Modification of Track-Etched Polyethylene Terephthalate Membranes with Functionalized Silanes for Immobilizing Silver Nanoparticles
- Authors: Fadeikina I.N.1,2, Andreev E.V.1, Grin K.N.1, Nechaev A.N.1,2
-
Affiliations:
- Joint Institute for Nuclear Research
- Dubna State University
- Issue: Vol 14, No 3 (2024)
- Pages: 238-246
- Section: Articles
- URL: https://journals.rcsi.science/2218-1172/article/view/271263
- DOI: https://doi.org/10.31857/S2218117224030063
- EDN: https://elibrary.ru/MRRSJZ
- ID: 271263
Cite item
Abstract
The present study is dedicated to obtain hybrid polyethylene terephthalate track membranes. For this purpose, the modification of track-etched membranes was performed with 3-aminopropyltriethoxysilane and 3-mercaptopropyltriethoxysilane using additional cross-linking groups based on hydrated forms of aluminum salts and silver nanoparticles were immobilised. The resulting track membranes were studied using energy-dispersive X-ray spectroscopy. Zeta-potential of samples’ surface on each modification step was determined. The presence of silver nanoparticles on track membranes surface was confirmed by scanning and transmission electron microscopy, UV-Vis spectroscopy, and surface-enhanced Raman scattering using 4-aminothiophenol. The proposed approach allows to create surfaces to concentrate selectively compounds with further detection by surface-enhanced Raman scattering.
About the authors
I. N. Fadeikina
Joint Institute for Nuclear Research; Dubna State University
Author for correspondence.
Email: membrane@ips.ac.ru
Russian Federation, Dubna, Moscow oblast, 141980; Dubna, Moscow oblast, 141982
E. V. Andreev
Joint Institute for Nuclear Research
Email: membrane@ips.ac.ru
Russian Federation, Dubna, Moscow oblast, 141980
K. N. Grin
Joint Institute for Nuclear Research
Email: membrane@ips.ac.ru
Russian Federation, Dubna, Moscow oblast, 141980
A. N. Nechaev
Joint Institute for Nuclear Research; Dubna State University
Email: membrane@ips.ac.ru
Russian Federation, Dubna, Moscow oblast, 141980; Dubna, Moscow oblast, 141982
References
- Апель П.Ю., Бобрешова О.В, Волков А.В., Волков В.В., Никоненко В.В., Стенина И.А., Филиппов А.Н., Ямпольский Ю.П., Ярославцев А.Б. Перспективы развития мембранной науки // Мембраны и мембранные технологии. 2019. Т. 9. С. 59–80. (англоязычная версия Apel P.Yu. at all. Рrospects of membrane science development // Membranes and Membrane Technologies. 2019. Т. 1. № 2. С. 45–63.)
- Fiodorov V.A., Vasiliev A.B., Bedin S.A., Berezkin V.V., Nazmov V.P., Goldenberg B.G. Оptical properties of regular track-etched poly(ethylene terephthalate) membranes // Membranes and Membrane Technologies. 2019. Т. 1. № 1. С. 27–30.
- Ma T., Janot J.-M., Balme S. Track-Etched Nanopore/Membrane: From Fundamental to Applications. Small Methods. 2020. 4 (9). pp.2000366.
- Rossouw A., Kristavchuk O., Olejniczak A. et al. Modification of polyethylene terephthalate track etched membranes by planar magnetron sputtered Ti/TiO2 thin films // Thin Solid Films. Vol. 725. 2021, p. 138641
- Wigginton K. R. Gold-coated polycarbonate membrane filter for pathogen concentration and SERS-based detection // Analyst. 2010. V. 135. P. 1320–1326.
- Taurozzi J. S. Tarabara V. V. Silver nanoparticle arrays on track etch membrane support as flow-through optical sensors for water quality control // Environ. Eng. Sci. 2007. V. 24. № 1. – P. 122–137.
- Фурлетов А. А. и др. Новый нанокомпозитный материал на основе пенополиуретана и треугольных нанопластинок серебра в качестве твердофазного аналитического реагента для определения ртути (II) // Российские нанотехнологии. 2019. Т. 14. С. 3–9.
- Morones-Ramírez J. R. Bioinspired synthesis of optically and thermally responsive nanoporous membranes // NPG Asia Materials. 2013. Т. 5. №. 6. С. e52-e52.
- Orlova A. O. et al. Formation of structures based on semiconductor quantum dots and organic molecules in track pore membranes // Journal of Applied Physics. 2013. Т. 113. №. 21: 214305-(1-6).
- Sypabekova M. et al. 3-Aminopropyltriethoxysilane (APTES) Deposition Methods on Oxide Surfaces in Solution and Vapor Phases for Biosensing Applications // Biosensors. 2022. V. 13. №. 1. P. 36.
- Majoul N., Aouida S., Bessaïs B. Progress of porous silicon APTES-functionalization by FTIR investigations // Applied Surface Science. 2015. V. 331. P. 388–391.
