologies have also been identified, and promising directions for their development have been outlined in order to increase the efficiency of CO-containing mixtures separation processes.

About the authors

D. N. Matveev

Topchiev Institute of Petrochemical Synthesis, RAS

Email: dmatveev@ips.ac.ru
Leninsky prosp., 29, Moscow, 119991, Russia

E. A. Grushevenko

Topchiev Institute of Petrochemical Synthesis, RAS; Department of Chemistry, Lomonosov Moscow State University

Leninsky prosp., 29, Moscow, 119991, Russia; Leninskie Gory, Moscow, 119991, Russia

T. S. Anokhina

Topchiev Institute of Petrochemical Synthesis, RAS

Leninsky prosp., 29, Moscow, 119991, Russia

A. V. Volkov

Topchiev Institute of Petrochemical Synthesis, RAS

Leninsky prosp., 29, Moscow, 119991, Russia

A. L. Maksimov

Department of Chemistry, Lomonosov Moscow State University

Leninskie Gory, Moscow, 119991, Russia

I. L. Borisov

Topchiev Institute of Petrochemical Synthesis, RAS

Leninsky prosp., 29, Moscow, 119991, Russia

S. D. Bazhenov

Topchiev Institute of Petrochemical Synthesis, RAS

Leninsky prosp., 29, Moscow, 119991, Russia

References

  1. Rizwan K., Galbraith J.M. // Molecules. 2024. V. 29. № 22. P. 5396.
  2. Weaver L.K. // N. Engl. J. Med. 2009. V. 360. P. 1217–1225.
  3. Market.us. Carbon Monoxide Market: Global Industry Analysis and Forecast 2023–2033. https://market.us/report/carbon-monoxide-market/ (дата обращения: 17.07.2025).
  4. Global Insight Services. Carbon Monoxide Market – Global Report 2024. URL: https://www.globalinsightservices.com/ reports/carbon-monoxide-market/ (дата обращения: 17.07.2025).
  5. Walker R.E. Ironmaking and Steelmaking: Theory and Practice. – New Delhi: PHI Learning Pvt. Ltd., 2008. 744 p.
  6. Mond L., Langer C., Quincke F. // J. Chem. Soc. Trans. 1890. V. 57. P. 749–753 .
  7. Beller M., Cornils B., Frohning C.D., Kohlpaintner C.W. // J. Mol. Catal. A. 1995. V. 104. P. 17–85 .
  8. Wu X.F., Neumann H., Beller M. // Chem. Soc. Rev. 2011. V. 40. P. 4986–5009.
  9. Olah G.A., Goeppert A., Prakash G.K.S. // Chem. Rev. 2009. V. 109. P. 208–225 .
  10. Dry M.E. // Catal. Today. 2002. V. 71. P. 227–241 .
  11. Higman C., van der Burgt M. Gasification. 2nd ed.: Gulf Professional Publishing, 2008. 456 p.
  12. Mandayo G.G., Castañeda A., Gracia I., Cané C., Pardo A. // Sensors and Actuators B: Chemical. 2003. V. 95. № 1–3 . P. 90–96 .
  13. Jain S.C., Willander M., Narayan J., Van Overstraeten R. // J. Appl. Phys. 2000. V. 87. P. 965–1006.
  14. Ryter S.W., Choi A.M.K. // Am. J. Respir. Cell Mol. Biol. 2013. V. 48. № 6. P. 689–690 .
  15. Motterlini R., Otterbein L.E. // Nat. Rev. Drug Discov. 2010. V. 9. P. 728–743 .
  16. Gabriele B. (ed.). Carbon Monoxide in Organic Synthes is: Carbonylation Chemistry: John Wiley & Sons, 2021. 439 p.
