Investigation of the Hydrophobic Properties Stability of Textured Polymer Coatings Deposited on the Track-Etched Membrane Surface

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The stability of the hydrophobic properties of coatings with a morphologically developed (textured) surface prepared from polytetrafluoroethylene and ultra-high molecular weight polyethylene during storage, as well as during prolonged contact with water and aqueous solutions of sodium chloride with concentrations from 5 to 15 g/L has been studied. These coatings were deposited on the surface of a poly(ethylene terephthalate) track-etched membrane by electron-beam dispersion of the pristine polymers in vacuum. It is found that coatings from polytetrafluoroethylene under the influence of real environmental conditions tend to age and gradually lose their hydrophobic properties. The water contact angle of the coatings decreases by an average of 30° during storage samples of composite membranes for 5 years. This is 23% of the pristine value. The decrease in the contact angle of coatings of this type is due to the transition from a heterogeneous wetting mode to a homogeneous one, the reason for which is the formation of an adsorption layer of water on their surface. In contrast, the water contact angle for coatings from ultra-high molecular weight polyethylene practically does not change during storage of membrane samples. A study of the polymer coatings stability during prolonged contact of composite membranes with water and aqueous solutions of sodium chloride showed that if coatings from ultra-high molecular weight polyethylene are stable in both water and aqueous solutions of sodium chloride, then coatings from polytetrafluoroethylene are more stable to the action of aqueous salt solutions than water.

Full Text

Restricted Access

About the authors

L. I. Kravets

Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research

Author for correspondence.
Email: kravets@jinr.ru
Russian Federation, Dubna, 20, Joliot-Curie St., 141980

M. A. Yarmolenko

Francisk Skorina Gomel State University

Email: kravets@jinr.ru
Belarus, Gomel, 104, Sovetskaya St., 246019

A. V. Rogachev

Francisk Skorina Gomel State University

Email: kravets@jinr.ru
Belarus, Gomel, 104, Sovetskaya St., 246019

R. V. Gainutdinov

Crystalography and Photonics Federal Research Centre of the Russian Academy of Sciences

