Effect of feed solution pH on the electrodialysis performance in tartrates recovery
- Authors: Yurchenko О.А.1, Solonchenko К.V.1, Pismenskaya N.D.1
-
Affiliations:
- Kuban State University
- Issue: Vol 14, No 6 (2024)
- Pages: 503-516
- Section: Articles
- URL: https://journals.rcsi.science/2218-1172/article/view/282950
- DOI: https://doi.org/10.31857/S2218117224060078
- EDN: https://elibrary.ru/MAVJDG
- ID: 282950
Cite item
Abstract
Resource-saving and environmentally friendly electrodialysis (ED) is finding an increasing number of applications involving the separation and purification of organic acids and the extraction of their anions from wines, juices and biochemical waste products. Gaining information about the transport of these anions, particularly tartaric acid (H2T) anions, is key to improving ED efficiency. In this study, the transport of tartrates across the CJMA-3 anion exchange membrane was investigated using voltammetry, chronopotentiometry and ED experiments. It was shown that when using a NaxH(2–x)T solution with pH 9.0, which contains only doubly charged tartrate anions T2–, the transfer patterns do not differ from those well known for strong electrolytes. If a solution has a pH of 2.5 or 3.0, it contains a mixture of H2T acid molecules and singly charged HT– anions. Upon entering the membrane, HT– anions dissociate. Protons are excluded from the depleted solution by the Donnan effect, and the resulting doubly charged T2– anions are transported through CJMA-3. A decrease in the concentration of HT– in the near-membrane depleted solution stimulates the irreversible dissociation of H2T. Under the influence of an electric field, protons are removed from the reaction zone and move into the solution, and anions into the membrane. Therefore, the transfer of tartrates through the anion exchange membrane occurs even if the feed solution mainly contains acid molecules. The implementation of these mechanisms causes empirical limiting currents to exceed theoretical limiting currents many times over. The energy consumption for the extraction of 20% tartrates from a 0.022M solution is NaxH(2–x)T 0.22 (pH 9.0), 0.32 (pH 3.0) and 0.57(pH 2.5) kW h/kg. The duration of ED in this case increases in the series: pH 3.0 << pH 9.0 < pH 2.5.
About the authors
О. А. Yurchenko
Kuban State University
Author for correspondence.
Email: olesia93rus@mail.ru
Russian Federation, 350040, Krasnodar
К. V. Solonchenko
Kuban State University
Email: olesia93rus@mail.ru
Russian Federation, 350040, Krasnodar
N. D. Pismenskaya
Kuban State University
Email: olesia93rus@mail.ru
Russian Federation, 350040, Krasnodar
References
- Kim N., Jeon J., Chen R., Su X. Chem. Eng. Res. Des., 178, 267–288 (2022). https://doi.org/10.1016/j.cherd.2021.12.009
- Igliński B., Kiełkowska U., Piechota G. Clean. Technol. Environ. Policy, 24 (7), 2061–2079 (2022). https://doi.org/10.1007/s10098-022-02316-y
- Zhang Y., Pinoy L., Meesschaert B., Van der Bruggen B., AIChE J. 57 (8), 2070 – 2078 (2011). https://doi.org/10.1002/aic.12433
- He J.-C., Jia Y.-X., Yan R., Wang M. J. Membr. Sci., 638, 119683 (2021). https://doi.org/10.1016/j.memsci.2021.119683
- Wang Q., Chen G.Q., Lin L., Li X., Kentish S.E. Sep. Purif. Technol., 279, 119739 (2021). https://doi.org/10.1016/j.seppur.2021.119739