  17. Felton H.L. Carbon Monoxide: Its Chemistry, Biochemistry and Toxicology: New York: Plenum Press, 1980. 310 p.
  18. Golubev O.V., Maximov A.L. // Plasma Chem. Plasma Process. 2024. V. 44. № 6. P. 2087– 2100.
  19. Ma X., Gholami R., Fornasiero P. // Chem. Soc. Rev. 2023. V. 52. P. 3741–3777.
  20. Aga E., Saravanan A., Karthikeyan S., Sakthivel B. // ACS Omega. 2023. V. 8. P. 3200–3213.
  21. Singh D., Sirini P., Lombardi L. // Energies. 2025. V. 18. Art. 15.
  22. Trimm D.L. // Appl. Catal. A: General. 2005. V. 296. P. 1–11 .
  23. Rostrup-Nielsen J.R., Sehested J., Nørskov J.K. // Adv. Catal. 2002. V. 47. P. 65–139 .
  24. Olah G.A., Goeppert A., Prakash G.K.S. // J. Org. Chem. 2009. V. 74. P. 487–498 .
  25. Golubev D.A., Trukhanov A.A., Sokolov A.G., Ryzhkov A.V., Soloviev A.A., Panov A.S. // Plasma Chemistry and Plasma Processing. 2024. V. 44. P. 2087–2100.
  26. Kuznetsov N.Y., Maximov A.L., Beletskaya I.P. // Russ. J. Org. Chem. 2022. V. 58. № 12. P. 1681–1711.
  27. Bhattacharya A., Muthusamy S. // Int. J. Miner. Process. 2017. V. 2. № 5. P. 57–67 .
  28. Горбунов Д.Н., Волков А.В., Кардашева Ю.С., Максимов А.Л., Караханов Э.А. // Нефтехимия. 2015. Т. 55. № 6. С. 443.
  29. Bernardo P., Drioli E., Golemme G. // Ind. Eng. Chem. Res. 2009. V. 48. № 10. P. 4638–4663.
  30. Checchetto R., De Angelis M.G., Minelli M. // Sep. Purif. Technol. 2024. V. 346. P. 127401.
  31. James J., Lücking L.E., van Dijk H.A.J., Boon J. // Front. Chem. Eng. 2023. V. 5. P. 1066091.
  32. Duan S., Xu H., Zhang J., Shan M., Zhang S., Zhang Y., Wang X., Kapteijn F. // J. Membr. Sci. 2025. V. 717. P. 123595.
  33. Алентьев А.Ю., Ямпольский Ю.П., Видякин М.Н., Лазарева Ю.Н. // Высокомолекулярные соединения. Сер. А. 2006. Т. 48. № 10. С. 1876–1884.
  34. Leuter P., Fendt S., Spliethoff H. // Front. Energy Res. 2024. V. 12. P. 1382377.
  35. U.S. Department of Energy, National Energy Technology Laboratory. NETL Gasifipedia: Typical Syngas Composition. URL: www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/syngas-composition ( дата обращения: 23.07.2025).
  36. Hinchcliffe A.B. PhD Thesis, Aston University, 1991.
  37. Li R., Tang Q., Yin S., Sato T. // Fuel Process. Technol. 2006. V. 87. P. 617–622 .
  38. Zhang K., Zhang G., Liu X., Phan A.N., Luo K. // Ind. Eng. Chem. Res. 2017. V. 56. P. 3204–3216.
  39. D’Isa F.A, Carbone E.A.D., Hecimovic A., Fantz U. // Plasma Sources Sci. Technol. 2020. V. 29. № 10. P. 105009.
  40. Qiao J., Liu Y., Hong F., Zhang J. // Chem. Soc. Rev. 2014. V. 43. № 2. P. 631–675 .
  41. Lu Q., Jiao F. // Nano Energy. 2016. V. 29. P. 439–456 .
  42. Kumar B., Llorente M., Froehlich J., Dang T., Sathrum A., Kubiak C.P. // Annu. Rev. Phys. Chem. 2012. V. 63. P. 541–569 .
  43. Seh Z.W., Kibsgaard J., Dickens C.F., Chorkendorff I.B., Nørskov J.K., Jaramillo, T.F. // Science. 2017. V. 355. № 6321. P. eaad4998.
