Modification of Ultrafiltration Membranes Based on Polyacrylonitrile

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of three techniques of modification of polyacrylonitrile (PAN) ultrafiltration membranes with polyelectrolytes was studied: (1) bulk modification by addition of polyacrylic acid (PAA) into the casting solution (CS), (2) surface modification by using aqueous solutions of polyethyleneimine (PEI) as a coagulation bath (CB), (3) combined modification by addition of PAA into the CS and using PEI solutions as CBs – on their structure and performance. In all three cases, modification with polyelectrolytes led to an effective hydrophilization of the surface of ultrafiltration membranes (the water contact angle decreased from 41 to 15–25°). It was found that bulk modification of PAN membranes with 0.2 wt. % PAA yielded the decrease of the water flux from 110 to 96 L/m2 h. However, surface modification of PAN membranes using aqueous solutions of PEI as CBs resulted in the increase in water flux more than 2 times from 110 to 294 L/m2 h. It was shown that the combined modification technique reduced the water flux of PAN membranes down to 44 L/m2 h due to structure compaction, confirmed by scanning electron microscopy studies. It was revealed that the combined modification technique allowed to obtain ultrafiltration PAN membranes with a high degree of flux recovery ratio after filtration of model solutions of polyvinylpyrrolidone (73–100% compared to 65% for the reference PAN membrane) and humic acids (80% compared to 73% for the reference PAN membrane).

Full Text

Restricted Access

About the authors

K. S. Burts

Institute of Physical-Organic Chemistry of the National Academy of Sciences of Belarus

Author for correspondence.
Email: katyaburt@gmail.com
Belarus, Minsk, 13, Surganov St., 220072

M. V. Krasnova

Institute of Physical-Organic Chemistry of the National Academy of Sciences of Belarus

Email: katyaburt@gmail.com
Belarus, Minsk, 13, Surganov St., 220072

M. S. Makarava

Institute of Physical-Organic Chemistry of the National Academy of Sciences of Belarus

Email: katyaburt@gmail.com
Belarus, Minsk, 13, Surganov St., 220072

A. L. Yaskevich

Institute of Physical-Organic Chemistry of the National Academy of Sciences of Belarus

Email: katyaburt@gmail.com
Belarus, Minsk, 13, Surganov St., 220072

T. V. Plisko

Institute of Physical-Organic Chemistry of the National Academy of Sciences of Belarus

Email: katyaburt@gmail.com
Belarus, Minsk, 13, Surganov St., 220072

E. A. Nazarov

Institute of Physical-Organic Chemistry of the National Academy of Sciences of Belarus

Email: katyaburt@gmail.com
Belarus, Minsk, 13, Surganov St., 220072

A. V. Bildyukevich

Institute of Physical-Organic Chemistry of the National Academy of Sciences of Belarus

