Characteristics of Aliphitic and Aromatic Ion-Exchange Membranes after Electrodialysis Tartrate Stabilization of Wine Materials

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Color indication of anthocyanins, FTIR spectroscopy, measurement of surface contact angle values, determination of specific electrical conductivity, as well as voltammetry and parallel measurement of pH of desalted solutions were used to analyze the fouling characteristics of aliphatic (CJMA-3, CJMC-3) and aromatic (AMX-Sb, CMX-Sb) ion-exchange membranes used in electrodialysis tartrate stabilization of wine material. It has been shown that polyphenols form complexes with metal ions on the surface and in the subsurface layers of cation-exchange membranes, which do not interfere with the transfer of cations. Foulants affect the magnitude of limiting currents and enhance water splitting at the surface of all studied membranes, and also reduce the electrical conductivity of anion-exchange membranes. The use of a pulsed electric field instead of a continuous direct electric current, traditional for electrodialysis, weakens the negative impact of foulants on membranes’ electrical conductivity. These data can be useful for selecting membranes and current modes when carrying out electrodialysis tartrate stabilization of wine materials.

Full Text

Restricted Access

About the authors

E. L. Pasechnaya

Kuban State University

Author for correspondence.
Email: n_pismen@mail.ru
Russian Federation, Krasnodar

M. A. Ponomar

Kuban State University

Email: n_pismen@mail.ru
Russian Federation, Krasnodar

A. V. Klevtsova

Kuban State University

Email: n_pismen@mail.ru
Russian Federation, Krasnodar

A. V. Korshunova

Kuban State University

Email: n_pismen@mail.ru
Russian Federation, Krasnodar

V. V. Sarapulova

Kuban State University

Email: n_pismen@mail.ru
Russian Federation, Krasnodar

N. D. Pismenskaya

Kuban State University

Email: n_pismen@mail.ru
Russian Federation, Krasnodar

References

  1. Al-Amshawee S., Yunus M.Y.B.M., Azoddein A.A.M., Hassell D.G., Dakhil I.H., Hasan H.A. // Eng. J. 2020. V. 380. P. 122231.
  2. Cournoyer A., Bazinet L. // Membranes. 2023. V. 13. № 2. P. 205.
  3. Shehzad M.A., Yasmin A., Ge X., Wu L., Xu T. // Adv. Mater. Technol. 2023. V. 6. № 10. P. 2001171.
  4. Ran J., Wu L., He Y., Yang Z., Wang Y., Jiang Ch., Ge L., Bakangura E. // J. Memb. Sci. 2017. V. 522. P. 267–291.
  5. Merkel A., Rudolph-Schöpping G., Suwal S., Lipnizki F., Lillevang S.K., Ahrné L. // J. Memb. Sci. 2024. V. 694. P. 122429.
  6. Bazinet L., Montpetit D., Ippersiel D., Amiot J., Lamarche F. // J. Colloid. Interface. Sci. 2001. V. 237. № 1. P. 62–69.
  7. Mikhaylin S., Patouillard L., Margni M., Bazinet L. // Green Chemistry. 2018. V. 20. № 2. P. 449–456.
  8. Merkel A., Vavro M., Čopák L., Dvořák L., Ahrné L., Ruchti C. // Membranes. 2022. V. 13. № 1. P. 29.
  9. Pelletier S., Serre É., Mikhaylin S., Bazinet L. // Purif. Technol. 2017. V. 186. P. 106–116.
  10. Serre E., Rozoy E., Pedneault K., Lacour S., Bazinet L. // Sep. Purif. Technol. 2016. V. 163. P. 228–237.
  11. Audinos R., Roson J.P., Jouret C. // Connaiss. Vigne Vin. 1979. V. 13. P. 229–239.
  12. Gonçalves F., Fernandes C., Cameira dos Santos P., de Pinho M.N. // J. Food Eng. 2003. V. 59. № 2-3. P. 229–235.
  13. Cabrita M.J., Garcia R., Catarino S. Recent Developments in Wine Tartaric Stabilization. In, Jordão A.M., Cosme F., Eds., Nova Science Publishers: New York, 2016.
  14. Mikhaylin S., Bazinet L. // Adv. Colloid Interface Sci. 2016. V. 229. P. 34–56.
  15. Pismenskaya N., Bdiri M., Sarapulova V., Kozmai A., Fouilloux J., Baklouti L., Larchet C., Renard E., Dammak L. // Membranes. 2021. V. 11. № 11. P. 811.
  16. Bazinet L., Geoffroy T.R. // Membranes. 2020. V. 10. № 9. P. 221.
  17. Grossman G., Sonin A.A. // Desalination. 1973. V. 12. № 9. P. 107–125.
  18. Grossman G., Sonin A.A. // Desalination. 1972. V. 10. № 9. P. 157–180.
  19. Cao R., Duan F., Xu Y., Chen C., Ji W., Cao H., Li Y., Shi S. // J. Memb. Sci. 2024. V. 690. P. 122211.
  20. Wang J., Liu M., Feng Z., Liu J., Li X., Yu Y. // Desalination 2024. V. 576. P. 117334.
  21. El Rayess Y., Mietton-Peuchot M. // Crit. Rev. Food Sci. Nutr. 2016. V. 56. № 9. P. 2005–2020.
  22. Thoukis G. Chemistry of Wine Stabilization: A Review. American Chemical Society: Washington, 1974.
  23. Ribéreau-Gayon P., Glories Y., Maujean A., Dubourdieu D. Handbook of Enology, Volume 2: The Chemistry of Wine - Stabilization and Treatments. John Wiley & Sons Ltd: Chichester, England, 2006.
  24. Pismenskaya N., Sarapulova V., Klevtsova A., Mikhaylin S., Bazinet L. // Int. J. Mol. Sci. 2020. V. 21. № 9. P. 7874.