  44. Moulijn J.A., Makkee M., van Diepen A.E. Chemical Process Technology. 2nd ed.: Chichester: Wiley, 2013. P. 398–399 .
  45. Speight J.G. The Chemistry and Technology of Coal. 3rd ed., Boca Raton: CRC Press, 2013. P. 384.
  46. Glushkov D.O., Nyashina G.S., Anand R., Strizhak P.A. // Process Saf. Environ. Prot. 2021. V. 156. P. 43–56 .
  47. Soria J., Li R., Flamant G., Mazza G.D. // J. Anal. Appl. Pyrol. 2019. V. 140. P. 299–311 .
  48. Ma X., Albertsma J., Gabriels D., Horst R., Polat S., Snoeks C., Kapteijn F., Eral H.B., Vermaas D.A., Mei B., de Beer S., van der Veen M.A. // Chem. Soc. Rev. 2023. V. 52. № 11. P. 3741–3777.
  49. Baker R.W., Lokhandwala K.A. // Ind. Eng. Chem. Res. 2008. V. 47. № 7. P. 2109–2121.
  50. de Haan A.B., Eral H.B., Schuur B. Industrial separation processes: Fundamentals: Walter de Gruyter GmbH & Co KG, 2020. 439 p.
  51. Dutta N.N., Patil G.S. // Gas Sep. Purif. 1995. V. 9. № 4. P. 277–283 .
  52. Kerry F.G. Industrial gas handbook: gas separation and purification: CRC press, 2007. 552 p.
  53. Grande C.A. // Int. Sch. Res. Notices. 2012. V. 2012. № 1. P. 982934.
  54. Koizumu S., Fujita T., Sakuraya T. // Kawasaki Steel Giho. 1986. V. 18. № 3. P. 284–288 .
  55. Vega F., Sanna A., Navarrete B., Maroto-Valer M.M., Cortés, V.J. // Greenh. Gases: Sci. Technol. 2014. V. 4. № 6. P. 707–733 .
  56. Reynolds A.J., Verheyen T.V., Meuleman E. In: Degradation of amine-based solvents. In Absorption-Based Post-Combustion Capture of Carbon Dioxide: Woodhead Publishing, 2016. pp. 399–423 .
  57. Keller A., Schendel R., Denver C. Kinetics Technology International Corporation, California, AICHE Summer Meeting. 1988.
  58. Go Y.T., Yoon Y.S., Lee I.B., Lee S.Y. // J. chem. eng. Jpn. 2019. V. 52. № 5. P. 439–446 .
  59. Songolzadeh M., Soleimani M., Takht Ravanchi M., Songolzadeh R. // Sci. World J. 2014. V. 2014. P. 828131.
  60. Ramírez-Santos Á.A., Castel C., Favre E. // J. Membr. Sci. 2017. Т. 526. С. 191–204 .
  61. Ockwig N.W., Nenoff T.M. // Chemical reviews. 2007. V. 107. № 10. P. 4078–4110.
  62. Air Products and Chemicals Inc., Advanced Prism Membrane Systems For Cost Effective Gas Separations, 1999.
  63. Air Products and Chemicals Inc., PRISM Membrane Systems for petrochemical applications, 2016.
  64. Di Martino S.P., Glazer, J.L., Houston, C.D., Schott M.E. // Gas Sep. Purif. 1988. V. 2. № 3. P. 120–125 .
  65. McCandless F.P. // Ind. Eng. Chem. Proc. Design Devel. 1972. V. 11. № 4. P. 470–478 .
  66. David O.C., Gorri D., Urtiaga A., Ortiz I. // J. Membr. Sci. 2011. V. 378. № 1–2 . P. 359–368 .
  67. Tanaka K., Kita H., Okamoto K.I., Nakamura A., Kusuki Y. // Polym. J. 1989. V. 21. № 2. P. 127–135 .
  68. Tanaka K., Kita H., Okamoto K., Nakamura A., Ku- suki Y. // J. Membr. Sci. 1989. V. 47. № 1–2 . P. 203–215 .
  69. Park C.Y., Kim E.H., Kim J.H., Lee Y.M., Kim J.H. // Polymer. 2018. V. 151. P. 325–333 .