- Ahmed J., Mushtaq S. Effects of silane-modified Al2O3 and its hybrid filler on thermal stability and mechanical properties of ethylene–vinyl acetate copolymer/polyamide composites // Iranian Polymer Journal. 2022. V. 31. №. 12. P. 1571–1581.
- Березкин В. В., Нечаев А. Н., Митрофанова Н. В. Влияние адсорбции поливалентных металлов на электроповерхностные и ион-селективные свойства трековых нанофильтров // Коллоидный журнал. 2003. Т. 65, № 3. С. 311-315. (англоязычная версия: Berezkin V.V., Nechaev A.N., Mitrofanova N.V. Electrosurface and ion-selective properties of track-etched nanofilters: the effect of polyvalent metal adsorption//Colloid Journal. 2003. Т. 65. № 3. С. 279–283)
- Криставчук О. В., Никифоров И. В., Кукушкин В. И., Нечаев А. Н., Апель П. Ю. Иммобилизация наночастиц серебра, полученных электроискровым методом, на поверхности трековых мембран // Коллоидный журнал. 2017. Т. 79. № 5. С.596-605. doi: 10.7868/s0023291217050093 (англоязычная версия: Kristavchuk O.V., Nikiforov I.V., Nechaev A.N., Apel P.Y., Kukushkin V.I. Immobilization of silver nanoparticles obtained by electric discharge method on a track membrane surface // Colloid J. 2017. V. 79. № 5. P. 637–646).
- Криставчук О.В., Сохацкий А.С., Козловский В.И. и др. Структурные характеристики и ионный состав коллоидного раствора наночастиц серебра, полученного методом электроискрового разряда в воде // Коллоидный журнал. 2021. Т 83. №4. С. 423–435. (англоязычная версия: Kristavchuk O.V. at all. Structural characteristics and ionic composition of a colloidal solution of silver nanoparticles obtained by electrical-spark discharge in water // Colloid Journal. 2021. Т. 83. № 4. С. 448-460)
- Zheng F. et al. Plasmonic Au–Ag janus nanoparticle engineered ratiometric surface-enhanced raman scattering aptasensor for Ochratoxin A detection // Analytical chemistry. – 2019. V. 91. №. 18. P. 11812-11820.
- Wang Y. Q. et al Size-dependent SERS detection of R6G by silver nanoparticles immersion-plated on silicon nanoporous pillar array // Applied surface science. 2012. V. 258. №. 15. P. 5881–5885.
- Apel P.Y., Track-Etching // Encycl. Membr. Sci. Technol, John Wiley & Sons. Inc. Hoboken. NJ. USA. 2013. pp. 1–25.
- Фадейкина И.Н., Андреев Е.В., Криставчук О.В. и др. Электроискровой синтез коллоидного раствора наночастиц серебра с использованием различных модификаторов для иммобилизации на поверхности трековых мембран // Неорганические материалы. 2023. Т. 59. № 3. С. 349–360. (англоязычная версия: Fadeikina I. N., Andreev E. V., Kristavchuk O. V. et al. Electric Discharge Synthesis of Colloidal Silver Nanoparticle Solutions Using Various Modifiers for Immobilization on the Surface of Track-Etched Membranes // Inorganic Materials. 2023. Vol. 59. No. 3. pp.1–11).
- Lee P. C. Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols // J. Phys. Chem. 1982. V. 86. № 17. P. 3391–3395.
- Саббатовский К. Г., Виленский А. И., В. Д. Соболев и др. Электроповерхностные и структурные свойства трековых мембран на основе полиэтилентерефталата // Коллоидный журнал. 2012. Т. 74. № 3. С. 353–358. (англоязычная версия: K.G. at all. Electrosurface and structural properties of poly(ethylene terephthalate) track membranes // Colloid Journal. 2012. Т. 74. № 3. С. 328–333).
- Elkins K. M., Nelson D. J. Spectroscopic approaches to the study of the interaction of aluminum with humic substances // Coordination Chemistry Reviews. 2002. V. 228. №. 2. P. 205–225.
- Song J. et al. Preferential binding properties of carboxyl and hydroxyl groups with aluminium salts for humic acid removal // Chemosphere. 2019. V. 234. P. 478–487.
- Sandrin L., Sacher E. X-ray photoelectron spectroscopy studies of the evaporated aluminum/corona-treated polyethylene terephthalate interface // Applied surface science. 1998. V. 135. №. 1–4. P. 339–349.
- Zhang Y. et al. Enhanced removal of polyethylene terephthalate microplastics through polyaluminum chloride coagulation with three typical coagulant aids // Science of the Total Environment. 2021. V. 800. P. 149589.
- Lei J. et al. A new interfacial polymerization method for forming metal/conductive polymer Schottky barriers // Synthetic metals. 1992. V. 47. №. 3. P. 351–359.
- Bou M. et al. Chemistry of the interface between aluminium and polyethyleneterephthalate by XPS //Applied surface science. 1991. V. 47. №. 2. P. 149–161
- Akhter S., Zhou X. L., White J. M. XPS study of polymer/organometallic interaction: Trimethyl aluminum on polyvinyl alcohol polymer // Applied surface science. 1989. V. 37. №.2. P. 201–216.
Supplementary files