  25. Bdiri, M., Perreault, V., Mikhaylin, S., Larchet, C., Hellal, F., Bazinet, L., Dammak, L. // Sep. Purif. Technol. 2020. V. 233. P. 115995.
  26. Sarapulova V., Nevakshenova E., Nebavskaya X., Kozmai A., Aleshkina D., Pourcelly G., Nikonenko V., Pismenskaya N. // J. Memb. Sci. 2018. V. 559. P. 170–182.
  27. Helfferich F.G., Dranoff J.S. Ion Exchange, McGraw-Hill: New Yor, 1963.
  28. Ponomar M., Krasnyuk E., Butylskii D., Nikonenko V., Wang Y., Jiang C., Xu T., Pismenskaya N. // Membranes. 2022. V. 12. № 8. P. 765.
  29. Zabolotsky V.I., Nikonenko V.V. // J. Memb. Sci. 1993. V. 79. № 2-3. P. 181–198.
  30. Wang Y., Peng J., Li J., Zhai M. // Radiation Physics and Chemistry. 2017. V. 130. P. 252–258.
  31. Berezina N.P., Kononenko N.A., Dyomina O.A., Gnusin N.P. // Adv. Colloid Interface Sci. 2008. V. 139. № 1–2. P. 3–28.
  32. Tsygurina K., Pasechnaya E., Chuprynina D., Melkonyan K., Rusinova T., Nikonenko V., Pismenskaya N. // Membranes. 2022. V. 12. №. 12. P. 1187.
  33. Lteif R., Dammak L., Larchet C., Auclair B. // Eur. Polym. J. 1999. V. 35. № 7. P. 1187–1195.
  34. Karpenko L.V., Demina O.A., Dvorkina G.A., Parshikov S.B., Larchet C., Auclair B., Berezina N.P. // Russian Journal of Electrochemistry. 2001. V. 37. P. 287–293.
  35. He F., Mu L., Yan G., Liang N., Pan Q., Wang J., Reeves M.J., Duan C. // Molecules. 2010. V. 15. № 12. P. 9057–9091.
  36. Хасанов В.В., Рыжова Г.Л., Мальцева Е.В. // Химия раст. сырья. 2004. №. 3. С. 63–75. [Hasanov V.V., Ryzhova G.L., Mal’tseva E.V. // Khimiya Rastitel’nogo Syr’ya. 2004. №. 3. P. 63–75.]
  37. Mata R. Flavonoids: Chemistry, Biochemistry and Applications. Andersen O.M., Markham K.R., Eds., CRC Press: Boca Raton, 2005.
  38. Dimitrić Marković J.M., Marković Z.S., Baranac J.M., Dašić M.L. // Chemical Monthly. 2007. V. 138. P. 1225–1232.
  39. Shiono M., Matsugaki N., Takeda K. // Proc. Jpn. Acad. 2008. V. 84. № 10. P. 452–456.
  40. Bellamy L.J. The Infra-Red Spectra of Complex Molecules, 3rd ed. Springer: Dordrecht, The Netherlands, 1975.
  41. Тарасевич Б.Н. ИК-Спектры Основных Классов Органических Соединений. Москва, 2012. [Tarasevich B.N. Infrared Spectrum of Basic Classes of Organic Compounds. Moscow, 2012.]
  42. Scano P. // LWT. 2021. V. 147. P. 111604.
  43. Coates J. Interpretation of Infrared Spectra. In Encyclopedia of Analytical Chemistry. John Wiley & Sons, Ltd: Chichester, UK, 2006.
  44. Bormashenko Y., Pogreb R., Stanevsky O., Bormashenko E. // Polym. Test. 2004. V. 23. № 7. P. 791–796.
  45. Mollaamin F., Mohammadian N.T., Najaflou N., Monajjemi M. // SN Appl. Sci. 2021. V. 3. P. 1–18.
  46. Celli G.B., Selig M.J., Tan C., Abbaspourrad A. // Food Bioproc. Tech. 2018. V. 11. P. 991–1001.
  47. Garcia-Vasquez W., Ghalloussi R., Dammak L., Larchet C., Nikonenko V., Grande D. // J. Memb. Sci. 2014. V. 452. P. 104–116.
  48. Ghosh S., Dhole K., Tripathy M.K., Kumar R., Sharma R.S. // J. Radioanal Nucl. Chem. 2015. V. 304. P. 917–923.
  49. Perreault V., Sarapulova V., Tsygurina K., Pismenskaya N., Bazinet L. // Membranes. 2021. V. 11. №. 2. P. 136.
  50. Ismail M.F., Islam M.A., Khorshidi B., Tehrani-Bagha A., Sadrzadeh M. // Adv. Colloid Interface Sci. 2022. V. 299. P. 102524.
  51. Pismenskaya N., Rybalkina O., Solonchenko K., Butylskii D., Nikonenko V. // Membranes. 2023. V. 13. № 7. P. 647.
  52. Dressick W.J., Wahl K.J., Bassim N.D., Stroud R.M., Petrovykh D.Y. // Langmuir. 2012. V. 28. № 45. P. 15831–15843.
  53. Chen D., Yu H., Pan M., Pan B. // Chem. Eng. J. 2022. V. 433. P. 133690.
  54. Newman J.S. Electrochemical Systems. John Wiley & Sons Inc.: Hoboken, New Jersey, 2004.
  55. Nikonenko V., Nebavsky A., Mareev S., Kovalenko A., Urtenov M., Pourcelly G. // Applied Sciences. 2018. V. 9. № 1. P. 25.
  56. Silkina E.F., Asmolov E.S., Vinogradova O.I. // Phys. Chem. Chem. Phys. 2019. V. 21. № 41. P. 23036–23043.
  57. Pärnamäe R., Mareev S., Nikonenko V., Melnikov S., Sheldeshov N., Zabolotskii V., Hamelers H.V.M. // J. Memb. Sci. 2021. V. 617. P. 118538.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of the installation for obtaining volt-ampere characteristics of the studied membranes: 1 - Autolab PGStat-302 N electrochemical station for setting the current and measuring the potential jump; 2 - Luggin capillaries connected to microcapsules in which closed chlorosilver electrodes are placed (3); 4 - vessel with 0.02 M NaCl solution circulating in the electrode chambers; 5 - vessel with 0. 02 M NaCl solution circulating in desalting (KO) and concentrating (CC) chambers; 6 - buffer tanks for softening of pulsations of peristaltic multichannel pump Heidolph Pumpdrive 5001 (not shown); 7 - combined electrodes for pH measurement connected with pH meters Expert 001; 8 - conductometric immersion cells connected with conductometers Expert 002

