Modified lag time method for determination of gas transfer parameters of membrane layers of bilayer membrane

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the first time, a modified lag time method has been developed to determine the gas transfer parameters of layers of bilayer membrane. Analytical expressions for the lag time of gas pressure change depending on the position of the bilayer membrane in the membrane system are obtained. For the first time, a method is proposed to determine the permeabilities, diffusion coefficients and gas solubility of each layer of a bilayer membrane. It can also be used to evaluate the degree of influence of different methods of membrane layer modification and methods of bilayer membrane formation on the gas transfer parameters of the membrane and its layers.

About the authors

V. V. Ugrozov

Financial University under the Government of the Russian Federation

Email: vugr@rambler.ru
Leningradsky Prospekt, 49, Moscow, 125993, Russia

References

  1. Galizia M., Chi W.S., Smith Z.P., Merkel T.C., Baker R.W., Freeman B.D. // Macromolecules. 2017. V. 50. P. 7809.
  2. Murali R.S., Sankarshana T., Sridhar S. // Separ. Purif. Rev. 2013. V. 42. P. 130.
  3. George G., Bhoria N., Alhallaq S., Abdala A., Mittal V. // Separ. Purif. Technol. 2016. V. 158. P. 333.
  4. Волков В.В., Мчедлишвили Б.В., Ролдугин В.И., Иванчев С.С., Ярославцев А.Б. // Мембраны и нанотехнологии. Российские нанотехнологии. 2008. Т. 3. № 11. С. 67.
  5. Esposito E., Dellamuzia L., Moretti U., Fuoco A., Giorno L., Jansen J.C. // Energy Environ. Sci. 2019. V. 12. P. 281.
  6. Micari M., Agrawal K.V. // J. Membr. Sci. 2022. V. 641. P. 119883.
  7. Castel C., Favre E. // J. Membr. Sci. 2018. V. 548. № 15. P. 345.
  8. Kentish S.E. // Ind. Eng. Chem. Res. 2019. V. 58. P. 6190.
  9. Deng J., Huang Z., Sundell B.J., Harrigan D.J., Sharber S.A., Zhang K., Guo R., Galizia M. // Polymer. 2021. V. 229. P. 123988.
  10. Drioli E., Tocci E. // Membrane. 2016. V. 41. № 6. P. 287–296.
  11. Jiang Lan Ying, Li Pei, Wang Yan // Processes. 2019. V. 7. P. 144.
  12. Drioli E., Macedonio F., Tocci E. // Sep. and Purif. Tech. 2021. V. 275. № 15. P. 119196.
  13. Бекман И.Н. Математика диффузии: Учебное пособие. М.: ОнтоПринт, 2016. 420 с.
  14. Бекман И.Н. Высшая математика: математический аппарат диффузии. 2-е изд., испр. и доп. М.: Юрайт, 2017. 406 с.
  15. Кокотов Ю.А., Золотарев П.П., Елькин Г.Э. Теоретические основы ионного обмена. Л.: Химия, 1986. 280 с.
  16. Ugrozov V.V. // Membr. Membr. Technol. 2024. V. 6. № 4. P. 267.
  17. Daynes H.A. // Proc. Roy. Soc. A: Math., Phys. Eng. Sci. 1920. V. 97. № 685. P. 286.
  18. Felder R.M. // J. Memb. Sci. 1978. V. 3. P. 15.
  19. Rutherford S.W., Do D.D. // Adsorption. 1997. V. 3. P. 283.
  20. Shah J.C. // Int. J. Pharm. 1993. V. 90. P. 161.
  21. Favre E., Morliere N., Roizard D. // J. Memb. Sci. 2002. V. 207. № 1. P. 59.
  22. Al-Ismaily M., Wijmans J.G., Kruczek B. // J. Memb. Sci. 2012. V. 423–424. P. 165.
  23. Villaluenga J.P.G., Seoane B. // J. Appl. Polym. Sci. 2001. V. 82. P. 3013.
  24. Bai D., Asempour F., Kruczek B. // Chem. Eng. Res. Des. 2020. V. 162. P. 228.
  25. Ma Cuihua, Wang Ming, Wang Zhi, Gao Min, Wang Jixiao // Journal of CO2. 2020. V. 42. P. 101296.
  26. Min Liu, Nothling M.D., Sui Zhang, Qiang Fu, Qiao G.G. // Progress in Polymer Science. 2022. V. 126. P. 101504.
  27. Zain Ali, Yingge Wang, Wojciech Ogieglo, Federico Pacheco, Hakkim Vovusha, Yu Han, Ingo Pinnau // Journal of Membrane Science. 2021. V. 618. P. 118572.
  28. Апель П.Ю., Бобрешова О.В., Волков А.В., Волков В.В., Никоненко В.В., Стенина И.А., Филиппов А.Н., Ямпольский Ю.П., Ярославцев А.Б. // Мембраны и мембранные технологии. 2019. Т. 9. С. 59.
  29. Xie K., Fu Q., Qiao G.G., Webley P.A. // J. Membr. Sci. 2019. V. 572. P. 38.
  30. McVerry B., Anderson M., He N., Kweon H., Ji C., Xue S., Rao E., Lee C., Lin C.-W., Chen D., Jun D., Sant G., Kaner R.B. // Nano Lett. 2019. V. 19. P. 5036.
  31. Liang C.Z., Chung T.-S., Lai J.-Y. // Prog. Polym. Sci. 2019. V. 97. P. 101141.
  32. Ugrozov V.V., Bakhtin D.S., Balynin A.V., Polevaya V.G., Volkov A.V. // Membr. Membr. Technol. 2019. V. 1. P. 347.
  33. Borisov I., Bakhtin D., Luque-Alled J.M., Rybakova A., Makarova V., Foster A.B., Harrison W.J., Volkov V., Polevaya V., Gorgojo P., Prestat E., Budd P.M., Volkov A.V. // J. Mater. Chem. A. 2019. V. 7. P. 6417.
  34. Ming Yu., Foster A.B., Kentish S.E., Scholes C.A., Budd P.M. // J. Memb. Sci. 2025. V. 722. P. 123844.
  35. Henis J.M.S., Tripodi M.K. // J. Membr. Sci. 1981. V. 8. P. 233.
  36. Zhao J., Hea G., Liua G., Pana F., Wua H., Jinc W., Jianga Z. // Progress in Polymer Sci. 2018. V. 80. P. 125.
  37. Ugrozov V.V. // Membr. Membr. Technol. 2024. V. 6. № 1. P. 9.
  38. Bakhtin D.S., Borisov I.L., Polevaya V.G., Budd P.M., Volkov A.V. // J. Phys.: Conf. Ser. 2020. V. 1696. № 1. P. 012038.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).