Email: kravets@jinr.ru
Russian Federation, Moscow, 59, Leninsky Ave., 119333

M. A. Kuvaytseva

Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research

Email: kravets@jinr.ru
Russian Federation, Dubna, 20, Joliot-Curie St., 141980

V. A. Altynov

Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research

Email: kravets@jinr.ru
Russian Federation, Dubna, 20, Joliot-Curie St., 141980

N. E. Lizunov

Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research

Email: kravets@jinr.ru
Russian Federation, Dubna, 20, Joliot-Curie St., 141980

References

  1. Modification of Polymer Properties. / Ed. by Jasso-Gastinel C.F., Kenny J.M. Oxford (UK): William Andrew. 2016. 232 p.
  2. Ярославцев А.Б., Шельдешов Н.В., Заболоцкий В.И. и др. Мембраны и мембранные технологии. М.: Научный мир. 2013. 612 с.
  3. Khulbe K.C., Feng C., Matsuura T. The art of surface modification of synthetic polymeric membranes. // J. Appl. Polym. Sci. 2010. V. 115. P. 855–895.
  4. Abegunde O.O., Akinlabi E.T., Oladijo O.Ph., Akinlabi S., Ude A.U. Overview of thin film deposition techniques. // AIMS Materials Science. 2019. V. 6. № 2. P. 174–199.
  5. Liu F., Wang L., Li D., Liu Q., Deng B. A review: the effect of the microporous support during interfacial polymerization on the morphology and performances of a thin film composite membrane for liquid purification. // RCS Adv. 2019. V. 9. P. 35417–35428.
  6. Farahbakhsh J., Vatanpour V., Khoshnam M., Zargar M. Recent advancements in the application of new monomers and membrane modification techniques for the fabrication of thin film composite membranes: A review. // Reactive and Functional Polymers. 2021. V. 166. Article 105015.
  7. Eykens L., DeSitter K., Dotremont C., Pinoy L., Van der Bruggen B. Coating techniques for membrane distillation: An experimental assessment. // Sep. Purif. Technol. 2018. V. 193. P. 38–48.
  8. Zahid M., Rashid A., Akram S., Rehan Z.A., Razzaq W. A comprehensive review on polymeric nano-composite membranes for water treatment. // J. Membr. Sci. Technol. 2018. V. 8. № 1. Article 1000179.
  9. Yang Zh., Ma X.-H., Tang Ch.Y. Recent development of novel membranes for desalination. // Desalination. 2018. V. 434. P. 37–59.
  10. Anis Sh. F., Hashaikeh R., Hilal N. Functional materials in desalination: A review. // Desalination. 2019. V. 468. Article 114077.
  11. Teow Y.H., Mohammad A.W. New generation nanomaterials for water desalination: A review. // Desalination. 2019. V. 451. P. 2–17.
  12. Assad M. El Haj, Bani-Hanib E., Al-Sawafta I., Issa S., Hmida A., Gupta M., Atiqure R.S.M., Hidouri K. Applications of nanotechnology in membrane distillation: A review study. // Desalination and Water Treatment. 2020. V. 192. P. 61–77.
  13. Essalhi M., Khayet M. Surface segregation of fluorinated modifying macromolecule for hydrophobic/hydrophilic membrane preparation and application in air gap and direct contact membrane distillation. // J. Membr. Sci. 2012. V. 417–418. P. 163−173.
  14. Gancarz I., Bryjak M., Kujawski J., Wolska, J., Kujawa, J., Kujawski W. Plasma deposited fluorinated films on porous membranes. // Mater. Chem. Phys. 2015. V. 151. P. 233–242.
  15. Korolkov I.V., Gorin Y.G., Yeszhanov A.B., Kozlovskiy A.L., Zdorovets M.V. Preparation of PET track-etched membranes for membrane distillation by photo-induced graft polymerization. // Mater. Chem. Phys. 2018. V. 205. P. 55–63.
  16. Kravets L.I., Yarmolenko M.A., Yablokov M.Yu., Gainutdinov R.V., Altynov V.A., Lizunov N.E. Fabrication of composite membranes for water desalination by electron-beam deposition of a polytetrafluoroethylene-like coating on the surface of track-etched membrane. // High Temp. Mater. Proc. 2020. V. 24. № 4. P. 239−260.
  17. Yeszhanov A.B., Korolkov I.V., Dosmagambetova S.S., Zdorovets M.V., Güven O. Recent progress in the membrane distillation and impact of track-etched membranes. // Polymers. 2021. V. 13. Article 2520.
  18. Bryjak M., Gancarz I. Membrane prepared via plasma modification. In: Membranes for membrane reactors: preparation, optimization and selection. Eds. A. Basile and F. Gallucci. Chichester (UK): John Wiley & Sons. 2011. P. 549–568.
  19. Kravets L.I., Gilman A.B., Dinescu G. Modification of polymer membrane properties by low-temperature plasma. // Rus. J. Gener. Chem. 2015. V. 85. № 5. P. 1284−1301.
  20. Wang J., Chen X., Reis R., Chen Zh., Milne N., Winther-Jensen B., Kong L., Dumee L.F. Plasma modification and synthesis of membrane materials – A mechanistic review. // Membranes. 2018. V. 8. № 3. Article 56.
  21. Кравец Л.И., Гильман А.Б., Satulu V., Mitu B., Dinescu G. Формирование ‘diode-like’ композитных мембран методом полимеризации в плазме. // Перспективные материалы. 2017. №. 9. С. 5−21.
  22. Ясуда Х. Полимеризация в плазме. М.: Мир, 1988. 376 с.
