Composite Polysiloxane Membranes with High Selecty and Permeability for Monomer Recovery from Propylene Polymerization Purge Gases
- Authors: Borisov I.L.1, Grushevenko E.A.1, Rokhmanka T.N.1, Grishkov O.L.1, Anokhina T.S.1
-
Affiliations:
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
- Issue: Vol 15, No 3 (2025)
- Pages: 162-173
- Section: Articles
- URL: https://journals.rcsi.science/2218-1172/article/view/328124
- DOI: https://doi.org/10.31857/S2218117225030024
- ID: 328124
Cite item
Abstract
About the authors
I. L. Borisov
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences29 Leninskii Prospect, Moscow, 119991 Russia
E. A. Grushevenko
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences29 Leninskii Prospect, Moscow, 119991 Russia
T. N. Rokhmanka
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences29 Leninskii Prospect, Moscow, 119991 Russia
O. L. Grishkov
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences29 Leninskii Prospect, Moscow, 119991 Russia
T. S. Anokhina
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Email: tsanokhina@ips.ac.ru
29 Leninskii Prospect, Moscow, 119991 Russia
References
- Baker R.W., Lokhandwala K. Natural gas processing with membranes: an overview // Ind. Eng. Chem. Res. 2008. V. 47. № 7. P. 2109–2121.
- BP energy outlook 2030. London, UK. 2011. Т. 34.
- Грушевенко Д.А. Прогноз развития энергетики мира и России: в фокусе нефтяной рынок / Серия “Библиотека Национального исследовательского института мировой экономики и международных отношений имени Е.М. Примакова”. С. 66
- Maddah H.A. Polypropylene as a promising plastic: A review // Am. J. Polym. Sci. 2016. V. 6. № 1. P. 1–11.
- Рынок полипропилена в России 2017–2024 гг. Цифры, тенденции, прогноз. URL: https://tk-solutions.ru/demo/mi_polipropilena.pdf (дата обращения: 06.03.2025).
- Okolie J.A. Insights on production mechanism and industrial applications of renewable propylene glycol // Iscience. 2022. P. 104903.
- Pasternak G., Ormeno-Cano N., Rutkowski P. Recycled waste polypropylene composite ceramic membranes for extended lifetime of microbial fuel cells // Chem. Eng. J. 2021. V. 425. P. 130707.
- Sattler J.J.H.B., et al. Catalytic dehydrogenation of light alkanes on metals and metal oxides // Chem. Rev. 2014. V. 114. № 20. P. 10613–10653.
- Сергеев И.М. История и современное состояние индустрии производства полипропилена в России // НефтеГазоХимия. 2022. № 3. С. 34–39.
- Meier G.B., Weickert G., Van Swaaij W.P.M. Gas-phase polymerization of propylene: reaction kinetics and molecular weight distribution // J. Polym. Sci. A: Polym. Chem. 2001. V. 39. № 4. P. 500–513.
- Samson J.J.C., et al. Liquid phase polymerization of propylene with a highly active catalyst // AIChE J. 1998. Т. 44. № 6. С. 1424–1437.
- Юнак С., Анфилов К.Л., Чериканова Е.А. Некоторые вопросы при утилизации полипропилена // Наука, образование, производство в решении экологических проблем (Экология-2022). 2022. С. 225–230.
- U.S. Environmental Protection Agency. URL: https://www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-nei-data (дата обращения: 12.03.2023).
- Какарека С.В. Сравнительный анализ подходов к регулированию выбросов летучих органических соединений // Природные ресурсы. 2019. № 1. С. 109–117.
- Finexpertiza: исследование загрязнения воздуха. URL: https://finexpertiza.ru/press-service/researches/2023/kol-zagr-vozd-uvelich/ (дата обращения: 06.03.2025).
- Охрана окружающей среды в России. 2022: Стат. cб. M.: Росстат, 2022. C. 115.
- Sridhar S., et al. Coiflets, artificial neural networks and predictive coding based hybrid image compression methodology // 2014 2nd Int. Conf. on Devices, Circuits and Systems (ICDCS). IEEE, 2014. P. 1–6.
- Arzhakova O.V., Arzhakov M.S., Badamshina E.R., Bryuzgina E.B., Bryuzgin E.V., Bystrova A.V., et al. Polymers for the future // Russ. Chem. Rev. 2022. V. 91. № 12. P. RCR5062.
- Da Conceicao M., Nemetz L., Rivero J., Hornbostel K., Lipscomb G. Gas SeparationMembrane Module Modeling: A Comprehensive Review // Membranes. 2023. V. 13. P. 639.
- Grushevenko E.A., Borisov I.L., Volkov A.V. High-Selectivity Polysiloxane Membranes for Gases and Liquids Separation (A Review) // Petrol. Chem. 2021. V. 61. P. 959–976.
- De Sitter K., et al. Silica filled poly (1-trimethylsilyl-1-propyne) nanocomposite membranes: relation between the transport of gases and structural characteristics // J. Membr. Sci. 2006. V. 278. № 1–2. P. 83–91.
- Grushevenko E., Chechenov I., Rokhmanka T., Anokhina T., Bazhenov S., Borisov I. Effect of Side Substituent on Comblike Polysiloxane Membrane Pervaporation Properties During Recovery of Alcohols C2-C4 from Water // Polymers. 2024. V. 16. P. 3530.
- Grushevenko E.A., Borisov I.L., Knyazeva A.A., Volkov V.V., Volkov A.V. Polyalkylmethylsiloxanes composite membranes for hydrocarbon/methane separation: Eight component mixed-gas permeation properties // Sep. Purif. Technol. 2020. V. 241. P. 116696.
