Extraction mode in a reactor with a membrane catalyst

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A kinetic experiment in the process of dry reforming of methane was performed for the first time in a reactor with a membrane catalyst for the extractor mode, in which the hypothesis of activated mass transfer based on the phenomenon of thermal slip was used for the analysis of the results. The results obtained show that in both parts of the reaction space (in the retentate and in the permeate) of the membrane reactor, intensification of the intermediate stages of dry reforming of methane is observed, compared with the contactor modes. Unlike the contactor modes, in which the methane cracking stage is shifted toward the formation of products of this reaction, in the extractor mode, the process occurs near equilibrium, and the constants of the direct and reverse reactions are close. In this mode, the reverse reaction of the water shift is strongly shifted toward the formation of water gas.

About the authors

V. V. Skudin

D.I. Mendeleev Russian University of Chemical Technology

Email: skudin.v.v@muctr.ru
9 Miusskaya p., Moscow, 125047, Russia

S. A. Gubin

D.I. Mendeleev Russian University of Chemical Technology

9 Miusskaya p., Moscow, 125047, Russia

A. S. Makarov

D.I. Mendeleev Russian University of Chemical Technology

9 Miusskaya p., Moscow, 125047, Russia

M. A. Tarasenko

D.I. Mendeleev Russian University of Chemical Technology

9 Miusskaya p., Moscow, 125047, Russia

References

  1. Грязнов В.М., Смирнов В.С. // Успехи химии. 1974. Т. 43. С. 1716–1738. (Gryaznov V. M., Smirnov V. S. // Russ. Chem. Rev. 1974. V. 43. P. 1716–1738.)
  2. Basile A., et al. Handbook of membrane reactors. Vol. 1: Fundamental materials science, design and optimisation. Woodhead Publishing, 2013. 690 p.
  3. Ernst B., Haag S., Burgard M. // J. Membrane Science. 2007. V. 288. P. 208–217.
  4. Weyten H., Keizer K., Kinoo A., Luyten J., Leysen R. // AIChE J. 1997. V. 43. P. 1819–1827.
  5. Weyten H., Luyten J., Keizerb K., Willems L., Leysen R. // Catalysis Today. 2000. V. 56. P. 3–11.
  6. Itoh N., Xu W.C., Hara S., Kakehida K., Kaneko Y., Igarashi A. // Ind. Eng. Chem. Res. 2003. V. 42. P. 6576–6581.
  7. Дытнерский Ю.И., Брыков В.П., Каграманов Г.Г. Мембранное разделение газов. M.: Химия, 1991. С. 334
  8. Ross J.H., Xue E. // Catalysis Today. 1995. V. 25. P. 291–301.
  9. Didenko L.P., Sementsova L.A., Babak V.N., Chizhov P.E., Dorofeeva T.V., Kvurt J.P. // Membranes and Membrane Technologies. 2020. V. 2. P. 85–97.
  10. Lombardo E.A., Cornaglia C., Munera J. // Catalysis Today. 2016. V. 259. P. 165–176.
  11. Liguori S., Iulianelli A., Dalena F., Piemonte V., Huang Y., Basile A. // International J. of Hydrogen Energy. 2014. V. 39. P. 18702–18710.
  12. Mironova E.Y., Lytkina A.A., Ermilova M.M., et al. // Pet. Chem. 2020. V. 60. P. 1232–1238.
  13. Iulianelli A., Liguori S., Vita A., Italiano C., Fabiano C., Huang Y., Basile A. // Catalysis Today. 2016. V. 259. P. 368–375.
  14. Daramola M.O., Burger A.J., Giroir-Fendler A. // Chemical Engineering J. 2011. V. 171. P. 618–627.
  15. Benguerba Y., Virginie M., Dumas C., et al. // Kinetics and Catalysis. 2017. V. 58. P. 328–338.
  16. Гаврилова Н.Н., Губин С.А., Мячина М.А., Скудин В.В. // Мембраны и мембранные технологии. 2023. Т. 13. С. 505–520.
  17. Gavrilova N.N., Sapunov V.N., Skudin V.V. // Chemical Engineering J. 2019. V. 374. P. 983–991.
  18. Романков П.Г., Рашковская Н.Б., Фролов В.Ф. Массообменные процессы химической технологии. Л.: Химия, 1975. 336 с.
  19. Коган В.Б. Теоретические основы типовых процессов химической технологии: Учебное пособие. Л.: Химия, 1977. 592 с.
  20. Лыков А.В. Теория сушки. 2-е изд. М.: Энергия, 1968. 472 с.
  21. Gupta N.K. A motionless gas micropump using thermal transpiration in bulk nanoporous materials: dis. … doctor of philosophy / N.K. Gupta; University of Michigan. Michigan, 2010. 162 p.
  22. Membrane Reactors: Distributing Reactants to Improve Selectivity and Yield. Ed. by Andreas Seidel- Morgenstern. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2010. ISBN: 978-3-527- 32039-4.
  23. Шульмин Д.А. Углекислотная конверсия углеводородов с использованием мембранных катализаторов: дис. … канд. хим. наук: 05.17.07; защищена: 29.11.2011 / Шульмин Денис Александрович. М., 2011. 181 с.
  24. Gavrilova N.N., Gubin S.A., Myachina M.A., Skudin V.V. // Membranes. 2021. V. 11. P. 497.
  25. Karniadakis G., Beskok A., Aluru N. Microflows and Nanoflows: Fundamentals and Simulation. Berlin, Germany: Springer Science & Business Media, 2005. P. 817.
  26. Sharipov F. Rarefied Gas Dynamics: Fundamentals for Research and Practice. First еd. Wiley-VCH Verlag GmbH & Co. KGaA, 2016. P. 305.
  27. Khoshtinat Nikoo M., Amin N.A.S. // Fuel Proc. Technol. 2011. № 92. P. 678–691.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).