  23. Кравец Л.И., Алтынов В.А., Ярмоленко М.А., Гайнутдинов Р.В., Satulu V., Mitu B., Dinescu G. Осаждение на поверхности трековых мембран гидрофобных полимерных покрытий из активной газовой фазы. // Мембраны и мембранные технологии. 2022. Т. 12. № 2. С. 151−162.
  24. Fan W., Qian J., Bai F., Li Y., Wang C., Zhao Q.-Z. A facile method to fabricate superamphiphobic polytetrafluoroethylene surface by femtosecond laser pulses. // Chem. Phys. Lett. 2016. V. 644. P. 261−266.
  25. Yong J., Chen F., Yang Q., Jiang Z., Hou X. A review of femtosecond-laser-induced underwater superoleophobic surfaces. // Adv. Mater. Interfaces. 2018. V. 5. Article 1701370.
  26. Satulu V., Mitu B., Pandele A.M., Voicu S.I., Kravets L., Dinescu G. Composite polyethylene terephthalate track membranes with thin teflon-like layers: preparation and surface properties. // Appl. Surf. Sci. 2019. V. 476. P. 452–459.
  27. Kravets L., Altynov V., Lizunov N., Gainutdinov R., Satulu V., Mitu B., Dinescu G. Hydrophobization of track membrane surface by magnetron sputter deposition of ultra-high molecular weight polyethylene. // Plasma Phys. Technol. 2020. V. 7. № 1. P. 10–15.
  28. Ju Y., Ai L., Qi X., Li J., Song W. Review on hydrophobic thin films prepared using magnetron sputtering deposition. // Materials. 2023. V. 16. Article 3764.
  29. Michels A.F., Soave P.A., Nardi J., Jardim P.L.G., Teixeira S.R., Weibel D.E., Horowitz F. Adjustable, (super)hydrophobicity by e-beam deposition of nanostructured PTFE on textured silicon surfaces. // J. Mater. Sci. 2016. V. 51. P. 1316–1323.
  30. Henda R., Wilson G., Gray-Munro J., Alshekhli O., McDonald A.M. Henda R., Wilson G., Gray-Munro J., Alshekhli O., McDonald A.M. Preparation of polytetrafluoroethylene by pulsed electron ablation: Deposition and wettability aspects. // Thin Solid Films. 2012. V. 520. P. 1885–1889.
  31. Ярмоленко М.А., Рогачев А.А., Лучников П.А., Рогачев А.В., Джанг Сянь Хун. // Микро- и нанокомпозиционные полимерные покрытия, осаждаемые из активной газовой фазы. / Под ред. А.В. Рогачева. М.: Радиотехника, 2016. 424 с.
  32. Drabik M., Polonskaya O., Kylian O., Cechvala J., Artemenko A., Gordeev I., Choukourov A., Slavinska D., Matolinova I., Biederman H. Syperhydrophobic coatings prepared by RF magnetron sputtering of PTFE. // Plasma Process Polym. 2010. V. 7. P. 544–551.
  33. Кравец Л.И., Ярмоленко М.А., Рогачев А.А., Гайнутдинов Р.В., Гильман А.Б., Алтынов В.А., Лизунов Н.Е. Формирование на поверхности трековых мембран супергидрофобных покрытий методом электронно-лучевого диспергирования полимеров в вакууме. // Перспективные материалы. 2019. № 11. С. 59–74.
  34. Kravets L.I., Altynov V.A., Gilman A.B., Yablokov M Yu., Satulu V., Mitu B., Dinescu G. Deposition of fluorinated polymer films onto track-etched membrane surface. // Rom. Rep. Phys. 2018. V. 70. Article 516.
  35. Бойнович Л.Б., Емельяненко А.М. Гидрофобные материалы и покрытия: принципы создания, свойства и применение. // Успехи химии. 2008. Т. 77. № 7. С. 619−638.
  36. Ерофеев Д.А., Машляковский Л.Н. Получение и применение гидрофобных полиуретановых кремнийсодержащих покрытий. Часть 1: Основы явления гидрофобности. // Химия и технология высокомолекулярных соединений. 2022. № 62. С. 58–65.
  37. Butt H.-J., Ilia V. Roisman I.V., Brinkmann M., Papadopoulos P., Vollmer D., Semprebon C. Characterization of super liquid-repellent surfaces. // Curr. Opin. Colloid Interface Sci. 2014. V. 19. P. 343–354.
  38. Simpson J.T., Hunter S.R., Aytug T. Superhydrophobic materials and coatings: A review. // Rep. Prog. Phys. 2015. V. 78. Article 086501.
  39. Liravi M., Pakzad H., Moosavi A., Nouri-Borujerdi A. A comprehensive review on recent advances in superhydrophobic surfaces and their applications for drag reduction. // Prog. Org. Coat. 2020. V. 140. Article 105537.
  40. Mehanna Y.A., Sadler E., Upton R.L., Kempchinsky A.G., Lu Y., Crick C.R. The challenges, achievements and applications of submersible superhydrophobic materials. // Chem. Soc. Rev. 2021. V. 50. P. 6569–6612.
  41. Пашинин А.С., Золотареыский В.И., Киселев М.Р., Емельяненко А.М., Бойнович Л.Б. Термостойкость супергидрофобных покрытий. // Доклады Акад. Наук. 2011. Т. 436. № 4. С. 490–493.
  42. Vidal K., Gomez E., Goitandia A.M., Angulo-Ibanez A., Aranzabe E. The synthesis of a superhydrophobic and thermal stable silica coating via sol-gel process. // Coatings. 2019. V. 9. Article 627.
  43. Myronyuk O., Baklan D. Aging analysis of textured water-repellent coatings under ultraviolet radiation and water. // Chem. Engineering. 2022. V. 4. № 3. P. 12–15.
  44. Домантовский А.Г., Емельяненко А.М., Емельяненко К.А., Бойнович Л.Б. Пороговый эффект деградации супергидрофобных покрытий, вызванный воздействием озона. // Журнал технической физики. 2021. Т. 91. № 8. С. 1293–1298.
  45. Пашинин А.С., Емельяненко А.М., Бойнович Л.Б. Взаимодействие гидрофобных и супергидрофобных материалов с водными средами. // Физикохимия поверхности и защита материалов. 2010. Т. 46. № 6. С. 664−670.