- RózsenberszkiT. , Komáromy P., Hülber-Beyer É., Pesti A., Koók L., Bakonyi P., Bélafi-Bakó K., Nemestóthy N. Chem. Eng. Res. Des., 190, 187–197 (2023). https://doi.org/10.1016/j.cherd.2022.12.023
- Liu Y., Sun Y., Peng Z. Desalination, 537, 115866 (2022). https://doi.org/10.1016/j.desal.2022.115866
- Luo Y., Liu Y., Shen J., Van der Bruggen B. Membranes, 12 (9), (2022). https://doi.org/10.3390/membranes12090829
- Jeremias J.S.D., Lin J.-Y., Dalida M.L.P., LuM.-C. J. Environ. Chem. Eng., 11 (2), 109336 (2023). https://doi.org/10.1016/j.jece.2023.109336
- Silva A.F.R., Ribeiro L.A. M.C.S Amaral, Sep. Purif. Technol., 311, 123295 (2023). https://doi.org/10.1016/j.seppur.2023.123295
- Vecino X., Reig M., Gibert O., Valderrama C., Cortina J.L. ACS Sustain. Chem. Eng., 8 (35), 13387 – 13399 (2020). https://doi.org/10.1021/acssuschemeng.0c04166
- Andrés L.J., Riera F.A., Alvarez R. J. Chem. Technol. Biotechnol., 70 (3), 247 – 252 (1997). https://doi.org/10.1002/(SICI)1097-4660(199711)70:3<247::AID-JCTB763>3.0.CO;2-8
- Renaud V., Houde V.P., Pilon G., Varin T.V., Roblet C., Marette A., Boutin Y., Bazinet L. Int. J. Mol. Sci., 22 (21), 11537 (2021). https://doi.org/10.3390/ijms222111537
- Fidaleo M., Ventriglia G. Foods, 11 (12), 1770 (2022). https://doi.org/10.3390/foods11121770
- Wang Y., Jiang C., Bazinet L., Xu T. Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 349–381(2019). https://doi.org/10.1016/b978-0-12-815056-6.00010-3
- Liu G., Wu D., Chen G., Halim R., Liu J., Deng H. Sep. Purif. Technol., 263, 118403 (2021). https://doi.org/10.1016/j.seppur.2021.118403
- Chandra A., Bhuvanesh E.B., Chattopadhyay S. Chem. Eng. Res. Des., 178, 13–24 (2022). https://doi.org/10.1016/j.cherd.2021.11.035
- Chandra A., Tadimeti J.G.D., Chattopadhyay S. Chin. J. Chem. Eng., 26 (2), 278–292 (2018). https://doi.org/10.1016/j.cjche.2017.05.010
- Chandra A., Chattopadhyay S. Colloids Surf. A Physicochem. Eng. Asp., 589, 124395 (2020). https://doi.org/10.1016/j.colsurfa.2019.124395
- Laucirica G., Pérez-Mitta G., Toimil-Molares M.E., Trautmann C., Marmisollé W.A., Azzaroni O. J. Phys. Chem. C, 123, 28997–29007 (2019). https://doi.org/10.1021/acs.jpcc.9b07977
- Liu J., Liang J., Feng X., Cui W., Deng H., Ji Z., Zhao Y. , Guo X., Yuan J. J. Membr. Sci., 624, 119109 (2021). https://doi.org/10.1016/j.memsci.2021.119109
- Vásquez-Garzón M.L., Bonotto G., Marder L., Ferreira J.Z., Bernardes A.M. Desalination, 263 (1–3), 118 – 121(2010). https://doi.org/10.1016/j.desal.2010.06.047
- Martí-Calatayud M.C., Ruiz-García M., Pérez-Herranz V. Sep. Purif. Technol., 354, 128951 (2025). https://doi.org/10.1016/j.seppur.2024.128951
- Lide R. CRC Handbook of Chemistry and Physics 86TH Edition 2005–2006, 2005.
- Kozaderova O.A., Kim K.B., Gadzhiyevа Ch.S., Niftaliev S.I. J. Memb. Sci., 604, 118081 (2020). https://doi.org/10.1016/j.memsci.2020.118081.
- Vasilieva V.I., Meshcheryakova E.E., Falina I.V., Kononenko N.A., Brovkina M.A., Akberova E.M. Membr. Membr. Technol., 5, 139–147 (2023). https://doi.org/10.1134/S2517751623030083
- Wang Y., Zhang Z., Jiang C., Xu T. Sep. Purif. Technol., 170, 353–359 (2016). https://doi.org/10.1016/j.seppur.2016.07.002
- Yan H., Wang Y., Xu T. K6-5: Developing Ion Exchange Membrane for Treating High Salinity Water Using Electrodialysis. In Proceedings of the 5th International Conference on Sustainable Chemical Production Process Engineering (SCPPE), Tianjin, China, 30 July 2019; p. 65.