Download (961KB)
3. Fig. 2. Optical images of the surfaces of anion-exchange (a, c) and cation-exchange (b, d) membranes after their participation in the ED of tartrate stabilisation of model wine material in the NEP and PEP modes. Numbers indicate surface areas that were not in contact (1) or were in contact (2) with the wine material. The frame limits the polarisable area of the membranes, which is in contact with the components of the wine material in the applied electric field

Download (1MB)
4. Fig. 3. Optical slice images of CJMA-3 anion exchange membrane (a) and CJMC-3 cation exchange membrane (b) after their participation in the ED of tartrate stabilisation of model wine material in the NEP mode. The upper side of the membranes was facing the desalting chamber through which the model wine material was pumped

Download (260KB)
5. Fig. 4. IR spectrum of the model wine material

Download (385KB)
6. Fig. 5. IR spectra of CJMC-3 (a) and AMX-Sb (b) membranes before and after ED tartrate stabilisation of model wine material using current modes of NEP and PEP

Download (1MB)
7. Fig. 6. Specific electrical conductivity of anion-exchange (a) and cation-exchange (b) membranes before and after ED of tartrate stabilisation of model wine material using current modes of NEP and PEP. The studies were carried out in 0.5 M NaCl solution

Download (992KB)
8. Fig. 7. Voltammetric characteristics of anion-exchange (a) and cation-exchange (b) membranes with aromatic polymer matrix, as well as pH differences at the outlet and inlet of the desalting channel (c, d), measured in parallel with obtaining the VAC. The studies were performed before and after ED tartrate stabilisation of the model wine material in 0.02 M NaCl solution. The values of the theoretical limiting current are indicated by the dotted line

Download (1MB)
9. Fig. 8. Voltammetric characteristics of anion-exchange (a) and cation-exchange (b) membranes with aliphatic polymer matrix, as well as pH differences at the outlet and inlet of the desalting channel (c, d), measured in parallel with obtaining the VAC. The studies were performed before and after ED tartrate stabilisation of model wine material in 0.02 M NaCl solution

Download (876KB)
10. Fig. 9. Ratios of the experimental limiting currents found from WACs for participating in ED and initial anion-exchange (a) and cation-exchange (b) membranes

Download (1MB)
11. Fig. 10. pH difference at the outlet of the desalting channel in the case of desalting 0.02 M NaCl solution using participating ED and initial anion-exchange (a) and cation-exchange (b) membranes. Data are presented for i/ilimLev = 2.5

Download (1MB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».