  46. Бойнович Л.Б., Емельяненко А.М., Пашинин А.С. Особенности взаимодействия силиконовых резин электротехнического назначения с водными средами. // Физикохимия поверхности и защита материалов. 2009. Т. 45. № 1. С. 92−98.
  47. Емельяненко А.М., Бойнович Л.Б. Анализ смачивания как эффективный метод изучения характеристик покрытий, поверхностей и происходящих на них процессов (обзор). // Заводская лаборатория. Диагностика материалов. 2010. Т. 76. № 9. С. 27−36.
  48. Apel P.Yu., Dmitriev S.N. Micro- and nanoporous materials produced using accelerated heavy ion beams. // Adv. Natur. Sci.: Nanosci. Nanotechnol. 2011. V. 2. Article 013002.
  49. Kravets L.I., Dmitriev S.N., Apel P.Yu. Production and properties of polypropylene track membranes. // Collect. Czech. Commun. 1997. V. 62. P. 752–760.
  50. Кравец Л.И., Ярмоленко М.А., Рогачев А.В., Гайнутдинов Р.В., Алтынов В.А., Лизунов Н.Е. Формирование на поверхности трековых мембран гидрофобных и супергидрофобных покрытий с целью создания композиционных мембран для опреснения воды. // Коллоидный журнал. 2022. Т. 84. № 4. С. 433–452.
  51. Мулдер М. Введение в мембранную технологию. М.: Мир. 1999. 514 с.
  52. Овчинников В.В., Селезнев В.Д. Автоматический газодинамический контроль диаметра пор ядерных мембран с использованием микро-ЭВМ. // Измерит. техника. 1989. № 3. С. 12–13.
  53. Апель П.Ю., Дмитриев С.Н. Оптимизация формы пор трековых мембран. // Критические технологии. Мембраны. 2004. № 3. С. 32−37.
  54. Huhtamäki T., Tian X., Korhonen J.T., Ras R.H.A. Surface-wetting characterization using contact angle measurements. // Nature Protocols. 2018. V. 13. P. 1521–1538.
  55. Rezaei M., Warsinger D.M., Lienhard J.H., Duke M.C., Matsuura T., Samhaber W.M. Wetting phenomena in membrane distillation: mechanisms, reversal, and prevention. // Water Research. 2018. V. 139. P. 329−352.
  56. Scanning probe microscopy and spectroscopy: Theory, techniques, and applications. / Ed. by Dawn Bonnell. Cambridge: Wiley, 2001. 516 p.
  57. Surface Analysis by auger and X-Ray photoelectron spectroscopy. / Eds by Briggs D., Grant J.T. Chichester: IM Publ., 2003. 505 p.
  58. Beamson G., Briggs D. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database. Chichester: John Wiley, 1992. 295 p.
  59. Dmitriev S.N., Kravets L.I., Sleptsov V.V., Elinson V.M., Potryasai V.V. Hydrophilization of the surface of polyvinylidene fluoride membranes in non-polymerizing gas plasma. // Heavy Ion Physics, FLNR Scientific Report 1999–2000. JINR Dubna, Russia. 2001. P. 225−226.
  60. Quere D. Wetting and roughness. // Ann. Rev. Mater. Res. 2008. V. 38. P. 71−99.
  61. Arkles B. Hydrophobicity, hydrophilicity and silanes. // Paint and Coatings Industry. 2006. V. 22. P. 114−135.
  62. Law K.Y., Zhao H., Samuel B. Adhesion of water on flat polymer surfaces and superhydrophobic surfaces. // NSTI-Nanotech. 2010. V. 1. P. 581− 584.
  63. Nishime T.M.C., Toth A., Hein L.R.O., Kostov K.G. Surface characteristics analysis of polypropylene treated by dielectric barrier discharge at atmospheric pressure. // J. Phys. Confer. Ser. 2012. V. 370. Article 012025.
  64. Kostov K.G., Ueda M., Tan I.H., Leite N.F., Beloto A.F., Gomes G.F. Structural effect of nitrogen plasma-based ion implantation on ultra-high molecular weight polyethylene. // Surf. Coat. Technol. 2004. V. 186. P. 287−290.
  65. Kolska Z., Reznickova A., Hnatowicz V. Svorcik V. PTFE surface modification by Ar plasma and its characterization. // Vacuum. 2012. V. 86. P. 643−647.
  66. Hubert J., Mertens J., Dufour T., Vandencasteele N., Reniers F., Viville P., Lazzaroni R., Raes M., Terryn H. Synthesis and texturization processes of (super)-hydrophobic fluorinated surfaces by atmospheric plasma. // J. Mater. Res. 2015. V. 30. P. 3177–3191.
  67. Bismark A., Schulz A., Zell H., Springer J., Tahhan R., Klapotke T.M., Michaeli W. Influence of fluorination on the properties of carbon fibers. // J. Fluor. Chem. 1997. V. 84. P. 127−134.
  68. Лучников П.А. Управление качеством вакуумных фторполимерных покрытий направленной электронной обработкой. // Вестник науки Сибири. Инженерные науки. 2011. № 1. С. 167−180.
  69. Козловцев В.А., Голованчиков А.Б., Козловцев Е.В., Алейникова Т.П. Регулирование электретных свойств полимерных материалов. // Известия ВолгГТУ. 2021. № 5. С. 70−74.
  70. Grytsenko K., Ksianzou V., Kolomzarov Y., Lytvyn P., Dietzel B., Schrader S. Fluoropolymer film formation by electron activated vacuum deposition. // Surfaces. 2021. V. 4. P. 66–80.
  71. Салем Р.Р. Теория двойного слоя. М.: Физматлит. 2003. 104 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. SEM images of the surface layer of the original PET TM with a pore diameter of 250 nm (a), 300 (b) and 500 nm (c) UHMWPE-coated membranes; 300 (d) and 500 nm (e) PTFE-coated membranes; and the reverse side of the modified membrane (f).