- Meshkov I.B., Kalinina A.A., Gorodov V.V., Bakirov A.V., Krasheninnikov S.V., Chvalun S.N., Muzafarov A.M. New Principles of Polymer Composite Preparation. MQ Copolymers as an Active Molecular Filler for Polydimethylsiloxane Rubbers // Polymers. 2021. V. 13. P. 2848.
- Hua J., et al. Improved C3H6/C3H8 separation performance on ZIF-8 membranes through enhancing PDMS contact-dependent confinement effect // J. Membr. Sci. 2021. V. 636. P. 119613.
- Fang M., et al. ZIF-8/PDMS mixed matrix membranes for propane/nitrogen mixture separation: Experimental result and permeation model validation // J. Membr. Sci. 2015. V. 474. P. 103–113.
- Pan Y., et al. Constructing superhydrophobic ZIF-8 layer with bud-like surface morphology on PDMS composite membrane for highly efficient ethanol/water separation // J. Environ. Chem. Eng. 2021. V. 9. № 1. P. 104977.
- Lv M.-Y., et al. Blending ZIF-67 into PDMS membranes to promote the separation performance of propylene/nitrogen mixed gas // J. Phys.: Conf. Ser. IOP Publishing. 2022. V. 2383. № 1. P. 012115.
- Khan A., et al. ZIF-67 filled PDMS mixed matrix membranes for recovery of ethanol via pervaporation // Sep. Purif. Technol. 2018. V. 206. P. 50–58.
- Rychlewska K., Kujawski W., Konieczny K. Pervaporative performance of PEBA and PDMS based commer-
- cial membranes in thiophene removal from its binary mixtures with hydrocarbons // Fuel Processing Technology. 2017. V. 165. P. 9–18.
- Arregoitia-Sarabia C., et al. PEBA/PDMS Composite Multilayer Hollow Fiber Membranes for the Selective Separation of Butanol by Pervaporation // Membranes. 2022. V. 12. № 10. P. 1007.
- Cao X., Lee H.S., Feng X. Extraction of dissolved methane from aqueous solutions by membranes: Modelling and parametric studies // J. Membr. Sci. 2020. V. 596. P. 117594.
- Henis J.M.S., Mary T.K. Composite hollow fiber membranes for gas separation: the resistance model approach // J. Membr. Sci. 1981. V. 8. № 3. P. 233–246.
- Wu F., et al. Transport study of pure and mixed gases through PDMS membrane // Chem. Eng. J. 2006. V. 117. № 1. P. 51–59.
- Li P., Chen H.Z., Chung T.S. The effects of substrate characteristics and pre-wetting agents on PAN–PDMS composite hollow fiber membranes for CO2/N2 and O2/N2 separation // J. Membr. Sci. 2013. V. 434. P. 18–25.
- Lv M.-Y., et al. Promoted propylene/nitrogen separation by direct incorporating 2-methylimidazole into PDMS membranes // J. Membr. Sci. 2022. V. 661. P. 120902.
- Fang M., et al. A facile approach to construct hierarchical dense membranes via polydopamine for enhanced propylene/nitrogen separation // J. Membr. Sci. 2016. V. 499. P. 290–300.
- Grushevenko E.A., Borisov I.L., Bakhtin D.S., Bondarenko G.N., Levin I.S., Volkov A.V. Silicone rubbers with alkyl side groups for C3+ hydrocarbon separation // React. Funct. Polym 2019. V. 134. P. 156–165.
- Borisov I.L., Grushevenko E.A., Anokhina T.S., Bakhtin D.S., Levin I.S., Bondarenko G.N., Volkov V.V., Volkov A.V. Influence of side chains assembly on the structure and transport properties of comb-like polysiloxanes in hydrocarbon separation // Mater. Today Chem. 2021. V. 22. P. 100598.
- Matveev D.N., Borisov I.L., Grushevenko E.A., Vasilevsky V.P., Anokhina T.S., Volkov V.V. Hollow fiber PSF fine porous supports with ultrahigh permeance for composite membrane fabrication: Novel inert bore liquid (IBL) spinning technique // Sep. Purif. Technol. 2024. V. 330. Pt. B. P. 125363.
- Fang M., Zhang H., Chen J., Wang T., Liu J., Li X., Li J., Cao X. A facile approach to construct hierarchical dense membranes via polydopamine for enhanced propylene/nitrogen separation // J. Membr. Sci. 2016. V. 499. P. 290–300.
- Merkel T.C., Bondar V.I., Nagai K., Freeman B.D., Pinnau I. Gas sorption, diffusion, and permeation in poly(dimethylsiloxane) // J. Polym. Sci. B: Polym. Phys. 2000. V. 38. P. 415–434.
- Yu L., Grahn M., Ye P., Hedlund J. Ultra-thin MFI membranes for olefin/nitrogen separation // J. Membr. Sci. 2017. V. 524. P. 428–435.
- Kim H., Kim H., Kim S., Kim S.S. PDMS-silica composite membranes with silane coupling for propylene separation // J. Membr. Sci. 2009. V. 344. P. 211.
- Fang M., Wu C., Yang Z., Wang T., Xia Y., Li J. ZIF-8/PDMS mixed matrix membranes for propane/nitrogen mixture separation: experimental result and permeation model validation // J. Membr. Sci. 2015. V. 474. P. 103–113.
- Giannakopoulos I.G., Nikolakis V. Recovery of hydrocarbons from mixtures containing C3H6, C3H8 and N2 using NaX membranes // J. Membr. Sci. 2007. V. 305. P. 332–337.
- Liu L., Chakma A., Feng X. Propylene separation from nitrogen by poly(ether block amide) composite membranes // J. Membr. Sci. 2006. V. 279. № 1–2. P. 645–654.
Supplementary files