- Sarapulova V., Pismenskaya N., Titorova V., Sharafan M., Wang Y., Xu T., Zhang Y., Nikonenko V. Int. J. Mol. Sci. 22, № 3, 415 (2021). https://doi.org/10.3390/ijms22031415
- Ponomar M., Krasnyuk E., Butylskii D., Nikonenko V., Wang Y., Jiang C., Xu T., Pismenskaya N. Membranes, 12, 765 (2022). https://doi.org/10.3390/membranes12080765
- Pismenskaya N., Rybalkina O., Solonchenko K., Pasechnaya E., Sarapulova V., Wang Y., Jiang C., Xu T., Nikonenko V. Polymers, 15, 2288 (2023). https://doi.org/10.3390/polym15102288
- Pismenskaya N.D., Rybalkina O.A., Kozmai A.E., Tsygurina K.A., Melnikova E.D., Nikonenko V.V. J. Membr. Sci., 601, 117920 (2020). https://doi.org/10.1016/j.memsci.2020.117920
- Titorova V.D., Mareev S.A., Gorobchenko A.D., Gil V.V., Nikonenko V.V., Sabbatovskii K.G., Pismenskaya N.D. J. Membr. Sci., 624, 119036 (2021). https://doi.org/10.1016/j.memsci.2020.119036
- Sarapulova V., Nevakshenova E., Pismenskaya N., Dammak L., Nikonenko V. J. Membr. Sci., 479, 28–38 (2015). https://doi.org/10.1016/j.memsci.2015.01.015
- Maletzki F., Rosler H.-W., Staude E. J. Membr. Sci., 71, 105 (1992). https://doi.org/10.1016/0376-7388(92)85010-G
- Dukhin S.S. Adv. Colloid Interface Sci., 35, 173–196 (1991). https://doi.org/10.1016/0001-8686(91)80022-C
- Mishchuk N.A. Adv. Colloid Interface Sci., 160, 16–39 (2010), https://doi.org/10.1016/j.cis.2010.07.001
- Rubinstein I., Zaltzman B. Phys. Rev. Lett. 114, 114502 (2015). https://doi.org/10.1103/PhysRevLett.114.114502
- Rubinstein I., Zaltzman B. Phys. Rev. E., 62, 2238–2251 (2000). https://doi.org/10.1103/PhysRevE.62.2238
- Zaltzman B., Rubinstein I. J. Fluid Mech., 579, 173–226 (2007). https://doi.org/10.1017/S0022112007004880
- Simons R. Electrochim. Acta., 29, 151–158 (1984). https://doi.org/10.1016/0013-4686(84)87040-1
- Tanaka Y. Prog. Filtr. Sep., 207–284 (2015). https://doi.org/10.1016/B978-0-12-384746-1.00006-9
- Zabolotsky V.I., Shel’deshov N.V., Gnusin N.P. Russ. Chem. Rev., 57, 801–808 (1988). https://doi.org/10.1070/RC1988v057n08ABEH003389
- Rybalkina O.A., Moroz I.A., Gorobchenko A.D., Pismenskaya N.D., Nikonenko V.V. Membr. Membr. Technol., 4, 31–38 (2022). https://doi.org/10.1134/S2517751622010061
- Helfferich F. Ion Exchange, McGraw-Hil, New York, 1962.
- Rybalkina O.A., Sharafan M.V., Nikonenko V.V., Pismenskaya N.D. J. Membr. Sci., 651, 120449 (2022). https://doi.org/10.1016/j.memsci.2022.120449
- Zabolotskii V.I., Lebedev K.A., Shel’deshov N.V. Russ. J. Electrochem., 53 (9), 966–979 (2017). https://doi.org/10.1134/S102319351709018X
- Sharafan M.V., Gorobchenko A.D., Nikonenko V.V. Membr. Membr. Technol. (In press)
- Strnad J., Kincl M., Beneš J., Svoboda M., Vobecká L., Slouka Z. Desalination, 571, 117093 (2024). https://doi.org/10.1016/j.desal.2023.117093
Supplementary files