Email: katyaburt@gmail.com
Belarus, Minsk, 13, Surganov St., 220072

References

  1. Wang S., Yin L., Dai J., Chen P., Liu Z., Zhao X., Chen C., Zhou H. // J. Environmental Chemical Engineering. 2023. Vol. 11. № 6. Р. 111464.
  2. Yu H., Cao Y., Kang G., Liu Z., Kuang W., Liu J., Zhou M. // J. Applied Polymer Science. 2015. Vol. 132. P. 41870.
  3. Zhao Y., Liao Y., Lai G. S., Yin Y., Wang R. // J. Membrane Science. 2023. Vol. 685. P. 121908.
  4. Dmitrenko M., Liamin V., Kuzminova A., Mazur A., Lahderanta E., Ermakov S., Penkova A. // Polymers. 2020. Vol. 12. P. 864.
  5. Ahmad T., Guria C., Mandal A. // J. Industrial and Engineering Chemistry. 2020. Vol. 90. P. 58–75.
  6. Penkova A.V., Dmitrenko M.E., Ermakov S.S., Toikka A.M., Roizard D. // Environmental Science and Pollution Research. 2018. Vol. 25. P. 20354–20362.
  7. Wardani A.K., Ariono D., Subagjo, Wenten, I.G. // Polymers for Advanced Technologies. 2019. Vol. 30. P. 1148–1155.
  8. Gryta M., Woźniak P. // Desalination. 2024. Vol. 574. P. 117254.
  9. Plisko T.V., Burts K.S., Bildyukevich A.V. // Membranes. 2022. Vol. 12. P. 724.
  10. Otvagina K.V., Penkova A.V., Dmitrenko M.E., Kuzminova A.I., Sazanova T.S., Vorotyntsev A.V., Vorotyntsev I.V. // Membranes. 2019. Vol. 9. P. 38.
  11. Koh E., Cho N., Park H.M., Lee Y.T. // J. Water Process Engineering. 2023. Vol. 55. P. 104094.
  12. Zhang Y., Tong X., Zhang B., Zhang C., Zhang H., Chen Y. // J. Membrane Science. 2018. Vol. 548. P. 32–41.
  13. Lu Q., Li N. // J. Environmental Chemical Engineering. 2021. Vol. 9. P. 106431.
  14. Wagner A., Ferraria A.M., Do Rego A.M., Mateus M., Azevedo A.M. // J. Chemical Technology & Biotechnology. 2019. Vol. 94. P. 3548–3558.
  15. Plisko T.V., Penkova A.V., Burts K.S., Bildyukevich A.V., Dmitrenko M.E., Melnikova G.B., Atta R.R., Mazur A.S., Zolotarev A.A., Missyul A.B. // J. Membrane Science. 2019. Vol. 580. P. 336–349.
  16. Gayatri R., Yuliwati E., Fizal A.N.S., Zailani M.Z., Jaafar J., Zulkifli M., Taweepreda W., Yahaya A.N.A. // Materials Today: Proceedings. 2024. Vol 96. P. 1–5.
  17. Kim D. Y., Kim M., Jeon S., Lee J., Park H., Park Y. I., Park S.J., Lee J.H. // J. Membrane Science. 2023. Vol. 688. P. 122114.
  18. Bubela H., Konovalova V., Kujawa J., Kolesnyk I., Burban A., Kujawski W. // Separation and Purification Technology. 2023. Vol. 325. P. 124573.
  19. Bildyukevich A., Hliavitskaya T., Melnikova G. // J. Membrane Science and Research. 2021. Vol. 7. P. 45–54.
  20. Bildyukevich A.V., Hliavitskaya T.A., Nevar T.N. // Membranes and Membrane Technologies 2022. Vol. 4. P. 195–205.
  21. Younas H., Bai H., Shao J., Han Q., Ling Y., He Y. // J. Membrane Science. 2017. Vol. 541. P. 529–540.
  22. Ahmad A.L., Majid M.A., Ooi B.S. // Desalination. 2011. Vol. 268. P. 266–269.
  23. Zhu L.J., Zhu L.P., Jiang J.H., Yi Z., Zhao Y.F., Zhu B.K., Xu Y.Y. // J. Membrane Science. 2014. Vol. 451. P. 157–168.
  24. Zhang L., Meng Z., Zang S. // J. Environmental Sciences. 2015. Vol. 31. P. 194–202.
  25. Sharma M., Alves P., Gando-Ferreira L.M. // J. Water Process Engineering. 2023. Vol. 52. P. 103487.
  26. Kuzminova A., Dmitrenko M., Dubovenko R., Puzikova M., Mikulan A., Korovina A., Koroleva A., Selyutin A., Semenov K., Su R., Penkova A. // Polymers. 2024. Vol. 16. P. 1236.
  27. Liu N.J., Yu J.Y., Chen X.Y., Liu L.F. // J. Membrane Science. 2024. Vol. 702. P. 122796.
  28. Emonds S., Kamp J., Viermann R., Kalde A., Roth H., Wessling M. // J. Membrane Science. 2022. Vol. 644. P. 120100.
  29. Burts K.S., Plisko T.V., Bildyukevich A.V., Rodrigues G., Sjölin M., Lipnizki F., Ulbricht M. // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022. Vol. 632. P. 127742.
  30. Burts K.S., Plisko T.V., Sjölin M., Rodrigues, G., Bildyukevich A.V., Lipnizki F., Ulbricht M. // Materials. 2022. Vol. 15. P. 359.
  31. Plisko T., Burts K., Penkova A., Dmitrenko M., Kuzminova A., Ermakov S., Bildyukevich A. // Polymers. 2023. Vol. 15. P. 1664.
  32. Plisko T.V., Bildyukevich A.V., Burts K.S., Ermakov S.S., Penkova A.V., Kuzminova A.I., Dmitrenko M.E., Hliavitskaya T.A., Ulbricht M. // Polymers. 2020. Vol. 12. P. 1017.
  33. Plisko T.V., Bildyukevich A.V., Burts K.S., Hliavitskaya T.A., Penkova A.V., Ermakov S.S., Ulbricht M. // Membranes. 2020. Vol. 10. P. 264.
  34. Юшкин А.А., Балынин А.В., Небесская А.П., Ефимов М.Н., Бахтин Д.С., Баскаков С.А., Канатьева А.Ю. // Мембраны и мембранные технологии. 2023. T. 13, № 4. С. 331–344.
  35. Dmitrenko M., Kuzminova A., Zolotarev A., Markelov D., Komolkin A., Loginova E., Plisko T., Burts K., Bildyukevich A., Penkova, A. // Separation and Purification Technology. 2022. Vol. 286. P. 120500.
  36. Юшкин А.А., Ефимов М.Н., Васильев А.А., Иванов В.И., Богданова Ю.Г., Должикова В.Д., Карпачева Г.П., Бондаренко Г.Н., Волков А.В. // Высокомолек. Соед. А. 2017. Т. 59, №6. С. 548–558.
  37. Zhang B., Wang D., Wu Y., Wang Z., Wang T., Qiu J. // Desalination. 2015. Vol. 357. P. 208–214.
  38. Dmitrenko M., Zolotarev A., Plisko T., Burts K., Liamin V., Bildyukevich A., Ermakov S., Penkova A. // Membranes. 2020. Vol. 10. P. 153.
  39. Бурть Е.С., Плиско Т.В., Прозорович В.Г., Мельникова Г.Б., Иванец А.И., Бильдюкевич А.В. // Мембраны и мембранные технологии. 2022. Т. 12б № 2. С. 116–126.
  40. Burts K.S., Plisko T.V., Bildyukevich A.V., Li G., Kujawa J., Kujawski W. // Chemical Engineering Research and Design. 2022. Vol. 182 P. 544–557.
  41. Burts K.S., Plisko T.V., Prozorovich V.G., Melnikova G.B., Ivanets A.I., Bildyukevich A.V. // International Journal of Molecular Sciences. 2022. Vol. 23. P. 7215.
  42. Burts K., Plisko T., Dmitrenko M., Zolotarev A., Kuzminova A., Bildyukevich A., Ermakov S., Penkova A. // Membranes. 2022. Vol. 12. P. 653.
  43. Putintseva M.N., Borisov I.L., Yushkin A.A., Kirk R., Budd P. M., Volkov A.V. // Key Engineering Materials. 2019. Vol. 816. P. 167–173.
  44. Asadi A., Nazari S., Gholami F., Dolatshah M. // J. Water Process Engineering. 2023. Vol. 52. P. 103562.
  45. Parashuram K., Maurya S.K., Rana H.H., Singh P.S., Ray P., Reddy A.V.R. // J. Membrane Science. 2013. Vol. 425. P. 251–261.
  46. Modi A., Kasher R. // Water Research. 2024. Vol. 254. P. 121384.
  47. Zhang L., Kong W., Lan X., Yang, N., Jiang B., Zhang L., Wang R. // J. Membrane Science. 2024. Vol. 706. P. 122958.
  48. Li S. L., Guan Y., Qin Y., Chen Y., Cheng D., Gong G., Hu Y. // Desalination. 2023. Vol. 549. P. 116354.
  49. Yang X., Bai R., Cao X., Song C., Xu D. // Separation and Purification Technology. 2023. Vol. 316. P. 123769.
  50. Ghadiri M. A., Beyranvand A., Morsali S. // Advances in Polymer Technology. 2022. Vol. 2022. P. 8988568.
  51. Polisetti V., Ray P. // J. Applied Polymer Science. 2021. Vol. 138. P. 49606.
  52. Jang W., Yun J., Park Y., Park I. K., Byun H., Lee C. H. // Polymers. 2020. Vol. 12. P. 2441.
  53. Lohokare H.R., Kumbharkar S.C., Bhole Y.S., Kharul U.K. // Journal of applied polymer science. 2006. Vol. 101. P. 4378–4385.
  54. Ajibade T.F., Xu J., Tian H., Guan L., Zhang K. // Desalin. Water Treat. 2021. Vol. 224. P. 122–135.
  55. Lekena N., Makhetha T.A., Moutloali R.M. // Journal of Environmental Chemical Engineering. 2023. Vol. 11. P. 110883.
  56. Qin Y., Yang H., Xu Z., Li F. // ACS omega. 2018. Vol. 3. P. 4231–4241.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of viscosity and turbidity of FR on PAC concentration.