Download (583KB)
3. Fig. 2. Three-dimensional AFM-derived surface images of PET TM with a pore diameter of 250 nm after 300 (a) and 500 nm (b) UHMWPE coating, after 300 (c) and 500 nm (d) PTFE coating; scanned directly after fabrication of membrane samples.

Download (122KB)
4. Fig. 3. Condensate flux variation in time during membrane distillation of initial PET and PP track membranes (a) and composite membranes with 300 (1) and 500 nm (2) thick PTFE coating, 300 (3) and 500 nm (4) thick UHMWPE coating deposited by ELD method (b)

Download (155KB)
5. Fig. 4. Variation of water wetting angle (a), LEPW value (b) and surface roughness (c) of UHMWPE and PTFE coatings as a function of their thickness during storage of composite membranes for 5 years.

Download (235KB)
6. Fig. 5. Three-dimensional AFM-derived surface images of PET TM with 250 nm pore diameter after 300 (a) and 500 nm (b) UHMWPE coating, after 300 (c) and 500 nm (d) PTFE coating; scans were taken after membrane samples had been stored for 5 years.

Download (305KB)
7. Fig. 6. RFES spectra of C1s atoms of 500 nm thick UHMWPE (a) and PTFE (b) coatings deposited by electron-beam dispersion; measured after storage of composite membranes for 5 years.

Download (125KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».