  70. Peer M., Mehdi Kamali S., Mahdeyarfar M., Mohammadi T. // Chem. Eng. Technol. 2007. V. 30. № 10. P. 1418–1425.
  71. Hamidavi F., Kargari A., Eliassi A. // Sep. Purif. Technol. 2021. V. 279. P. 119774.
  72. Sakaguchi Y., Tokai M., Kawada H., Kato Y. // Polym. J. 1988. V. 20. № 5. P. 365–370 .
  73. Merkel T.C., Gupta R.P., Turk B.S. Freeman B.D. // J. Membr. Sci. 2001. V. 191. № 1–2 . P. 85–94 .
  74. Wilks B., Rezac M.E. // J. Appl. Polym. Sci. 2002. V. 85. № 11. P. 2436 –2444.
  75. Bakhtin D.S., Kulikov L.A., Legkov S.A., Khotimskiy V.S., Levin I.S., Borisov I.L., Maksimov A.L., Volkov V.V., Karakhanov E.A., Volkov A.V. // J. Membr. Sci. 2018. V. 554. P. 211–220 .
  76. Hatori H., Takagi H., Yamada Y. // Carbon. 2004. V. 42. № 5–6 . P. 1169–1173.
  77. Sotowa K.I., Hasegawa Y., Kusakabe K., Morooka S. // Int. J. Hydrog. Energy. 2002. V. 27. № 3. P. 339–346 .
  78. Bernardo P., Algieri C., Barbieri G., Drioli E. // Sep. Purif. Technol. 2008. V. 62. № 3. P. 629– 635 .
  79. Varela-Gandia F. J., Berenguer-Murcia A., Lozano-Castello D., Cazorla-Amoros D. // J. Membr. Sci. 2010. V. 351. № 1–2 . P. 123–130 .
  80. Tu Z., Zhang P., Shi M., Zhang X., Wu Y., Hu X. // Renewable Energy. 2022. V. 196. P. 912–920 .
  81. Zarca G., Ortiz I., Urtiaga A. // Chem. Eng. Res. Des. 2014. V. 92. № 4. P. 764–768 .
  82. Gan Q., Rooney D., Xue M., Thompson G., Zou Y. // J. Membr. Sci. 2006. V. 280. № 1– 2 . P. 948–956 .
  83. Michaels A.S., Bixler H.J. // J. Polym. Sci. 1961. V. 50. № 154. P. 413–439 .
  84. Sefcik M.D., Schaefer J., May F.L., Raucher D., Dub S.M. // J. Polym. Sci. 1983. V. 21. № 7. P. 1041–1054.
  85. Yampol’skii Y.P., Volkov V.V. // J. Membr. Sci. 1991. V. 64. № 3. P. 191–228 .
  86. Pegoraro M., Zanderighi L., Penati A., Severini F., Bianchi F., Cao N., Sisto R., Valentini C. // J. Appl. Polym. Sci. 1991. V. 43. № 4. P. 687–697 .
  87. Checchetto R. // Sep. Purif. Technol. 2021. V. 277. P. 119477.
  88. Checchetto R., Scarpa M., De Angelis M.G., Minelli M. // J. Membr. Sci. 2022. V. 659. P. 120768.
  89. Matveev D., Anokhina T., Raeva A., Borisov I., Grushevenko E., Khashirova S., Volkov A., Bazhenov S., Volkov V., Maksimov A. // Polymers. 2024. V. 16. № 24. P. 3453.
  90. Park C.Y., Chang B.J., Kim J.H., Lee Y.M. // J. Membr. Sci. 2019. V. 587. P. 117167.
  91. Park C.H., Lee J.H., Jung J.P., Jung B., Kim J.H . // J. Membr. Sci. 2015. V. 492. P. 452.
  92. Cao N., Pegoraro M., Bianchi F., Di Landro L., Zanderighi L. // J. Appl. Polym. Sci. 1993. V. 48. № 10. P. 1831–1842.
  93. Feng S., Wu Y., Luo J., Wan Y. // J. Energy Chem. 2019. V. 29. P. 31–39 .
  94. David O.C., Zarca G., Gorri D., Urtiaga A., Ortiz I. / / Sep. Purif. Technol. 2012. V. 97. P. 65–72 .
  95. Chen H.Z., Chung T.S. // Int. J. Hydrogen Energy. 2012. V. 37. № 7. P. 6001–6011.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).