Download (120KB)
3. Fig. 2. SEM micrographs of cross-sectional fragments of PAN membranes as a function of PAC concentration in FR: a - PAN-0-0, b - PAN-0.05-0, c - PAN-0.1-0, d - PAN-0.2-0.

Download (728KB)
4. Fig. 3. Transport properties of ultrafiltration PAN membranes as a function of PAC concentration in FR.

Download (165KB)
5. Fig. 4. SEM-micrographs of cross-sectional fragments of PAN membranes obtained using different OM: a - PAN-0-0, b - PAN-0-0.1, c - PAN-0-0.3, d - PAN-0-0.5.

Download (740KB)
6. Fig. 5. SEM micrographs of fragments of cross sections of PAN-based membranes: a - PAN-0-0, b - PAN-0.1-0.1, c - PAN-0.1-0.3, d - PAN-0.1-0.5.

Download (85KB)
7. Fig. 6. Dependence of the wetting angle of PAN membranes over water on the concentrations of PAC in FR and PEI in OM.

Download (136KB)
8. Fig. 7. Specific water productivity (a) and retention coefficient by PVP K30 (b) of ultrafiltration PAN membranes as a function of PAC concentrations in FR and PEI in OM.

Download (80KB)
9. Fig. 8. Flow recovery rate after filtration of PVP K30 solution as a function of PAC concentrations in FR and PEI in OM.

Download (106KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».