Diffusion of acetic, malonic and citric acids through commercial anion-exchange membranes and modified anion-exchange membrane Ralex AMH

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This work is devoted to the investigation of the neutral salts diffusion, sodium acetate, sodium malonate, and sodium citrate through heterogeneous anion-exchange Ralex AMH, MA-41, and MA-40 membranes, through the homogeneous Lancytom AHT membrane, and the two-layer Ralex AMH/MF-4SK membrane from 0.1–0.5 mol-eq/L solutions into deionized water. Diffusion, as one of the ion transport mechanisms during the synthesis of organic acids from their salts using electromembrane methods, affects the main electrochemical characteristics of these processes. It is shown that the differential diffusion permeability coefficients (K) of salts through the homogeneous membrane are several times lower than those through heterogeneous membranes. In the series “sodium acetate – sodium malonate – sodium citrate,” the slope of the K coefficient dependence on the salt concentration changes from positive to negative. Calculating the ionic composition of the solution formed after the experiment using pH and specific conductivity shows that, in addition to neutral salts, it contains hydrolysis products—acetic acid, hydromalonates, and hydro- and dihydrogen citrates. These hydrolysis products increase the solution’s specific conductivity and may be the cause of the negative slope in the K coefficient dependence on the sodium citrate concentration across membranes. The effect of hydrolysis of neutral salts of polybasic acids must be taken into account when measuring the K coefficient using the salt diffusion method through a membrane into deionized water.

About the authors

T. V. Karpenko

Kuban State University

149 Stavropol str., Krasnodar, 350040, Russia

V. V. Shramenko

Kuban State University

149 Stavropol str., Krasnodar, 350040, Russia

I. P. Averyanov

Kuban State University

149 Stavropol str., Krasnodar, 350040, Russia

N. V. Sheldeshov

Kuban State University

Email: sheld_nv@mail.ru
149 Stavropol str., Krasnodar, 350040, Russia

References

  1. Pinazo J.M., Domine M.E., Parvulescu V., Petru F. // Catal. Today. 2015. V. 239. P. 17–24.
  2. Huang C., Xu T., Zhang Y., Xue Y., Chen G. // J. Membr. Sci. 2007. V. 288. № 1–2. P. 1–12.
  3. Ai M., Ohdan K. // Appl. Catal. A: Gen. 1997. V. 150. № 1. P. 13–20.
  4. Gao Z., Chen W., Chen X., Wang D., Yi S. // Bull. Korean Chem. Soc. 2018. V. 39. № 8. P. 920–924.
  5. Sang R., Kucmierczyk P., Dühren R., Razzaq R., Dong K., Liu J., Franke R., Jackstell R., Beller M. // Angew. Chem. Int. Ed. 2019. V. 58. № 40. P. 14365–14373.
  6. Prikaznov A.V., Shmal’ko A.V., Sivaev I.B., Petrovskii P.V., Bragin V.I., Kisin A.V., Bregadze V.V. // Polyhedron. 2011. V. 30. № 9. P. 1494–1501.
  7. Solmi M.V., Schmitz M., Leitner W. // Stud. Surf. Sci. Catal. 2019. P. 105–124.
  8. Wang Y., Huang C., Xu T. // Journal of Membrane Science. 2011. V. 374. № 1–2. P. 150–156.
  9. Szczygiełda M., Prochaska K. // Biochemical Engineering Journal. 2021. V. 166. 107883.
  10. Chandra A., Bhuvanesh E., Chattopadhyay S. // Chemical Engineering Research and Design. 2022. V. 178. P. 13–24.
  11. Mandal P., Mondal R., Goel P., Chatterjee U., Chattopadhyay S. // Separation and Purification Technology. 2022. V. 292. P. 121069.
  12. Ghaffar A., Zulfiqar S., Khan M., Latif M., Coch- ran E.W. // RSC Advances. 2024. V. 14. № 40. P. 29648–29657.
  13. Юрченко О.А., Солонченко К.В., Письменская Н.Д. // Мембраны и мембранные технологии. 2024. Т. 14. № 6. С. 503–516.
  14. Barros K.S., Marreiros B.C., Reis M.A., Crespo J.G., Pérez-Herranz V., Velizarov S. // J. Environ. Chem. Eng. 2024. V. 12. № 6. Р. 114457.
  15. Melnikov S., Kolot D., Nosova E., Zabolotskiy V. // Journal of Membrane Science. 2018. Т. 557. P. 1–12.
  16. Pismenskaya N., Sarapulova V., Nevakshenova E., Kononenko N., Fomenko M., Nikonenko V. // Membranes. 2019. V. 9. № 12. P. 170.
  17. Wang Q., Chen G. Q., Kentish S. E. // Journal of Membrane Science. 2020. V. 614. Р. 118534.
  18. Pismenskaya N.D., Rybalkina O.A., Kozmai A.E., Tsygurina K.A., Melnikova E.D., Nikonenko V.V. // Journal of Membrane Science. 2020. V. 601. Р. 117920.
  19. Rybalkina O.A., Sharafan M.V., Nikonenko V.V., Pismenskaya N.D. // Journal of Membrane Science. 2022. V. 651. Р. 120449.
  20. Gorobchenko A.D., Mareev S.A., Rybalkina O.A., Tsygurina K.A., Nikonenko V.V., Pismenskaya N.D. // Journal of Membrane Science. 2023. V. 683. Р. 121786.
  21. MEGA Group; RALEX® electro separation membranes. URL: https://www.mega.cz/membranes
  22. Limited Liability Company United Chemical Company “SHCHEKINOAZOT”. URL: http://n-azot.ru/product/heterogeneous-ion-exchange-membranes?lang=EN
  23. Acid/Alkali resistance Anion IEM-LANCYTOM® IEM-Bipolar | ED | RED | LiOH-LANRAN. URL: http://lanran.com.cn/?list_8/102.html
  24. Заболоцкий В.И. Пат. РФ № 120373 // Бюл. изобр. 2012. № 26.
  25. Berezina N.P., Kononenko N.A., Dyomina O.A., Gnu- sin N.P. // Adv. Colloid and Interface Sci. 2008. V. 139. P. 3–28.
  26. Demina O.A., Kononenko N.A., Falina I.V., De- min A.V. // Colloid J. 2017. V. 79. № 3. P. 317–327.
  27. Краткий справочник физико-химических величин / под ред. А.А. Равделя и А.М. Пономаревой. СПб.: Специальная литература, 1998.
  28. Лурье Ю.Ю. Справочник по аналитической химии. М.: Химия, 1971.
  29. Carbon dioxide now more than 50% higher than pre-industrial levels. National Oceanic and Atmospheric Administration. U.S. Department of Commerce. URL: https://www.noaa.gov/news-release/carbon-dioxide-now-more-than-50-higher-than-pre-industrial-levels
  30. Apelblat A. Dissociation constants and limiting conductances of organic acids in water // Journal of Molecular Liquids. 2002. V. 95. № 2. P. 99–145.
  31. Семушин А.М., Яковлев В.А., Иванова Е.В. Инфракрасные спектры поглощения ионообменных материалов. Л.: Химия, 1980.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).